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We discuss a new method to perform numerical simulations of one-dimensional systems
with fermion and boson degrees of freedom. The method is based on a direct-space,
imaginary-time representation of the fermion field. It is fast so that systems having up to
100 sites can easily be simulated. In addition, the method provides an intuitive physical
"picture" of the ground state of a one-dimensional many-body system. We discuss in detail

how to implement the method and how to compute various physical quantities. In particu-
lar, we show how to extend the method to study averages of off-diagonal quantities in an
occupation-number representation. To assess the accuracy of our procedure, we apply it to
free fermions in one dimension and compare with exact results. We then study a model of
spinless interacting fermions and obtain the expected phase structure and behavior of corre-
lation functions. We also consider the extended Hubbard model at various points in its

phase diagram and study the behavior of spin-density, charge-density, and pairing correla-
tion functions. We then study the Gross-Neveu model and show how the behavior depends
on the number of fermion flavors. Finally, we consider an electron-phonon model and

study its behavior both in the one-particle polaron sector and in the half-filled-band case.
Along the way we show pictures of the ground-state configurations that give physical in-

sight into the properties of the systems, like charge-density-wave, spin-density-wave, and

superconducting states, "fractional charges, " and solitons. We conclude by comparing our
method with other methods and discuss the possibility of extending it to higher dimensions.

I. INTRODUCTION

Numerical simulation represents an important
new technique for exploring the physical properties
of interacting quantum fields. On a qualitative lev-

el it allows one to determine whether a particular
model exhibits the essential physical characteristics
one is seeking and to develop a feeling for the way
in which the parameters of the model affect its
physical behavior. One can try a variety of
"gedanken" experiments to obtain new insights as
well as explore the feasibility of various possible
real experiments. On another level, detailed simula-
tions allow one to obtain quantitative data on prop-
erties of complex systems which can then be com-
pared with actual measurements, exact solutions in

special cases, or approximate analytic calculations.
The route to simulating quantum fields proceeds

via Feynman's path-integral representation. As
Feynman showed, the quantum-mechanical proper-

ties of a particle can be obtained by summing an ex-

ponential of the action over classical paths. ' The
simulation of these paths involve only real variables

and can therefore be easily programmed. This has
a direct generalization for boson fields. However,
for fermion fields, the anticommuting nature of the
field operators, reflecting the Pauli principle, leads

to paths that are parametrized by noncommuting
c-number fields which so far have not lent them-

selves to direct numerical evaluation.
The canonical way in which fermion-field

theories have been treated is by considering (or by
constructing with the aid of auxiliary boson fields)

models which are bilinear in the fermion fields.
Then the path integrals over the fermion fields are
formally carried out yielding a determinant which

depends upon the boson fields. The problem is thus
reduced to a boson path integral with an effective
action which depends upon the determinant of a
very large matrix. Various approaches to reducing
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the time required to evaluate such determinants
have been proposed.

Here, however, we will focus on an alternative
method which has proven useful for treating fer-
mion fields in one space and one time dimension.
In this approach we work with the canonical ensem-

ble, so the average value of a physical observable, A,
is given by

(2 ) =tr (1.1)tr(e-P")
Here H is the Hamiltonian of the system and P is
the inverse temperature. Since the fermion number
is fixed, one can consider a single fermion up to a
many-fermion system. We will often work with a
half-filled band in both condensed-matter and
relativistic-field-theory applications.

In order to evaluate the traces in Eq. (1.1) we
break up the imaginary-time interval 0 &r &P into
small slices and introduce complete sets of states at
each time slice. The many sums over intermediate
fermion states are then carried out by importance
sampling techniques. This procedure will be shown
to be extremely fast. The computer time required is
similar to that for a Monte Carlo (MC) simulation
of the classical two-dimensional Ising model. It is
possible to treat interacting fermion fields without
the necessity of introducing auxilliary boson fields,
further speeding up the calculation in comparison
to other methods. Furthermore, the sum over states
has a natural graphical representation which can
provide useful insight into the nature of the state of
an interacting many-fermion system.

In carrying out the numerical simulations we in-
troduce a finite spatial lattice and work at a finite
value of P. We generally use periodic spatial boun-
dary conditions, although we have run simulations
with both antiperiodic and open boundary condi-
tions. For certain ring molecules, a finite lattice
may be the more appropriate physical description;
however, if the infinite chain or continuum limit is
of interest one must extrapolate the finite-lattice re-
sults. Lattices containing as many as 100 sites have
been treated without difficulty. Similarly, if the
ground-state properties of a system are of interest
one must extrapolate to values of P ' which are
smaller than the other energy scales in the problem.
In some cases this simply involves taking a lattice
which is large compared to the range of spatial or
imaginary-time correlations. In other cases associ-
ated with phase transitions in the ground state, it
may be necessary to use some type of finite-size
scaling procedure.

We have previously given a brief description of

our method. Here we present a detailed discussion
of the technique along with results for a variety of
different models. In Sec. II we formulate the
method, discuss the graphical representation of the
paths, and show how to compute physical quanti-
ties. In Secs. III—VI we present a number of re-
sults which we have obtained using the simulation
techniques described in Sec. II. To illustrate the
range of problems which can be treated with this
approach, we consider a number of different models
and a variety of measurements ranging in character
from quantitative to qualitative.

In Sec. III we begin by studying a model of spin-
less fermions with nearest-neighbor interactions
described by the Hamiltonian

H= tg (C;C—;+)+C;+)C; )

1 I+VX ('-2 ) (n+i--, ) (1 2)

Here C; and C; are the creation and annihilation
operators for a fermion at the ith spatial lattice site,
and n; =C; C;. This simple model has a nontrivial
phase structure; with a half-filled band and
0 & V/2t & 1 the charge-density correlation function
(n;n;+t ) decays algebraically with I and there is no
long-range order or gap in the spectrum of the in-
finite, zero-temperature system. However, for
V/2t&1, the ground state has a charge-density
wave, (CDW) and the space and time correlations
are characterized by a correlation length and gap,
respectively. As V/2t —+1+ the order parameter,
the inverse correlation length and the gap all vanish
with an essential singularity.

In Sec. IV we study the extended Hubbard model.
This model can be obtained from that of Eq. (1.2)
by allowing the fermions to have spin and by in-
cluding an onsite interaction Ugn;, n;, This.
model is known to have a rich ground-state phase
diagram in the U-V parameter space consisting of
charge-density, spin-density, and singlet- and
triplet-pairing phases. We will examine typical
path configurations and correlation functions to ob-
tain a qualitative feeling for these different regimes.

