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The problem of a sudden temperature quench of a spin system is studied for the case of a
two-dimensional spin-flip kinetic Ising model in zero external field. The analysis is carried
out for the case where both the initial and final temperatures are in the disordered phase.
The problem is analyzed with the use of a generalization of the real-space dynamic
renormalization-group method. The interesting features found in studying the time-
dependent structure factor are the following: (i) 2 nonmonotonic time dependence at finite
wave numbers corresponding to “structure pulses”; (ii) a slow shift and decay in the peak of
the structure factor for fixed wave number as a function of temperature; (iii) a slow ap-
proach to the final exponential relaxation to equilibrium.

I. INTRODUCTION

The description of the response of a thermo-
dynamic system to a strong external perturbation
takes one outside the linear-response region in
which we have a well-defined statistical-mechanical
description.! One is confronted in this case with
new difficulties both in terms of exotic phenomena
to be understood (turbulence, nucleation, spinodal
decomposition) and in terms of an appropriate for-
mal description.? In this paper we will analyze a
strongly nonequilibrium situation somewhat simpler
than those mentioned above. We consider the time
evolution of a system of two-dimensional Ising
spins in zero external magnetic field driven by a
spin-flip kinetic Ising® dynamics after a sudden
temperature quench. In this work we restrict the
analysis to the situation where the initial and final
temperatures are in the disordered phase.

Recently* the one-dimensional analog of this
same problem was solved exactly. Rather interest-
ing nonmonotonic “structure pulses” were found in
the time evolution of the wave-number-dependent
structure factor for a range of wave numbers. The
same pulses are found in the two-dimensional case.
We also find another interesting effect associated
with temperature dependence of the structure factor
for fixed wave number and time after quench. As
will be seen in Fig. 3 the peak in the structure factor
as a function of temperature moves slowly to higher
temperatures and loses weight as time progresses.
If one quenches to a temperature near the critical
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point one does find that the final asymptotic decay
is described by dynamical scaling, but one must
wait a rather long time before this description is ap-
propriate (this is discussed more fully in Sec. V).
The technique used in the analysis here is a gen-
eralization of the recently developed real-space
dynamic renormalization-group (RSDRG) method.’
The method is capable of treating more general sit-
uations than the specific example discussed here.
The inclusion, for example, of effects due to spon-
taneous symmetry breaking, finite magnetic fields,
and conservation laws complicate the analysis
somewhat and will be discussed elsewhere.

II. PROBLEM STUDIED

Consider a set of N ferromagnetic Ising spins {0}
located at sites R; on a square lattice with spacing
c. In thermal equilibrium, at a temperature T, the
probability distribution governing these spins is

Plo,K]=exp(H[0,K])/Z(K), (2.1

where H[0,K] is the nearest-neighbor Ising Hamil-
tonian characterized by a coupling K =J /kgT, J is
the exchange constant, and Z(K) is the partition
function.

We assume that the dynamics of the Ising spins
are driven by a heat bath via a pseudo-Liouville
operator D,(K) that depends on the temperature of
the bath. We assume, for definiteness, that we have
a single spin-flip operator (SFO) of the form
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Dlo|o;K]=—2L A .W,[0",K]o;0;
2 4

(2.2)
where «a is a high-temperature relaxation rate,

ASL=TIs, . 2.3)
k(i) KUK
tells us that the matrix D,, is almost diagonal,® and
we choose

W[o,K]1=1+4(K)o;
X Y0115, +A4%K)

X20i+6a0i+8‘,+1 r o (2.4)
a

which is proportional to the probability of a spin
flip, with

A(K)=—stanh(2K) . 2.5)

The §, in (2.4) are the vectors connecting a site to
its four nearest neighbors. Thermal equilibrium be-
tween the bath and Ising spins requires that P[o,K]
be invariant under time translations generated by
D,(K); thus
e’™'plo,K]=P[0,K] , (2.6)

and this condition requires that 4(K), in (2.4), be
given by (2.5). We have chosen to work with the
particular form for W given by (2.4) because it is
the most “local” probability one can construct.’

