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We study the half-filled Hubbard model with random on-site energies with the use of a
real-space renormalization group. For d =1, we find a transition from an Anderson insula-

tor to a Hubbard insulator as the Hubbard U is increased. We find no metallic phase. For
d =3, we find a metallic phase which, surprisingly, is stabilized against Anderson localiza-

tion by a small Hubbard U.

I. INTRODUCTION

In disordered systems a metal-insulator transition
can occur due to electronic states at the Fermi sur-
face becoming localized. ' A model commonly used
to describe this is the Anderson Hamiltonian —a
tight binding model with randomness introduced by
having the on-site energies vary independently from
site to site. For fixed electron density the transition
from metal to insulator occurs when the ratio of the
random energy spread 8' to the hopping term t
exceeds a critical value.

A metal-insulator transition can also be the result
of electron-electron interactions. In the Hubbard
model ' the only interaction present is that between
two electrons on the same atom. %hen this term U
is large compared to the hopping term t, the band
splits into two subbands with a gap between them.
If there is one electron per site, the lower subbands
for both spins will be full and the upper ones emp-

ty, and the system will be an insulator.
Thus both the Anderson transition and Hubbard

transition are favored by a small hopping term. Al-

though it is not well understood what the combined
effects of the disorder and the repulsion term are,
the following are expected to be true: (l) Introduc-
ing weak disorder in the Hubbard model causes the
subbands to broaden and overlap if the gap is small;
hence, a larger U is needed for the Hubbard transi-
tion. (2) The Coulomb term provides additional lo-
calizing influence and so less disorder is needed for
localization.

In this paper we present a renormalization-group
(RG) calculation for the half-filled Hubbard-
Anderson Hamiltonian at T=0. The method we
use is that developed for quantum-mechanical spin
systems. Recently, Hirsch has used this method
to study the pure Hubbard model and we essential-

ly follow his procedure. An RG calculation to
second order for the pure model has also been car-
ried out by Dasgupta and Pfeuty. ' A more ela-

borate calculation for the pure system in one dimen-

sion (lD) has also been performed by Chui and

Bray."
In Sec. II we describe the RG calculation. The

description is self-contained although the procedure
is just a modification of Hirschs. In Secs. III and

IV we present the results for d =1 and d =3,
respectively. %e find that a small U actually
hinders localization, contradicting the second expec-
tation mentioned above. Our method is too crude
to determine whether this effect can stabilize the
metallic phase against localization in 2D. (An ela-

borate calculation of this type for the noninteract-

ing system in 20 by I.ee indicates that finite disor-
der is needed for localization. The validity of this
result is still unclear. '2)

II. PROCEDURE

The Hubbard-Anderson Hamiltonian is given by

H= g W;n;- g ttJC—; CJ-+ g Unt, n;, ,
ia (~j)

where C;-,C;~ creates and destroys an electron of
spin 0. at sitei, respectively, and n,; =C; C; . U is
the effective on-site Coulomb repulsion, taken to be
positive ("negative V' is possible in a strongly po-
larizable medium and leads to interesting
behaviors' ). The hopping constants t;~, taken to be
i,j independent initially, connect only nearest neigh-
bors. The site energies 8'; are chosen independently
from a Gaussian distribution (for numerical con-
venience) with a width W. We consider the half-
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(2.2}

where a is a cell index (the cell a contains the sites

3i].—2, 3~ —},3a). H, the cell Hamiltonian, is

given by the terms in the original Hamiltonian in-

volving only the sites in cell 0;. The hopping terms
between boundary sites couple neighboring cells.

Next, we diagonalize each H~ exactly. Since
there are four states per site (

~

0), C;,
~
0) =

~
t ),

C;,
~

0) —=
~
l), C;,C;,

~
0) —=

~
t4) ), we are dealing

with a possible 64 states for three sites. However,

Ha conserves the number of particles n, total spin

S, and total z component of spin S„' this allows us

to decouple different subspaces. We ignore charge
fluctuations for length scales larger than the size of
the cell and consider only n =2,3,4 (we will return
to this later). We keep only the lowest energy states
for each particle number —singlets with S =0 for
n =2,4 (~2), ~4)), and a doublet with S=—,,

S,=+—, for n =3 (
~

3t ),
~
3l)); the corresponding

energies are E' ',E' 'E' '. There are six states with
S=0 for n =2,4, and eight states with S=—,,
S,=+—, for n =3; and so we must diagonalize (nu-

merically) 6X6 and 8X8 matrices. The various

states are listed in the Appendix.
We define new states

(2.3)

Associated with these states are new fermion opera-
tors,

Ct(])10'& =
I
]'({}'&

c", c ~0') = —c", c ~0') =
~

»'),
I I f In~=C C

(2.4)

Restricting ourselves to these states, we can write
the Hamiltonian as

H = g 8' n a —g t,'J C Cj + g U n tn )
io' &~j&

filled band case, and so there is on the average one
particle per site.