When Vp 0 and U= —2 V, one is in the charge-
density-wave sector. This particular line in the
parameter space of the extended Hubbard model
corresponds to the Gross-Neveu model with two
flavors (Nf =2). We have also simulated the
Gross-Neveu model itself with up to ten flavors and
in Sec. V some results are compared with analytic
expressions using an Nf

' expansion.
There are also a variety of interesting problems
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which involve coupled fermion-boson fields. These
range from condensed-matter models of electron-

phonon systems to relativistic gauge models such as
the Schwinger model. In these systems the retard-
ed nature of the interaction between the ferrnions
which is mediated by the bosons can be important
and one seeks to treat both fields on an equal foot-
ing. In Sec. VI we illustrate some features of our
method as applied to problems of this type by con-
sidering the one-dimensional electron-phonon Harn-

iltonian

H = tg(—C(+1C;+C; C;+1)

2

+ —,g +Ex; A,gx;(n; ——, ) . (1.3)

merical simulations makes use of the path-integral
expressions for the traces of Eq. (1.1). For systems
with fermion degrees of freedom we wish to develop
a formalism that does not involve the anitcommut-
ing c-number fields of the ordinary fermion path in-
tegrals.

As in the standard derivation of the path in-

tegrals, we begin by dividing the imaginary-time in-
terval 0 & r ~ P into L subintervals of width
b,r=P/L. At each time slice we insert a complete
set of states so that the partition function, for ex-
ample, is given by

Z=tr (e-1'H )

e ~+
l l e ~+H

(2.1)

Here harmonic oscillators representing local molec-
ular distortions on each site are coupled to the elec-
tron charge on the site while the electrons can hop
from one site to the next via the transfer matrix ele-

ment t. If an electron occupies a site, the molecule
tends to distort, making x; negative if A, & 0. In the
one-fermion sector, this model describes a polaron.
For a half-filled band, there is a tendency to have

an alternating molecular distortion which can open

up a band gap in the fermion spectrum. This
Peierls state is the ground state in the adiabatic
limit when the oscillator mass M~ao. However,
as M decreases, the zero-point motion of the oscilla-
tors can wash out this behavior and muse the gap to
vanish. In Sec. VI various properties of this system
will be discussed. In Sec. VII we conclude with a
comparison of this technique with other methods

and a discussion of the problems associated with ex-

tending it to higher dimensions.

II. THE MONTE CARLO PROCEDURE

In this section we develop the formalism we have

employed for carrying out Monte Carlo calculations
of one-dimensional systems with fermion degrees of
freedom.

In general the matrix elements in Eq. (2.1) will not
be easy to evaluate. However, it is usually possible
to write the Hamiltonian in the form

H =H)+H2, (2.2)

with H& and H2 each being trivially diagonalizable.
Then with the use of the fact that for small b,r,

e arH e
—2e 1I I+O(g 2)] (2.3)

Then by a judicious choice of the complete sets of
intermediate states, all the matrix elements in Eq.
(2.4) can be directly evaluated. This general ap-

proach was first proposed by Suzuki et al. '

Let us first recall how this works for a system

with bosonic degrees of freedom. If we denote by x;
the field coordinate on the ith lattice site and by p;
the momentum conjugate to x;, then the Hamiltoni-
an can ordinarily be written in the form

and inserting additional intermediate states we have

12L)(i2L I
U2 I12L —1)

]p ~ ~ ~ p f2L

X (&2L —1 I
Ul

I ~2L —2 ) (12
I

U2
I

&1 &

(2.4)
where

—h,~H,U;=e

A. Formalism
N

H= —, g pi'+ v(&1 X1v) (2.5)

We work with the canonical ensemble, so the
average value of a physical observable is given by
Eq. (1.1). For systems with boson degrees of free-
dom the standard procedure for carrying out nu-

We take

N

Hi ———, g p; and H2=V, (2.6)
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and then choose ~ij) to be eigenstates of the
momentum operators for j odd and eigenstates of
the coordinate operators for j even; thus all the ma-
trix elements in Eq. (2.4) can be evaluated immedi-

ately. Since the Hamiltonians is quadratic in the
momentum operators, the sums over momentum
eigenstates can also be carried out, and letting
hr —+0 we obtain the standard path-integral expres-
sion for the partition function

Z= 5x e-', (2.7)

with

has a small number of degrees of freedom.
As an example, consider the model of Eq. (1.2),

H;;+i ———tg(C;+iC;+C; C;+i)

(2.12)

If we denote by
~
n;n;+i) the state in which there

are n; fermions on the ith lattice site and n;+& on
the (i +1)th (n;,n;+i 0——, 1), then it is easy to see
that

e ""+'~oo)=~oo)e-""4

e "+'
~

1,0) =[cosh(h«)
~

1,0)
(2.13)

+ V(xi(r), . . . , x~(r)) . (2.8)

For systems with fermions we use a different
breakup. In this paper we shall consider models
with nearest-neighbor hopping and interactions
among the fermions such as those of Eqs. (1.2) and
(1.3). It is possible to extend the following discus-
sion to include non-nearest-neighbor-hopping terms
and long-range interactions.

Let us start by considering systems without boson
degrees of freedom. The Hamiltonian can be writ-

ten in the form

e "+'
~

0, 1)=[cosh(b«)
~
0, 1)

+sinh(a«)
~
l, O) ]e""'.

For V =0, Eq. (2.13) has a simple interpretation. A
single fermion moves forward with matrix element
cosh(h«) or hops one site to the left or right with
matrix element sinh(b, «). We may think of two
fermions on adjacent sites as moving forward with
matrix element cosh(b, rt) and interchanging by
hopping past each other with matrix element
—sinh(b, rt) . Note that our procedure groups these
two possibilities together giving a weight of l.
Thus our method always gives positive weights in
one dimension in contrast to the approach of Ref.
12.

N
H= Q H;;+i, (2.9) B. Thermalization

g Hii+1 ~,
l Odd

H2 ——g H;;+i .
i even

(2.10)

Notice that H
&

and H2 are each composed of a sum
of N/2 mutually commuting terms. So, for exam-

ple,

(2.11)

As a result, to compute the matrix elements of Eq.
(24) we need only solve a two-site problem which

where H;;+ i contains only fermion creation and an-
nihilation operators for sites i and i+1. Using
periodic boundary conditions implies HN N+ &

=—HN ~. We now choose"'

Within each time interval h~ there is one applica-
tion of the operator U& and one of the operator U2.
This leads to the graphical representation shown in
Fig. 1. Here the periodic spatial lattice of sites is
labe1ed by n and the imaginary-time axis v has been
sliced into 2Plhr segments. The occupation on
each r slice corresponds to one of the states

~

ik ) in
the sum for Z, Eq. (2.4). The shaded boxes corre-
spond to the areas of space and imaginary time in
which fermions can hop and interact. The sum
over intermediate states in Eq. (2.4) corresponds to
the sum over all possible ways of distributing the
fermions on the spatial lattice at each time slice.