Suppose we rapidly change the temperature of
the bath from T; to Tr. We assume, in keeping
with Monte Carlo studies of this problem, that this
quench is instantaneous. This is somewhat unreal-
istic and we intend to study finite quench rate ef-
fects in future work. The Ising system will
respond to this quench through its dynamic cou-
pling to the bath via the SFO D, (K) which drives
the Ising system to equilibrium with the bath at
temperature Tr. The probability distribution
governing the Ising spins for times ¢>0 is given
then by

Plo,t]=exp[tD,(Kp))P[o,K;] . 2.7

We will focus in this paper on the time-dependent
“static” structure factor:

Clg,t)= —I—Eei QRi= Ri)zaiojP[a,t] .
N ij o

(2.8)

There has been a lot of Monte Carlo work on this

model,® but the emphasis has been on the case
where there is a magnetic field change,’ a conserva-
tion law,'® or a quench into the ordered phase.!!
We have not found any published Monte Carlo re-
sults for C(g,) in the region we have studied. We
would welcome any subsequent efforts to compare
our results with Monte Carlo calculations.

Most analytical work'? has focused on the critical
phenomena aspects of the problem (quenching to
very near T, and looking at the effective relaxation
rate). Related work has been carried out on the
time-dependent Ginzburg-Landau model.'>!* As
discussed in Ref. 4, and elsewhere,* this model, at
least to lowest order in perturbation theory in the
quartic coupling, leads to a straightforward ex-
ponential relaxation for the structure factor con-
necting the initial and final states.

We want to study the problem posed in this sec-
tion using renormalization-group (RG) methods.
There are very good reasons for believing that this
is a good approach to this problem. The first
reason is the most obvious. If one quenches into the
critical region then a RG approach is needed to
treat the critical properties. The justification here
for the use of the RG is standard’® and based on
the notions of scaling and a fixed point under RG
transformations. One should remember, however,
that the power of the renormalization group is not
only that it can treat systems near a critical point
but that it can treat systems that are self-similar as
one changes a length scale. There are a number of
strongly nonequilibrium situations where there is a
development in time of objects of progressively
larger scale (a coarsening) which are built up of
similar objects on a smaller scale. It seems, there-
fore, that a renormalization-group analysis is in or-
der.

III. REVIEW OF THE RSDRG METHOD

Before constructing a theory for calculating
Clg,t) we need to quickly review our methods™!®
for treating C(¢,K) in equilibrium. The RSDRG
method involves mapping the slowly varying de-
grees of freedom for the o spins onto a similar Ising
model on a lattice with a lattice constant bc (the re-
scaling factor b =2 here) characterized by a set of
N’=N/b* Ising “block” spins {u}. Central to this
mapping is a transformation function T[o |p;K]
that relates P[o,K] to the probability distribution
governing the block spins:

P[u,K']=3Plo,K]T[1| 03K] (3.1)
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where K’ is the normalized coupling. In order to
guarantee that the new probability distribution is
properly normalized we require that T satisfy

>Tu|oK]l=1. (3.2)
m

For each variable 4[o], we define an associated
coarse-grained version,

A[plP[p,K'1=3A[c]P[o,K]T[p|o;K] . (3.3)

Note that the average of 4 [o] over P[o,K] equals
the average of 4 [u] over P[u,K’] due to (3.2).

A Kkey ingredient in our analysis is that
T[u|o;K] is to be constructed perturbatively as a
solution to the eigenvaluelike equation!®

D,(K)T[p|0;K]1=D,(K")T[p|0;K],
3.4)

where D, is the adjoint'’ of D, and D,(K’) the
SFO governing the dynamics of the u spins. We
also require that T[u | 03K ] satisfy the normaliza-
tion condition

2Plo,KIT[p|o;K]1T[w' | 0;K]1=8,, , P[u,K'] .
(3.5)

We can construct T[u|o;K], D,(K'), P[u,K'],
and any A[u] order by order in a perturbation
theory'® expansion in an effective coupling between
cells. We assume that a system of uncoupled cells
(with 4 o spins per cell) gives a good zero-order
description of the problem if the coupling in the cell
is chosen properly. We can then derive recursion
relations relating observables on different length
scales. In particular, working at lowest order in the
coupling between cells, we obtain'® the recursion re-
lation for the static structure factor

C(g,K)=1 +2rg,(q)+sg,(q)