The calculation for 1D is as follows. We gen-

erate 300 random energies 8'; using a Gaussian ran-
dom number generator and place them on a chain.
We then divide the chain into cells of three sites
(odd number of sites to preserve fermionic charac-
ter} and rewrite the Hamiltonian as

+Ha +t3a, 3a+1(C3a,oc3a+],cr+ H'C ) &

where i,j refer to cell indices. The renormalized
parameters are given by

O' =E(4)—2E(3)+E(2)
E

(2.6)

ti i+1 =t3i 3i+1(]']i &iP] I C3i+],tc3i, t I ~i l]i+1)

(2.7d)

If there is particle-hole symmetry on a microscopic
scale, the matrix elements in Eqs. (2.7a) —(2.7d) will

all be the same and t;+1 calculated from one equa-
tion will satisfy the other three. However, for the
random system, there is no such symmetry and the
matrix elements are all different. We define the
magnitude of t;+1 as the root mean square of the
four values obtained from the four equations (there
is spin inversion symmetry and so it is only neces-
sary to consider these four equations).

The new energies 8' no longer obey a Gaussian
distribution and the tj and U; are no longer site in-
dependent. In order to iterate the RG, we adopt the
following procedure:

(1) We force the distribution of W," back into a
Gaussian with new width

8" =8' —(W ) (2.8)

(the overbar implies average). The new Gaussian is
not centered at zero since there is a constant shift
due to the repulsion term but can be taken to be so
(we can do this formally by introducing the chemi-
cal potential).

(2) We force U back into a constant,

O'= U (2.9)

(3) We force the distribution of t;J into a Gauss-
ian with mean

I'=
I tij I

(2.10a)

and t,
&

are obtained by insisting that the matrix ele-
ments between new states on neighboring cells are
the same whether we use the old or the new Hamil-
tonian:

I I
Ii i+] —t3i 3i+11 ti 0i+1 I C31+1,]C3i t 10i ti+1 &

(2.7a)

iii+1 I3i 3i+1 ( li ~i +11 C3i+l, tC3i, t I 0i ~ ii+1)

(2.7b)

ti i + 1
= I3i 3i + 1 ( t ]i 0i + 1 I

C3i + 1, t C3i t I ti ti + ] & )

(2.7c)

+const, (2.5) and width
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(2.10b)

We then use these parameters to generate again a
lattice of 300 sites. This process is iterated and the
flows of the parameters observed.

The above define our RG procedure. We now
discuss the approximations involved.

(1) The usual approximation of truncation of
eigenstates is employed. In a pure system this al-

lows one to construct a variational ground state.
However, because it is necessary to generate an N-

site random system from an (X/3)-site one in a

nonperiodic way, this is no longer true in the

present case. Nevertheless, the truncation process is

still within the spirit of RG theory.
(2) Charge fluctuations are ignored at every itera-

tion except for those within each cell. Although

this does not mean that a cell of N sites (of the ori-

ginal lattice) must be occupied by N particles, it
does mean that the cell can be occupied by no less

than N —1 particles and no more than %+ 1 parti-
cles. The effect of unfavorable occupation is to in-

crease the renormalized potential spread; hence we

expect to obtain Anderson localization of states

near the Fermi surface with less disorder than is ac-

tually required. Also, this means that even for the

case t;J, U:—0, the energy scale does not change with

length scale correctly; and the calculation does not

give the correct density of states even in the most

trivial case,
(3) The distributions of W; and t,J are forced into

Gaussians at every iteration. For t,J, U=O, after

one iteration, the distribution of Wi can be calcu-

lated and is found to be

—W' 2/2
P'(W,')-e ' [1—erf (W//V2)],

not appreciably different from a Gaussian. So, at
least for this trivial case, this approximation is

probably acceptable.
(4) A finite-sized lattice is used at every iteration.

In fact, we are forced to use a rather small lattice
because of all the matrix diagonalizations involved.

However, we have checked a few values with a
larger lattice (N =900}and do not notice any quali-

tative differences.
We also perform the calculation for 3D using a

12)& 12)& 12 cubic lattice. To carry out the RG, we

divide the lattice into cells of 3&(3&3. Following
Hirsch, we perform the RG procedure first in the x
direction (for example), then in the y direction and

then in the z direction. After the RG process is per-
formed for each direction, a new set of parameters

(W, t,'J, U,"} is obtained; the RG procedure for the

next direction is done using these parameters. Only
after the RG process is completed for all three
dirix:tions and the final set of parameters for that
iteraction obtained are the distributions of W and

t~ forced into Gaussians and the U set to a con-
stant. Unlike the case of 1D, the sign of t;J is im-

portant in 3D ("frustration"), and t,'J. instead

of
~

t'J
~

is now used in (2.10a) and (2.10b).

III. RESULTS FOR 10

In Fig. 1 we show the fiows of t/W, U/W for 1D
as the RG procedure is iterated. t2/W is found to
iterate to zero for all initial tz ——0 and is not shown.