In performing the sum over fermion configura-
tions by importance sampling, we randomly gen-
erate new configurations and accept or reject them
according to an alogrithm, such as the heat-bath al-
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Z=e 'y
~
(ni, . . . , n/ ~qo) ~2.

n,.
(2.15)

0
I

FIG. 1. Breakup of the time-evolution operator given

by Eqs. (2.3) and (2.10) leads to the checkerboard pat-
tern shown in this figure. Fermions can hop and in-

teract in the shaded square but not in the unshaded

ones. Heavy lines are examples of allowed fermion
world lines.

gorithm, which ensures that the probability of a
configuration being sampled is proportional to the
product of matrix elements in Eq. (2.4). In generat-

ing new configurations, we want to take into ac-
count the conservation laws associated with the
Hamiltonian, otherwise a large amount of computer
time will be wasted generating configurations that
have zero probability of being accepted.

Fermion number is always conserved, and with
our breakup procedure it is conserved by each

H;;+~, that is within each shaded box in Fig. 1. In
Fig. 1 the occupied sites at each w slice have been
connected by lines which we will call the world
lines of the fermions. The sum over intermediate
states that satisfy fermion-number conservation is
equivalent to the sum over all allowed configura-
tions of the world lines. Notice that world lines can
be drawn along the vertical edge of a shaded box or
diagonally across a shaded box, but they cannot be
drawn diagonally across an unshaded box.

This graphical representation gives a simple pic-
ture of a particular path configuration which enters
Eq. (2.1). These configurations also can provide in-

sight into the state of the many-fermion system.
Consider the partition function traced over energy
eigenstates

~ g ),

(2.14)

Thus for any time slice the probability of having a
given set of occupation numbers ~ni, . . , n.x ) is
proportional to the square of the projection of the
ground state on

~

n i, . . ,n~ .). In this way, a path
configuration taken for large /3 can provide a pic-
ture of the ground state of a many-fermion system.

We wish to develop an algorithm for generating
all allowed world-line configurations. In the Monte
Carlo simulation of boson-field theories, one builds

up general field configurations by making succes-
sive local changes in the fields. We want to do the
same with the world lines. We cannot move a fer-
mion at a single site since if we start from an al-
lowed configuration that would always lead to fer-
mion nonconservation in at least one shaded box.
The minimum change we can make is to move two
fermions from one vertical edge of an unshaded box
to the other as is illustrated in Fig. 2. By making
successive moves of this type we can generate all
world-line configurations of a given winding num-

ber.
We define the winding number of a configuration

in the following manner. Because we are evaluating
a trace and using periodic boundary conditions, Fig.
1 has the topology of a torus. Suppose we start at
any occupied site at time r =0 and follow a world
line continuously through one revolution (r in-

creases from 0 to P and returns to 0). If we arrive
back at the same spatial site after one revolution, we

say the configuration has a winding number of 0.
If we require n revolutions to return to the same
spatial site, we say that the configuration has a
winding number of +(n —1) depending on whether
we move in the positive or negative spatial direction
with each revolution. In most applications'3 for all

Now separate e P into e '~ ' e ' and insert a
complete set of occupation-number states between
the two exponentials. In the limit of low tempera-
tures, only the ground state

~
l(o) contributes and

for each z slice we have

FIG. 2. Example of an allowed local change in a fer-
mion world line. The world line can move from one
vertical edge of an unshaded box to the other. Solid line
shows the world line before the move and the dashed
line after the move.
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but the smallest spatial lattices (i.e., N) 6) only
configurations with a winding number of 0 are im-

portant as we have verified by direct calculation.
Configurations with winding numbers greater than
0 only arise when periodic boundary conditions are
imposed and do not occur, for example, with fixed-
end boundary conditions. We do not include them
in the Monte Carlo calculations discussed here, a.l-

though it is possible to do so by modifying the ini-

tial conditions.
We are now in a position to present the details of

our Monte Carlo algorithm. For definiteness we
consider the model of Eq. (1.2). We designate each
lattice point by (i,j), where i gives the spatial and j
the temporal position, i =1,. . .,N and j=1,. . .,21..
At each lattice site, we define an occupation num-

ber n (i,j) which is 0 if the site is unoccupied and 1

if it is occupied. In sweeping through the lattice,
we must check whether it is possible to move a
world line across each unshaded square. Let us
focus on the unshaded square whose lower left-hand
corner is at the site (ij ) Amo. ve is possible across
this square if and only if s =+2, where

s:n(i j)+—n(ij +1)—n(i+1,j)
n(i +—l,j+1) .

(2.16)

A plus sign will allow a move from left to right and
the minus sign from right to left. If a move is pos-
sible, we must calculate the ratio of the product of
matrix elements in Eq. (2.4) after and before the
move. Denote this ratio by R. R will depend on
the occupation numbers n (i + 1,j—1} and
n(i+I, j+2) because they determine whether the
world line we are moving is vertical or diagonal in
the shaded boxes above and below our unshaded
one. R will also depend on n (i —1,j) and n (i +2,j)
because they determine whether there is an addi-
tional world line running through the shaded boxes
to the left and right of our unshaded one. Referring
to Eq. (2.13), we see that

R =[tanh(brt)]'"[cosh(Art}]'"e ' '", (2.17)

where

u =1 —n(i+ 1,j—1)—n(i+1 j +2),
u=n(i —l,j)—n(i+. 2 j),

(2.18)

and s is defined in Eq. (2.16).
Since we are only considering two possible con-

figurations of the world line under study, we use the
heat-bath algorithm for accepting or rejecting new
configurations. That is, we accept the proposed
new configuration with probability

R
(1+R) (2.19)

This completes our description of the Monte Carlo
algorithm for the model of Eq. (1.2). The assertion
made in the introduction that it is as fast as the
usual algorithm for the classical two-dimensional
Ising model should now be obvious.

C. Measuremenis

Once the system has been brought into statistical
equilibrium, we can make measurements of physi-
cally interesting quantities. There are two classes of
operators for which the averaging procedure has to
be done in a somewhat different way, which we now
discuss.

I Operators .that conserue fermton number locaily

The computation of averages for this type of
operator proceeds in essentially the same manner as
in a Monte Carlo simulation of a classical system.
Referring back to Eq. (2.4), the intermediate state

I i~ ) specifies the distribution of fermions in the jth
intermediate state. The Monte Carlo algorithm
generates a sequence of distributions i&(k), . . .,
i2L(k), k=1,2, . . . ,M, such that the probability of
a particular distribution, k, is given by

(ty(k)
I U) I

&2(k})(t2(k)
I Uz I

t3(k)) ' (t2t(k)
I

Uz It((k})P(k)= (2.20)

l lp ~ ~ ~ p l2L

Consider first operators that are diagonal in the
occupation-number representation. Examples of
this type are the staggered order parameter

G(i j,r) =(n;(r)nj(0)—),
where

(2.22)

N

Q= g ( —1)'n;, (2.21) n;(r)=e Hn;e (2.23)

and the density-density correlation function We have, for example,
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M 2I. N

(Q)= lim g g g( —1)'nk(i,j),
k =1j=1i =1 (2.24)

where nk(i, j) is the value of n (i,j) in the kth con-
figuration sampled, and M is the total number of
configurations sampled.