—Vvif(@)+vif(g)C(2¢,K"), (3.6)

where r and s are the nearest- and next-nearest-
neighbor correlation functions'® for a cell, v, is the
projection of a given spin in a cell onto the associat-
ed block spin given by

vi=5(1+2r 4517 3.7
and

g;(q)=%[cos(qxc)-l—cos(qyc)] , (3.8)

g2(g)=[cos(g,c)cos(gyc)] , (3.9)

flg)=14+2g(g)+g»(q) . (3.10)

Finally C(29,K’) is to be evaluated with the new
coupling constant K'. Our recursion relation?
determining K’ is given by ¢'=¢? where ¢ =e* Xy,
u=tanhK. We have shown”'® that (3.6) can be
solved upon direct iteration to obtain C(g,K) and
we obtain good results over a wide range of tem-
peratures and wave numbers. The main point here
is that this method leads to a good description for
C(q,K) and therefore should give a good description
of C(g,t) for short and very long times.

IV. TREATMENT OF THE QUENCH PROBLEM
A. General development

Our method for calculating an observable in the
strongly nonequilibrium situation requires general-
izing (3.1) and (3.3) to the case where P[o,t] has the
time dependence given by (2.7), and the mapping
function becomes time dependent:

Plu,t]=3T[u|o;t]P[o,1] . 4.1)

Since the normalization of the probability distribu-
tion is preserved for all time, we still require

> Tp|ost]=1, 4.2)
u

and to ensure that the mapping remains local,?! we
likewise demand that the normalization (3.5) be
generalized to this case,

S Plo,t]T[u | o3t]T[w' | o5t]1 =8, 0 Plp,t] .

(4.3)

Further constraints are that (4.1) should reduce to
the appropriate equilibrium form in the short- and
long-time limits. That is,

Tlp|o;t=0]=T[u|o;K,(], (4.4a)

Tlpu|ot— oo ]l=T[u|o;Kr], (4.4b)
and T'[u|0o;K;] and T[u | 0;KF] satisfy (3.4) with
the appropriate SFO.

The question then is the construction of
T[u |o;t] for arbitrary times. We shall construct
T[u | o;t] using the idea that it should evolve from
T[p|o;K;] to T[w|o;Kp] as time progresses.
Since the operator exp[tD,(Kr)] propagates quanti-
ties “forward in time,” our first guess for T'[u | 0;¢]
might be

exp[tD,(Kp)1T[p | 03K, ] .
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The problem with this choice is that exp[tD,(Kr)]
drives the spin-dependent part of T'[u|o;K;] to
zero as t—o0. We want the “slow” degrees of free-
dom to survive. We do this by properly propagat-
ing the degrees of freedom backward in time, thus
our second guess for T'[u | o;3¢] is

im U;t]Eexp{t[ﬁa(KF)—D“(K;':)]}
XT[u|o;K(]. (4.5)

Note, because of the eigenvalue equation (3.4), that
T[u|o;Kp] is stationary under the application of
the operator in Eq. (4.5) and we therefore expect
Tlu | o;¢] to be proportional to T'[u | 0;Kf] in the
long-time limit.

While T[u | o;t] will satisfy (4.2), it will not, in
general satisfy (4.3). We will be able to satisfy (4.3)
if we rotate T in the 1 space with a matrix M:

Tlu|ostl=3IMp|w Ty [o5t] . (4.6)
v
Once M is chosen such that (4.3) is satisfied, then
the mapping function for the nonequilibrium case is
determined. The generalization of (3.3) to the none-
quilibrium case is simply

Alp,t]P[u,t]= 3 A[o]T[u | o;t1Po,1] .

4.7

There is one important aspect of our development
to be discussed. Under a renormalization-group
analysis we expect (if the method is to be useful) a
certain amount of self-similarity between the origi-
nal and coarse-grained problems. In the case at
hand, this requires that P[o,?] [given by (2.7)] map
into

Plu,t)=e" Pk} ] . ' 4.8)

However, there is no simple general connection be-
tween Plu,t] and P[u,t] as given by (4.1). We can,
however, define a quantity relating them:

Plu;t]1=R [p,11P[p,1] . 4.9)

It will turn out that we can construct R [u,?] in per-
turbation theory. We can easily see that

R[u,0]=1. (4.10)

Let us now outline the general procedure to be fol-
lowed in our analysis.

(i) Expand D (K), H[0,K] in a series where the
lowest-order terms correspond to a system of un-
coupled cells. One reasonable decomposition is dis-
cussed in detail in Ref. 16.