The phases are also indicated in the figure.
There are two stable fixed points, at

PH (t/W =——0, U/W = ao) and Pz ——(0,0.48).
Hence, there are two phases, both insulating. The
fixed point at P~ (00,0) —i—s unstable and there is
no metallic phase. This is to be expected since nei-

ther the Hubbard nor the Anderson model has a
metallic phase in 1D.' '

The Hamiltonian of the fixed point PH has
t-t2 « 8'«U. For t, t2, 8'=0, each site is occu-
pied by one particle and there are 2 degenerate
ground states since the energy is independent of the
spins of the electrons. This degeneracy is not bro-
ken by W; for W&&U. However, in second order,
this degeneracy is broken by introducing small hop-

ping terms tz In fa.ct, the system is equivalent to a
spin- —, Heisenberg antiferromagnetic chain with

couplings J~ =2rj. /U. ' If t~ obey a Gaus.sian dis-

tribution, the distribution of J1 is given by

P(J)-6(J) I exp[ —(t' —t)2/2tz]

&& 5(J 2t'i/U)dt'—
-8(J)/v J exp[ ——,(v J —~J, ) /Jo], (3.1)

U/W

0 2
t/Vl

FIG. 1. Phase diagram of the 1D Anderson-Hubbard
Hamiltonian as obtained by our RG calculation.
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where J, =2t /U, Jo 2t——2/U.
At I'&, t-t, «U&8'. For t, t2 ——0, a site i is

double occupied if W; & —U/2, singly occupied if
—U/2 & W; & U/2, and unoccupied if W; & U/2.
Thus, single spins occupy sites with probability p,

J e
—x2/Zw2dx

+2m W

(3.2)

There is no energy gap. Introducing small t,j again
couple the single spins. But, as has been shown by
Theodorou and Cohen, ' now the couplings J,z obey
a distribution P(J) —J, where a depends on p
[if we set the decay length in their equation equal to
the lattice spacing, then a=1—

~

ln(1 —p)
~

=0.8
for the fixed point value of U/W].

Thus, as U increases, there is a transition from a
gapless insulator to one with a gap equal to U„,
where U is the value of U at the fixed point PH
The critical fixed point is at P, =(0,5.8). Close to
the phase boundary on the phase 0 side, the gap is
U„-(U—U, ), where U, is the value of U at the
phase boundary (for t =0, U = U —U, ).

IV. RESULTS FOR 30

IO—

U/W

8

0 I

2
l/W

FIG. 2. Phase diagram of the 3D Hamiltonian.

The flows of the parameters for 3D are shown in
Fig. 2. The fixed point PM ——(ao, O) is now stable
and so there is now a metallic phase M. The three
phases meet at the triple point Pr (1.1,5.8). T——he
phase-A fixed point is now at Pz ——(0, 1.26) and the
critical fixed point for the A~H transition is at
P, =(0,8.3). The fact that these are different from
their values for 1D is due to the inaccuracy of the
calculation, since for tiI=O, the system is essentially
zero dimensional. As in 1D, close to the A~H

phase boundary (but far away from Pr), the gap is
U -U —U, .

The Anderson fixed point on the U =0 axis is to-
tally unstable and the critical point for the Ander-
son transition (M-A) is at PG (actually, the fixed
point has nonzero t2, and this is a projection}. For
a small but finite U, the critical value of t/W actu-

ally decreases from its value at U =0, implying that
more disorder is needed for localization. This is
contrary to what is expected if we consider U as an
additional localizing influence from what we know
about the pure Hubbard model. On the other hand,
because of the Coulomb repulsion, the presence of a
spin-up electron causes the potential on a site with a
favorable W; to be less so for the spin-down elec-

tron and vice versa; hence, the electrons are less

likely to be trapped by the random potential. Our
calculation seems to indicate that the latter is the
dominating effect for small U. As U increases, the
critical value of t/W begins to increase again, indi-

cating that the localizing inAuence of U is now the
important effect.

For t/W&1. 1, the system goes directly from
phase M to phase H as U increases. The critical
fixed point for this transition is just the Hubbard
Hamiltonian critical point (oo, ao}. The ratio of
U/i is 4.76, the same as that obtained by Hirsch.
Close to the phase boundary (but not close to Pr),
the gap is U„-(U —U, )'

V. SUMMARY

We studied the half-filled Anderson-Hubbard
model using an RG method which is a modification
of the one used by Hirsch to study the pure Hub-
bard model. Our calculation treated the random-
ness rather crudely and expected errors were dis-
cussed.

In 1D we found that, as expected, there is no me-
tallic phase. As U increases an energy gap develops
and the system undergoes a transition from an
"essentially" Anderson insulator to an "essentially"
Hubbard insulator. For t;~ small, we discussed the
magnetic properties far away from the phase boun-
dary.

In 30 we found that the metallic phase is also
present. We also found that more disorder is need-
ed for the metal —Anderson-insulator transition for
increasing Uif Uis small, indicating that the metal-
lic phase is actually stabilized by a small Coulomb
repulsion. For larger U the localizing effect of the
correlation dominates.

For d =2 all states are expected to be localized in
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the Anderson model no matter how small the disor-
der is as long as it is finite. ' ' It would be interest-

ing to investigate whether the stabilizing effect of
the metallic phase by a small U can cause a phase
transition to occur at finite disorder. Unfortunate-

ly, our method is too crude to handle this case.
It)lo)ltl),
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APPENDIX

The states needed for the RG calculation, are as
follows: For n =2, S =0, S,=0,
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