A very similar procedure applies to operators
that, without being diagonal in the occupation-
number representation, conserve number of parti-
cles within a two-site block. Examples of these are
the average energy

— t tanh(hrt)+—V

4

while for a single fermion moving diagonally the
contribution is

V— t coth(b, rt)+

2. Operators that do not conserve fermion
number local1y

z= — i~= (a),
8

the specific heat

c aE'
aT

and the current-current correlation function

C(r)=(j(r)j(0) &,

with

(2.25)

(2.26)

(2.27)

g(k —j,r) = (Ck(r)CJ~(0) ),
and the singlet-pairing correlation function,

D(i j,r)=—(C;, (r)C~ (r)CJ, (0)CJ,(0)),

(2.31)

The evaluation of averages for this type of opera-
tor is somewhat more complicated. Examples are
the single-particle Green's function

j =i/(C; C;+i C;+—iC;)
i

and the time dependence given by Eq. (2.23). For
simplicity, consider the average of an operator A,

(2.28)

(A)=tr[A(UiU2} ]/Z, (2.29}

where A is such that it aBows an identica1 decompo-
sition as the Hamiltonian [Eq. (2.10)], A =A i+A2.
We can then write

(A ) =tr P(ii, . . . , i2L)
gll

I ] I
l2)

&i2L I
U2A2

I
ti &

+
&i2L I U2 I ti &

(2.30)

to order (b,r) . We have then simply to compute
the matrix elements given in Eq. (2.30) for each box
configuration and the averaging proceeds in the
usual way. As an example, consider the average en-

ergy for the model, Eq. (1.2). For shaded boxes
with no or two fermions, we just obtain a contribu-
tion to the average energy of V/4. For boxes with a
single fermion moving forward, the contribution is

(2.32)

If we try to use a procedure like that given in Eq.
(2.30),

g(k —j)=tr &ii
I CkC, Ui Ii2&

(2.34)

and it becomes immediately clear that Eq. (2.34) is
not well defined.

The reason is that for lk —j I
& I there exist

configurations where the numerator in Eq. (2.34) is
nonzero but the denominator is zero. For example,
a configuration where state li, ) has a world line
terminating at site k and state

I i2 ) has one starting
at site j.

To get around this problem, we insert an addi-
tional intermediate state and write

which measures superconductivity correlations and
is therefore of great interest. Consider for definite-
ness the equal-time single-particle Green's function

tr[Ct, CJ(Ui U2) ]
g(k —j)=(CkC ) =

tr[(UiU2) ]
(2.33)

tr((ii ICtCJ lii &&ii I Ui li2& . (i2L I
U2lti&) «ti ICkCJ lti »p

tr(&ii lii &&ii
I

Ui Ii2&" &t2L I
U2 Iii& «t'i Iii »p

where the averages are now with respect to the probability

(2.35)
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~ I ~

I ) )&]~ ~ ~ ~ ~ I7L

&~2L I
U2 I ti &

& ~ 1 I
Ui

I
~2 &

' . . &i2rIU. 2 I
1 i &

(2.36)

Note that there is no time-evolution operator in P
connecting states

I

&'& & a"d
I &t & The world hnes

are now allowed to be "disconnected" across these
states. The Monte Carlo sweeps are done with the
Boltzmann weight P. An example of an allowed
configuration is shown in Fig. 3. In practice, we

only allow for at most one world line to be discon-
nected for computing single-particle Green's func-
tions. (It is easy to convince oneself that this re-

striction is valid. ) Each time that the states
I
i~ &

and Ii & & coincide, we get a contribution to the
denominator in Eq. (2.35), and when they satisfy

Ii, &=+CkC, Ii) &,

we get a contribution to the numerator. The statis-
tics are somewhat worse than for the other kinds of
averages, since we make measurements at only one
time slice. In addition, the quantity of interest in-

volves now the ratio of two averages.
A similar procedure applies for time-displaced

correlation functions of this type. For the correla-
tion function (2.31), for example, we have to insert
two additional intermediate states, one at time 0
and one at time r. In addition, we have to perform
two Monte Carlo simulations for the time interval
0 & ~ & ~, one in which there is an extra fermion in
that interval and one in which there is not. The
latter is needed to calculate the normalization in-

tegral.

The final generalization discussed here is to in-
clude boson degrees of freedom as in the Hamiltoni-
an of Eq. (1.3). We simply extend the Hilbert space
of the intermediate states and proceed in the stand-
ard way. We obtain the usual functional integral
over the boson coordinates and treat the sum over
fermion states in the manner just described. In
carrying out the Monte Carlo calculation, the
change in matrix elements due to the movement of
a fermion world line will, of course, depend on the
boson-field configuration, and the change due to a
local variation in the boson field will depend on the
fermion distribution.

%e conclude this section by estimating the error
made in the breakup of the time-evolution operator,
exp( hrH ),—defined by Eqs. (2.3), (2.9), and (2.10).
Now we know that the Hamiltonian, H, has eigen-
values that grow linearly with X. Since b,r =P/L,
for I =X, the operator A~H has matrix elements of
order P, so for large P, a series expansion of the ex-
ponential is not expected to be useful. On the other
hand, in Eq. (2.3) the error is proportional to com-
mutators of H~ and H2 rather than powers of H.
We have tested our breakup procedure by studying
free-field theory. In particular, we consider the
Hamiltonian of Eq. (1.2) with V=O, r =1, and a
half-filled band. In Tables I and II we compare re-
sults for the average energy and specific heat ob-
tained with our breakup procedure to the exact
values and to the results obtained by expanding
exp( —b rH ) to first and second order in b,rH.

III. INTERACTING SPINLESS FERMIONS

To begin, consider a single spinless fermion hop-
ping on a one-dimensional lattice,

H= t g( ;C+) C~—
H. c) . (3.1)

FIG. 3. Allowed world-line configuration for the cal-
culation of the equal-time single-particle correlation func-
tion. %'orld lines do not need to be connected between
the states

I i& & and Ii', ).

We start the system in the configuration shown in
Fig. 4(a). Here there are 48 lattice sites, and a "1"
is printed if an electron occupies a site. Carrying
out the Monte Carlo procedure discussed in Sec. II
we obtain, after warming up the system, typical
paths like the one shown in Fig. 4(b). The single-
particle eigenstates of Eq. (3.1) on a lattice of E
(even) sites have energies ek = 2r cosk with-
k =2~n /iY (n =—0, +1, . . ., +N/2). If t ~~kT, then
only the low-lying states are occupied so that over
the energy range of importance ek- —2t+tk, and
the particles behave as if they were free with a mass
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TABLE I. Internal energy per site for free fermions.
[The model of Eq. (1.2) with t = I and V=O]. N is the
number of lattice sites and N/2 the number of fermions.
E is the exact results and E~q the result from the check-
erboard breakup of Eqs. (2.3) and (2.10). E] and E2 are
obtained from expanding e ~'+ to first and second order
in h~. In this example L =N and h~ =0.1.