(i) With the use of this expansion, construct
order by order in perturbation theory, P[u,K'],
D,(K'), and T [u | 0;K] which enter into the equili-
brium theory. Then, given K; and Ky, one has the
quantities P[u,K; ], P[u,Kr], D, (Kp), T[p|0;K;],
and T'[u | 0;Kp].

(i) Given D,(Kp), D,(Kp), and T[u|0o;K;]
one can construct, order by order in perturbation
theory, T[y|a;t] using (4.5). One then combines
this result with (4.6) to construct a rotation
M[p|p',t] such that T[u|o;t] satisfies (4.3).
Once one has M[p |u';t], then T'[u |o;t] is deter-
mined and one, in turn, has P[u,t].

(iv) Given D,(Kf) and P[u,K;] one can con-
struct P[u,t] from (4.8) in perturbation theory.
Knowing P[u,t] and P[u,t] allows one to deter-
mine R [u,t] via (4.9).

(v) One can then determine any collective vari-
able A [u,t] from (4.7) order by order in perturba-
tion theory.

(vi) Rewrite (4.7) in the form

A, IR [, 0)P[p,t]1=3A[c]T [ | 05t1P[0,1] .

(4.11)

Then insert our perturbation theory expansions for
A[p,t] and R[u,t] on the left-hand side and sum
over u. After using (4.2) we find that we have a re-
cursion relation relating the nonequilibrium average
of A[o], with respect to P[o,t], to the nonequilibri-
um average of 4 [u,t]R [u,t] with respect to P[u,t].
Let us illustrate this procedure via the zeroth-order
calculation.

B. Zeroth-order analysis

The preceding formal development may seem a
bit cumbersome, but we can now show, at least to
lowest order in perturbation theory, that it leads to
a recursion relation that makes good physical sense.
Let us follow the steps outlined in the preceding
section.

(i) The perturbation expansion for D, and H[o]
has been thoroughly discussed in Ref. 16.

(ii) One can then easily solve the zeroth-order
eigenvalue equation defined by (3.4) to find that the
zeroth-order mapping function T°[u | 0;K] can be
written as a product of contributions from each cell,

N
T%u | o;K]=[[ Tl | oK1 , (4.12a)

i=1

where, for cell i,
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T | 0;K]=5[1+p0!(0,K)], (4.12b)

where ¥;"(0,K) is the slowest varying odd eigen-
function associated with the zeroth-order SFO,

D %K), and is given by
¥ "0, K)=N (K)o , (4.13)

where o} is the sum of the four spins in cell i. The
normalization constant N{(K)=1/[4v;(K)] and v,
is given by (3.7) in terms of averages in a single cell.
The zeroth-order renormalized SFO is

_)\’(1) il ,
2 ZAM,“'H,,"U,' , (4.14)
1

Dl | )=

and AV is the eigenvalue associated with ¥ '(c).
T | o] given by (4.12) is easily shown to satisfy
(3.2) and (3.5) and the renormalized-probability dis-
tribution is found to be, at this order,

Po[u,K]=(5V". 4.15)
(iii) We can then easily show, using (4.5), that
Tlu| o3t ]=T [k | 03K, ] . (4.16)

The lack of time dependence results because

"o,K;) and ¢ (0,K) are linearly related. Oth-
erwise T°[u|o,t] has a nontrivial time depen-
dence. One immediately sees that T does not satis-
fy the normalization condition (4.3):

ST | o, ATy’ | 0,t)Phlo,t]
o

=<[1+mu;B(0], (4.17)

where Py(t) is the nonequilibrium probability distri-
bution governing the ith cell

D% (K )
PQ[O’,[]=€ o nF

Polo,K;], (4.18)
where DY is the zeroth-order SFO, and

B(t)=3Polo,tINT(K;)a})? . (4.19)
A rotation of the form

-
Mlp | p' =TT 501 +qOppi] (4.20)

i=1
can be used to rotate 7° into a T° which satisfies
(4.2) and (4.3). The appropriate choice of g(t)
which completes the rotation is

q()=[B(1)]~12. (4.21)

The final result for 7° after multiplying T by M is,

v
Tl | ost1=T1 T k| o311,

(4.22a)
i=1
T | o3t]= 5[ 1+ (0, 0)] , (4.22b)
where
(o, t)=N,(1)of . (4.23)