Ecs

TABLE II. Specific heat for free fermions [the
model of Eq. (1.2) with t = I and V=0]. N is the num-
ber of lattice sites, and N/2 the number of fermions. C
is the exact result and CqB the result from the checker-
board breakup of Eqs. (2.3) and (2.10). C] and C2 are
obtained from expanding e ' to first and second or-
der in b v. In this sample L =N and Ar =0.1.

C]

4
8

16
24

—0.242
—0.388
—0.539
—0.593

—0.242
—0.389
—0.540
—0.594

—0.152
—0.301
—0.454
—0.508

—0.234
—0.382
—0.532
—0.586

4
8

16
24

0.32
1.74
4.94
5.92

0.32
1.76
5.00
6.04

0.20
1.30
3.09
1.67

0.25
1.57
5.49

454.00

nt = 1/(2t). For free particles, the continuum
correlation function for a time separation v varies
as

(n (j,r )n (i,O) ) a: e (3.2)

(n(j,P/2)n (i,O) )
(n (i,P /2)n (i,D) )

(3.3)

so that in the continuum limit,

On a discrete time lattice, the continuum behavior
will be approached when r »b,~ and, because of
the periodic boundary conditions, when

(P r)»—b,r. Thus we choose r=P/2 and nor-

malize Eq. (3.2),

&—ln[C(j —i)]=
1/2

(3.4)

Figure 5 shows the results obtained by averaging
over .1000 configurations with t =1 and p=2. 25.
The dashed line corresponds to the continuum limit
given by Eq. (3.4), while the solid line corresponds
to the result using the actua1-band eigenstates. The
points are the Monte Carlo data. This illustrates
that the trajectory shown in Fig. 4(b) does in fact
correspond to an x-space picture of a single-electron
state. Figure 6 shows the same system with eight
electrons moving without interactions, but of course
obeying the Pauli principle.

As discussed in the Introduction, the half-filled
band with a near-neighbor Coulomb interaction V is
of particular interest gince there is a phase transi-
tion to a charge-density-wave ground state when

1
1

1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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4 g
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(b)

FIG. 4. (a) Initial configuration of one fermion on a 48-site lattice with 18 time slices with 5~=0.125. On a given
time slice an occupied state is denoted by a "1". (b) Typical configuration after several hundred Monte Carlo sweeps
over the lattice.
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p

x
O
C

0
0

[x -x;i

FIG. 5. Plot of the single-particle density-density
correlation function vs distance at an imaginary-time
separation r=P/2. Dashed line is the free-particle re-

sult, Eq. (3.4), whose slope V'2m/P is proportional to
the particle mass. Solid line is the exact result for the
tight-binding problem with ek ———2tcosk. Points give
the Monte Carlo data with the rms errors the size of the
points.

V=2t Figur. e 7(a) shows a typical configuration
for 24 electrons on 48 sites with t=i and V=O.
Here the only correlations are due to the Pauli prin-
ciple. It is straightforward to calculate the internal

energy for this system, and results for a 40-site sys-
tem with 20 electrons are given in Table III. For
comparison the exact E(T) results for a canonical
ensemble are also listed. The results labeled Ecq
are "numerical" calculations for the checkerboard
breakup. Clearly the checkerboard breakup pro-
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1 1 1 1 1 1 f 1
1 1 1 1 1 f 1
1 1 1 1 1 1 1 1
1 1. 1 1 1 1 1 1
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1
1

1
1
1
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1

vides an excellent approximation to the exact re-
sults, and the Monte Carlo calculation is working
within its indicated rms error limits.

Figure 7(b) shows a configuration for t =1 and
V=3.0. For this interaction strength, the charge-

FIG. 6. Typical configuration of eight noninteracting
fermions moving on a 48-site lattice and obeying the
Pauli principle.
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FIG. 7. (a) Typical configuration for a half-filled band of 24 spinless fermions on a 48-site lattice with V=O. (b)
Typical configuration for a half-filled band with t =1 and V=3. On a given time slice the fermions tend to occupy
every other lattice site leading to a COW state. The temperature is sufficiently low that the defects represent vacuum
fluctuations rather than thermal ones.
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TABLE III. Internal energy per site for 20 noninteracting electrons (t =1,V=O) on a 40-
site periodic lattice at various temperatures. E (exact) and EcB give results obtained from
numerically evaluating the canonical and checkerboard partition functions, respectively.

EMc lists the Monte Carlo results obtained from 10000 measurements, each separated by
five lattice sweeps. For EcB and EMc, hg =0.1.

0.5
0.7692
1.0
1.25
1.429
1.667
2.0
2.5

E (exact)

—0.5659
—0.4810
—0.4141
—0.3548
—0.3202
—0.2824
—0.2413
—0.1971

EcB

—0.5668
—0.4818
—0.4148
—0.3554
—0.3208
—0.2828
—0.2416
—0.1975

EMc

—0.5668+0.0032
—0.4845+0.0016
—0.4162+0.0030
—0.3565+0.0027
—0.3176+0.0026
—0.2824+0.0025
—0.2464+0.0023
—0.1979+0.0023

density-wave character of the state is clearly visible.
Consider a given row and note that every other site
tends to be occupied. There are, of course, defects.
These are "vacuum fluctuations" since the tempera-
ture is too low to produce sizable thermal fluctua-
tions. As discussed in Sec. II, an average over the
time slices which can be crudely done by eye gives

~
(n~ n~

~ $0) ~

. Naturally, as V approaches
the critical point at V =2t, a large number of con-
figurations must be averaged over to determine
whether

~ Po) is a normal or a charge-density-wave
state.

The density-density correlation function

p(1)= (n;+tn; ) (3.5)

is shown in Figs. 8(a) —8(c) for P=4, t =1, and
V=1.5, 2.0, and 2.5 respectively. It is clear that
this correlation function decays for V=1.5 and
does not for V =2.5. Figure 9(a) shows the Fourier
transform of the density-density correlation func-
tion

S(q)= —ge's'((n tn ) —(n) )+ (3.6)

at low temperature (P =4). For the free case V =0,
the structure factor has the property that
S(q) =0.5 —S(rr —q). As shown, the results are in
excellent agreement with the exact results for a
grand canonical ensemble shown as the solid line
except at the points q =0 and q =a.. At these two
points, the fixed particle number of the canonical
ensemble implies that the canonical structure factor
takes the values S(0)=0 and S (m ) =0.5. However,
when the number of sites goes to infinity the canon-
ical structure factor is equal to the grand canonical
structure factor for q+0 or n so that the canonical
structure factor is discontinuous at q =0 and q =m

for finite temperatures. This effect can just be seen

at T =0.25 for the 40-site lattice as shown by the
fit of the Monte Carlo data to the ground canonical
curve as q~0 and q~rr. Over most of the range
of q, S(q) is close to its zero-temperature value
q/2m. . One can show for V=O that in an infinite

system S(q~0, T}=kT/~.
For V=2, S(q) develops a peak at q=nsignal-.

ing the tendency for formation of a charge-density
wave, as shown in Fig. 9(b). At V =2, the fermion
model can be mapped onto the isotropic antifer-
romagnetic Heisenberg chain where the correspond-
ing S'-S' correlation function is expected to decay
as ( —I)'/l. '~ This implies that S(n }-lnN where N
is the number of sites of the system. In Fig. 9(c) we

have plotted S(n ) vs lnN for N varying between 4
and 100. This clearly shows the expected lnlV varia-

tion. Further discussion of this model is given in

Sec. V.
It is also interesting to examine what happens

when an additional fermion is added to a system in

a charge-density-wave ground state. Hubbard'

originally suggested that two entities, each with a
charge of one-half, would form. Figure 10(a) shows

the initial configuration with one added electron,
and Fig. 10(b) a resulting typical configuration after
warm up. Indeed, two entities are clearly visible.
Just as in the free-particle case, one could obtain an

effective mass for these entities by studying their
motion in ~.

IV. THE EXTENDED HUBBARD MODEL

As we have seen, the spinless, half-filled, one-
dimensional electron gas with near-neighbor
Coulomb interaction can exhibit a normal or
charge-density-wave ground state. When spin de-
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FIG. 8. Equal-time density-density correlation func-

tion vs site separation for a half-filled-band spinless-
fermion model with (a) V=1.5, (b) 2.0, and (c) 2.5,
respectively. Here t =1 and P =4.

grees of freedom are introduced, the allowed
ground-state configurations become much richer in-

cluding spin-density waves 1SDW's) and singlet and
triplet superconducting pairing, as well as the
charge-density state. It is natural to introduce an
on-site interaction

Ugn;„n;,

I

5
(In N/in 2)

FIG. 9. (a) Points showing Monte Carlo data for the
structure factor for a 40-site lattice containing 20 nonin-
teracting electrons (t = 1, V =0) at low temperature,

p =4. Solid line is the grand canonical result for this sys-
tem. (b) Monte Carlo results for the structure factor for
t =1 and V =2 at p =4. Note the difference in scale be-
tween parts (a) and (1). (c) Structure factor S(m) for
momentum transfer q =2pF ——m for the half-filled case
with V/2t=1 vs the lattice size. Here I.=N and data
from lattices with N =4 to 100 were computed. Data
clearly show the in% scahng dependence.
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FIG. 10. (a) Imtial configuration with one additional fermion added to a half-filled band (t =1,V=4). (b) Typical
configuration after the system has warmed up showing two entities.

as well as the near-neighbor density-density interac-
tion

Vgn;+in; . (4.2)

Combined with the hopping (band) term,

t g(C—;+, C; +H.c.),
l, 0'

(4.3)

'

V

'I/=U/2

v=-U/2

FIG. 11. Approximate ground-state phase diagram
for the extended Hubbard model. (TS labels the triplet
superconducting phase. )

this model is called the extended Hubbard model. '

An approximate ground-state phase diagram ob-
tained from weak-coupling renormalization-group
(RNG) calculations' is sketched in Fig. 11. Clearly
the rich behavior of this phase diagram offers an in-

teresting test of the methods discussed here.
It is straightforward to treat electron spin by in-

troducing two fermions fields n+(i,j) which give
the occupation of spin-up or spin-down electrons on

spatial site i and time shee j. Pictorially one can
imagine two checkerboards, one laying above the
other with the space-time paths of the spin-up elec-

trons laid out on the upper board and those of the

spin-down electrons laid out on the lower board.
New paths are generated by making moves on either
board of the type discussed for the spinless fermions
in the previous sections. The change in the interac-
tion

Ugn;, n;, +Van;n;+i

enters in the usual way in computing the ratio R
which determines the probability of accepting a
given move.

Figure 12 shows a typical picture obtained for the
free case in which U = V=O. Here we have taken
20 sites with 10 spin-up and 10 spin-down electrons.
Occupied spin-up sites are denoted by +, spin-
down sites, by —,double by g, and those that are
empty by a blank space. For the free case, the
spin-up, (+ ) electrons move independently of the
spin-down ( —) electrons but each species naturally
obeys the Pauli principle. The properties of the sys-
tem are those of a normal one-dimensional free-
electron gas with band energies ek ———2t cosk.

With UyO and V=O the ground state, according
to the phase diagram of Fig. 11, should exhibit a
spin-density-wave structure. Figure 13 shows a typ-
ical configuration for U=6.0. Here we measure
energies in units of t, and a relatively large value of
U has been selected so that a single configuration
can provide a useful sample of the character of the
ground state. As previously discussed, physical
quantities are computed by averaging over many in-
dependent configurations. This not only gives the
required ensemble average, but just as in a real ex-
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FIG. 12. Configuration of the electrons in an extend-
ed Hubbard model with U= V=O. Sites with a spin-up
electron are denoted by +, a spin-down one by —,dou-
ble occupation by P, and zero occupation by a blank
space.

periment, fluctuations are averaged over, and the
detailed correlations become visible. They are fil-
tered out by the particular operators that one
chooses to study. By taking U large, fluctuations
are suppressed, and the correlations under discus-
sion become visible by examining a single configu-

g+++gal+ggc4++444++4
4+-+--++--++-+-+-+-+-4
4+-+-+-+-+-+—+-+-+-+-4
4+-+-+—+-+-+-+-+-+-+-4
4+-+-+-+--+-++-+-+-+-4'
4--+-+-+-—+-++-+-+—++4
4--+-+—-+-++-+-+-+-++4
4--+-+--+-++-++--+-++4
4--+-+—+--++-++—-+-++4
4+-+-+-+--++-++--+-+-4
4+-+- 'g+-+-+-++--+-+-4
4+-+— g+-+ -+-+-+-++--4
4+-+--+-++-+-+-+-++--4
4+-+--+-++-+-+-+-++--4
Q+~+~~++~+«+ + +~++
4+-+--++-+-+-+-+-+-+-e
4+--+-+g -++-+-+-+-+-4
4+--+-+g -++-+-+-+-+-4
4+--+-++--++-+-+-+-+-4
4+--+-++--++-+-+-+-+-4
4+-+--++--++—+—+-+—+-4
g)}(QgcQQQ(++++Q(QQ+QQ+

ration.
In Fig. 13 note the regions of alternating spins

which are characteristic of a spin-density-wave
state. As before, the temperature is sufficiently low
that the fluctuations giving rise to defects are vacu-
um fluctuations. A more precise characterization
of the nature of the ground state can be obtained by
evaluating the staggered spin-density-wave correla-
tion function

with

(l) =(—1)'(S iS,'),

z 1S;=2(n;, n;, )—.

(4.4)

(.0,

0.8

~ 0.6

0.4

0.2

0
0 6 8 l0

Here, as in all our calculations, the site ~ is averaged
over. For the diagonal occupation-number expecta-
tion values we can, as discussed in Sec. II, also aver-

age over all time slices of a given configuration.
Typically 5000 independent configurations were
averaged over to obtain the results presented here.
The staggered spin-density-wave correlation func-
tion @sDw is plotted in Fig. 14 and shows the ex-
pected algebraic decay associated with this phase.
(For infinite U this model is equivalent to an isotro-
pic Heisenberg antiferromagnetic chain where the
spin density decays as I '.) For large positive
values of U the charge-density-wave correlations as
well as the pairing correlations are negligible.