We see that Ty[u |o;t] is of the same form as in
equilibrium except the normalization N,(K) in

D(o,K) is replaced by its time-dependent generali-
zation

Ni(O=5[1+2r()+s(0]1/2,

where r(¢) and s(¢) are the time-dependent nearest-
and next-nearest-neighbor correlation functions for
a single cell. We have

"(t)=20i,a0i,ai11’o[0,t] ,
7 (4.24)
s()=3,01404+2Pol0,1] .
o

Since r(0)=r(K}), r( oo )=r(KF), etc., we see expli-
citty that  T%u|o;01=T%u|0;K;]  and
TO[u | 05t— 00 1=T [ | 03KF].
In the more general case where 1/;,-(”(0,K1) and
W(o,Kp) are not simply related, the calculation
goes through in essentially the same fashion, and
one finds

TIlp|o,tl=5(1+q(0)¢;(0, 0] , (4.26)
where

q(=[B()]~'%, 4.27)

B()=3 Pllo,t][¢:(0,)]?, (4.28)

_(;‘(n)_}‘(l))t
dilo,)=e F F "o, Kp)

g
x 3P0’ Kp 1o (o' Ky )
<
X" (o' ,KF) , (4.29)

and the A" and 9;"(0,KF) satisfy the eigenvalue
equation

D %" (0, Kp)= -2y (0,KE) . (4.30)
(iv) It is trivial in this case to find

Poli,t]=Polu,t]=(5)V (4.31)
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and identify
Ro[p,t]l=1. (4.32)

(v) We can now, for example, construct the
coarse-grained equivalent of o;0; using (4.7):

ni,a;j,a'[.u’t]P[,u"t]=zai,aaj,a'T[ﬂ | o;t1P[o,1].
a

(4.33)

We find to lowest order in perturbation theory,

N0, [ 11 = (B 7 (B 114 810 — 1)+ (D841, 4218, 4+ (1=, v HOhpags (4.34)

where r(t) and s(t) are given by (4.24) and (4.25)
and

WA =142r(t)+s(2) . (4.35)

(vi) Using our zeroth-order results for IT and R -

in (4.11) we can then sum over all u’s and Fourier
transform as in (2.8) to obtain the recursion relation
satisfied by the structure factor

Clg,n)=1+2r(t)g,(q)
+5(0g2(g)—vi(D)f (q)
+vi(6)f(q)C(2g,t") , (4.36)

where g1(q), g,(q), and f(q) are given by Egs.
(3.8)—(3.10), respectively, and ¢'= At where A is the
time rescaling®® factor [A=a'(Kr)/a(Kf)] given
by Eq. (3.50) in Ref. 16. We note here that A1 as
Kr—0 and A—1/[4v}(K)] as Ky approaches its
critical value.

‘We note that a key step in the derivation of
(4.36), which is our central result, is that in multi-
plying IT°[]R (] times P[u,t] and summing over
all u, we can interpret 3 _pu;u jf[,u,t] as being
equivalent to 3, 0,0;P[0,] except we must use the
renormalized parameters K;, Kr, and a’ and take
into account that the o lattice has a lattice constant
¢ while the u lattice has a lattice constant 2c.

V. RESULTS

The numerical solution of the recursion relation
(4.36) can be carried in essentially the same manner
as for the equilibrium case. This simply amounts to
repeated iteration of the recursion relations until the
parameters reach the high-temperature fixed point
where the process ceases. This is discussed in some
detail in Sec. VI A of Ref. 23. There is, of course, a
large amount of information contained in C(g,z). It
depends on the parameters K;, K, gx, gy, and t.
For simplicity let us limit ourselves here to the case
where we quench from infinite temperature (K; =0)
and where we look along a diagonal (g, =g,) in re-
ciprocal space. There may, however, be some in-
teresting situations not covered by these restrictions.

In Fig. 1 we plot C(g,t) for a fixed (up=tanhKz
=0.4) K as a function of g, =g, for various times
after the quench. At all times C(g,t) is a smooth
and monotonic function of gq. Note, as expected,
that higher wave numbers equilibrate much faster
than the smaller wave-number components that are
inhibited by critical slowing down. In particular, if
we quench to temperatures very near T,, we find
that

Clg)=Clg, o0 )+4e 7",

where w.(u.q)~q* with z=1.76 and w.(u,0)~
(u, —u)*’¥ with z/v=1.76 in agreement with our
notions concerning dynamic scaling.?? We have
found, however, that we must go to very long times
before the system is adequately described by the ex-
ponential form above. We will return to this point
below.