An attractive effective electron-electron interac-
tion may arise from lattice polarization or possibly
electron polarization on molecules surrounding the
chain. %hen U&0, there is a tendency for on-site
pairing. If Vy0, these pairs repel each other and,
according to the phase diagram of Fig. 11, the sys-
tem has a charge-density-wave ground state. A typ-
ical configuration for U = —6 and V=0.4 is illus-
trated in Fig. 15 and clearly shows the formation of
a charge-density-wave state.

FIG. 13. Configuration for U=6 and V=O showing
spin-density-wave character.

FIG. 14. Staggered spin-density-wave correlation
function vs distance for U=6 and V=O.
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FIG. 1S. Configuration for U = —6 and V =0.4
showing a charge-density-wave structure.

When both U and V are attractive there is a
marked change in the appearance of the configura-
tions. Figure 16 shows a configuration for U = —6
and V= —0.4. Clearly, on-site spatial pairing is
predominant due to the large negative value of U.
There is also a tendency for the pairs to cluster due

to V being attractive. However, it remains a ques-

Q )g )g )g )g Q 4I )g )g )g g 3g )g )g 4I )g )g 4I 3g g 4I )g

NN N NN NN N N N+
NN N NN NN N +-

+-NN N NN N N N +- +e
+-NN N NN N N NN +e

NN N NN N N NN N4
N N NN N N N N N+
N N N NN N N N N N4

N N-+N N+- N N N4
N' N N-+N N+-
N N N NN N N N NNe
N N NNN N N N NNe
N N NNN N N N NN+

+NN N NNN N N

+NN N NNN N N N N

N N NNN N N N NNw
N N NNN N N N NN+
N N NNN N N NN N4

+N N NN-+ N N NNN
N +-N-+ N N NNN

NN +-N N N N NN N4
NN +-NNN N N N N+

)g Q )g Q )g 3g )g )g )g )g Q )g )g Q )g )g 3g )g )g )g )g

FIG. 16. Configuration for U= —6 and V= —0.4.
This type of pattern is characteristic of single supercon-

ducting pairing.

tion as to whether the system should be character-
ized as superconducting. This is a question that is
not so clearly evident in a position-space picture
since superconductors are characterized by order in
momentum space. The lack of position-space order
evident for V&0 in Fig. 16 may reflect the ex-
istence of momentum-space ordering.

To test for this type of order we need to calculate
correlation functions. For U large and negative the
spin-density-wave correlations are negligible. What
are interesting to compute are the CDW correla-
tions

4'cDw(t) =( —1)'(n(+In; ) (4.5)

and the singlet superconducting (SS) correlations

&ss(1)= (C(+li&i+it&ri&ri ) .

As usual we average over i for the periodic ring to
improve statistics. However, as discussed in Sec. II,
the evaluation of off-diagonal correlations such as

Eq. (4.6) requires us to break the world lines at one

time slice and evaluate the correlations along this
slice.

The CDW correlation function Eq. (4.5) and the
SS correlation function Eq. (4.6) are plotted for
V= —0.4 and 0.4 in Iigs. 17 and 18. For an at-

tractive V, the singlet superconducting correlations
dominate, while for a repulsive V the system is in a
charge-density-wave state as was clear from the
configuration shown in Fig. 15. In one dimension,

the charge-density-wave ground state exhibits long-

range order, while in the singlet superconducting
state Css(t) decays algebraically. In Fig. 19 the
equal-time single-particle Green's function

(4.6)

G.(t) =(c,„.c,".) (4.7)

I.Oi

0.8 U= —6 V=-04

0.6

04

0.2

0
I I I I I I I I I I

2 4 6 8 IO

FIG. 17. Correlation functions for U =—6 and
V = —0.4 showing that the singlet superconducting
correlations dominate. The superconducting ground state
of an infinite one-dimensional system is characterized by
the algebraic decay of the singlet superconducting corre-
lations.
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I.OI The continuum Hamiltonian for this model is

Q8

0.6

0.4
SS

H= Jdx g (x)o„—. f (x)
1

l X

2

[P t(x)cr, g (x)]'2' (5.1)

0.2-
IL

SKI ~
o"

I I I I I I I I I I

0 2 4 6 8 10

FIG. 18. Correlation functions for U = —6 and
V=0.4 show that the system is in a COW state. The
CDW ground state of an infinite one-dimensional sys-
tem has a broken symmetry and exhibits long-range or-
der.

is compared with the singlet-pairing correlation
function ass(l), the single-particle Green's function
decays rapidly to 0 due to sign alterations. These
are canceled by the opposite phases arising from the
time reversed cr partn—er of the pair in the super-
conducting state leading to the much slower alge-
braic decay of ass.

V. THE GROSS-NEVEU MODEL

The Gross-Neveu model' has been of interest in

high-energy physics as an example of a system
which exhibits both asymptotic freedom and spon-
taneous breaking of chiral symmetry.

Here o.„and 0., are the usual Pauli spin matrices
and a =1, . . .,Nf is the internal-symmetry index.
Summation over repeated indices is understood.

If we naively place the theory on a lattice by writ-
ing (j denoted the lattice site)

~ 2l

QJ =( iV—

QJ =(—iV

Ca
l

, j even,

0
C~ ) j odd.

J

(5.3)

The Hamiltonian of Eq. (5.2) then becomes
r

8=g , (CJ Ci~~—)+—CJ+)CJ)

2
af a af a 2

Sgf~ (PJ &.SJ +PJ+i&.4&+i)

(5.2)

then we encounter the well-known spectrum-
doubling problem. To avoid it we follow Kogut
and Susskind' and place the upper components of

on even lattice sites and the lower components
on odd ones. That is, we write

1.0j

0.8

2

(CJ CJ CJ+&CJ.+, )
f

(5.4)

0.6

0.4

0.2

-0.2
0

I I I I I I I I I

Io

FIG. 19. Single-particle Green's function 6 decays
rapidly to zero because of single-particle phase shifts.
In the singlet superconducting correlation function Sqq
these are canceled due to pairing of time-reversed states.

The reason for averaging the interaction over two
lattice sites in Eq. (5.2) should now be clear.

The naive lattice Hamiltonian of Eq. (5.2) is in-
variant under translation by a single lattice site,

QJ ~litj. + ~ and under the chiral transformation

QJ ~o„gj . For the Susskind fermions translation-
al in variance corresponds to invariance under
translation by the two lattice sites, CJ ~CJ+2, while
chiral invariance corresponds to invariance to
translation by a single lattice site Cj ~Cj+& The
order parameter that measures the spontaneous
breaking of chiral symmetry is gz o„g~ for naive
fermions and
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Q& N
—&/&g( (5.5)

for the Susskind fermions. There is no summation
over a in Eq. (5.5).