Careful inspection of Fig. 1 shows that there is a
range of ¢’s where C(g,t) does not grow monotoni-
cally in time. This is better seen in Fig. 2 where we
fix g,c=0.037 and plot C(g,t) versus time after
quench for three different values of up=tanhKp.
We note for all three values of up there is a rapid
initial increase in C to a maximum followed by a

280(—— ——
240f
200

160

1)

=
© 120
80

40

oL 1 111
000 002 004 006 008 0.0
00 Qy0
T T
FIG. 1. Time-dependent structure factor vs wave
number for u;=0 and ur=0.4 for various times after

quench.
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FIG. 2. Time-dependent structure factor vs time for
8x¢ =gyc =0.037, u;=0 and several final temperatures.

very slow decay to the final asymptotic value. This
peak in the structure factor, as a function of time,
was also found* in an exact analysis of the related
problem in one dimension. The physics of the situ-
ation is simple. There is a sum rule for the area
under Cl(g,¢) for any ¢ given by the fixed-length spin
condition. However, various Fourier components
evolve in time with different characteristic times.
After a temperature quench from high temperatures
the Fourier components near gc = will lose weight
rapidly while those near g =0 are slower to change.
It therefore takes a finite time for weight to move
from high to low wave numbers. We also see this
effect in Fig. 3 where, for g,c =g,c =0.03m, we plot
C(q,t) vs up for various times. The structure
“pulse” is more pronounced the closer we are to the
transition-temperature u,=Vv2—1. A second in-
teresting effect can be seen in Fig. 3. For times
greater than 20 & ~! the maximum in C does not oc-
cur at #.. In fact the maximum moves slowly to
higher temperatures as time progresses. The ex-
istence of this peak in the structure factor for tem-
perature above T, was observed in our equilibrium

SO

72f

TTTTT T

T

TT

TTTTTTTT

S P RSN PR FUUUE TR DU PR S|
3 025 027 029 03I 033 035 037 039 04l

So

u
FIG. 3. Time-dependent structure factor vs the final
temperature u for g.c=g,c=0.037 and a number of
times.

calculations”!® and was in qualitative agreement

with the high-temperature expansions of Fisher and
Burford.?* Note that the structure factor reaches its
final value only after a time of order 1000a —!. For
times greater than 80 ~!, where there is no further
change for a final coupling less than ur=0.36,
there is still a large variation in the rest of the
curve.

Let us return to the question of the long-time
behavior of our system and, to simplify matters, let
us consider the case g, =g, =0. We said above that
for sufficiently long times we have exponential time
decay to the final state, but that this exponential re-
gion is itself reached only after rather long times.
This is shown in Fig. 4 where we have plotted
In[C(0,0)—C(0,t)] vs at. A careful analysis
shows that for intermediate times
200 < at < 360000, C(0,¢) is better described by a
form

C(0,/)=C(0,0) +Ae ™",
where y z% For large times y crosses over to a fi-
nal value of y =1. A precise determination of y, w,
and A is not simple since there is a bit of “noise” in
the data. This takes the form of a weak oscillation
in time in fitted values of y, w, and A. The nature
of this artifact requires further study. If indeed
there is a region for which yz%, then this is in-
teresting since it would be an indication of a type of
coarsening.
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VI. CONCLUSIONS

We have studied the problem of strong tempera-
ture quenches in the disordered phase using rescal-
ing techniques. The advantages of this method are
the following.

(i) It gives an accurate treatment of the initial
and final equilibrium states. This leads to a rather
good treatment of critical effects if the initial or fi-
nal states are near the critical point.

(ii) It preserves the fixed-length spin condition
[sum rule on C(q,?)] and the periodicity of the lat-
tice.

(iii) It properly accounts for the long-time criti-
cal slowing down for quenches near the critical
point.

(iv) In principle, since the method allows one to
treat many length scales, it allows the possibility of
building large objects from smaller ones. Thus in a
problem where there is a type of coarsening, there is

some hope this approach can treat it.

The description of this problem seems encourag-
ing. However, a more crucial test involves the
treatment of metastable and unstable final states.
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