If we work on a lattice with N sites and use
periodic boundary conditions for the QJ, then with
our choice of phases the C~ satisfy periodic or an-

tiperiodic boundary conditions depending on wheth-
er or not N is a multiple of four. (N must be even. )

However, because we neglect fermion configura-
tions with nonzero winding numbers, there is no
difference between these boundary conditions in our
Monte Carlo algorithm.

Notice that for one fermion flavor, Nf ——1, the
Gross-Neveu model is identical to the spinless fer-
mion model defined in Eq. (1.2) with t= —, and

V =g /4. For Nf ——2 the Gross-Neveu model is the
extended Hubbard model with t = —, and
V= —U/2=g /8.

We focus our attention on the correlation func-
tion

Cd 3—

C3

8
X

32

x i

o 3

(n)

f
G(r)= g (Q5(r)Q5(0)) (5.6)

and the order parameter

(5.7)

g

G(r)=NM +5~ 1nNC(r)+g(r) . (5.8)

Results are shown in Fig. 22. We have made the fit
for &=0 and p/2 and obtained identical results

within statistical errors. For Nf ——1, C(P/2) =0 for
all g as expected. We find that C(0) differs from
zero in that range of g for which the correlation

Considerable information can be obtained by study-

ing G (r ) as a function of the number of lattice

sites, N. When chiral symmetry is spontaneously

broken so that M+0, G(r)~z „NM We ex-.
pect this to be the case for all values of g when

N )2 and for g p 4 when Nf ——1. For Nf = 1 and

g & 4, M =0 and G (r ) approaches a finite limit as

N +ac. Exactly —at the critical point G(0) grows

like lnN as we have already noted. We illustrate

these points in Figs. 20 and 21 by plotting G (0) and

G(p/2) vs g /Nf on different sizes of lattices for

Nf 1 and 2. I——n each case P ' is much smaller

than the other energy scales in the problem. Notice
that at the phase transition point the variation in

G(0) with lnN is visible as is illustrated more fully

in Fig. 9.
We extract the order parameter, M, by fitting

G(r) to the form

FIG. 20. (a) Correlation function G(0} defined in Eq.
(5.6) for XF——1. We show results for lattices with 8 sites
(sohd circles), 16 sites {crosses), and 32 sites (empty cir-
cles). Statistical errors are within the symbols in all

cases. (b) Correlation function G(P/2) for N+=1. We
show results for lattices with 8 sites (solid circles), 16 sites
(crosses), and 32 sites (empty circles). Statistical errors
are within the symbols. As expected, G (/3/2) is indepen-

dent of lattice size for g
2 & 4.

length is larger than or of the order of the lattice
size, also as expected.

In principle one can calculate the gap from the 7

dependence of G (r ). In practice this is difficult be-

cause of finite-size effects. To take the finite-size
effects into account we fit G(r ) with the correlation
function from free-field theory on an identical lat-
tice. The single (mass) parameter in the free-field-

theory correlation function is determined by requir-

ing that it agrees with our Monte Carlo results at
r =p/2. The gap and the order parameter are then
both determined, and the results for the order
parameter agree with those obtained from Eq. (5.8).
A typical fit to the correlation function is shown in
Table IV. The fact that the correlation function is
well fit by free-field theory for all values of ~ rather
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TABLE IV. Gross-Neveu model correlation function
defined in Eq. (3.6) for NF ——10 and g =2. GMC is the
Monte Carlo result and GF is the one-parameter fit
based on mean-field theory for the finite lattice.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

GMc«)

1.937+0.005
1.803+0.005
1.757+0.006
1.741+0.006
1.736+0.006
1.734+0.006
1.733+0.006
1.733+0.006
1.733+0.006

GF{.)

1.934
1.800
1.756
1.741
1.735
1.734
1.733
1.733
1.733

g

FIG. 21. Correlation function G(0) for NF ——2. We
show results for lattices with 12 sites {solid circles), 20
sites (crosses) and 32 sites (empty circles). Statistical er-
rors are within the symbols. Size dependences of G{0)
are evident for g &1. For g =1 the correlation length
is larger than the length of even the 32-site lattice.

than simply for large values of r indicates that
mean-field theory is valid. This appears to be the
case for Nf & 2 for all but the smallest values of the
coupling constant. In Fig. 23 we plot the gap
versus g for Nf =10. We also include the mean-
field theory and asymptotic freedom predictions.
More detailed results on this model will be given
elsewhere.

VI. AN ELECTRON-PHONON MODEL

In this section we consider the electron-phonon

system, Eq. (1.3), as an example of a coupled
fermion-boson system. The specification of the
path integral now involves the fermion field n+(i,j)
and the boson field x (ij ) Just. as before, i is a site
index and j denotes a given time slice. The time
grids hrF and brs for the fermion and boson fields
can be different and should be set so that hrFt «1
and b,rttQ «1 with 0=v'K/M. For example, if
the phonons respond on a slow time scale so that
0 &gt, it is natural to have h~z &&h~~ so that the
phonon field remains the same for a number of fer-
mion time slices. For the cases discussed here the
time scales were taken to be roughly similar and the
boson field was changed on every other fermion
time line corresponding to multiples of the basic h~
unit.

The procedure for updating the fermion field was

O.3- ~ Nf =
I

0 Nf=2

x N)=3

0.2—

2.4

1.6-

N) = IO

O.I— 0.8—

x t z
L J. ~ ~ 82 4

g

FIG. 22. M as a function of g for NF ——1 (dark

circles), NF ——2 {crosses), and NF ——3 (empty circles).

Where no error bars are shown, the errors lie within the

symbols.

0
0 I

FIG. 23. Gap vs g' for the Gross-Neveu model with
ten flavors. Dashed line is the asymptotic freedom pre-
diction and solid line the mean-field-theory prediction
for a finite lattice.
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the same as previously discussed. For the bosons
the Metropolis method was used. The boson field
at a site would be shifted by a random amount hr,
with r a random number between ( —1,1) and b a
set value. If the exponential of minus the change in
action produced by this change in the boson field
exceeded a random number between (0,1), the new

value of the field was accepted. This could be re-

peated n times. Values of n and 6 were selected to
optimize convergence. Typically n was set of order
5 and 6 was taken to be of order (0/K)'/ .

Before turning to the many-electron problem it is
interesting to examine the one-electron problem.
For a system with t=2.0, E=0.5, M =2.0, and
A, =1.0, a typical electron trajectory looks a great
deal like that shown in Fig. 4(b). However, a care-
ful examination shows that the spread in width of
the trajectory appears narrower corresponding to a
larger effective mass. A printout of the boson field
shows a rough channellike region in which the mol-
ecules are contracted along the electron path.

In order to obtain a clearer picture of this phe-
nomena, it is useful to consider the result of a
gedan, ken experiment in which the lattice distortion
is measured as a function of distance away from the
electron:

(6.1)

Here n; is unity if the electron is at the ith site so
that C(l) measures the lattice distortion a distance 1

away from the instantaneous position of the elec-
tron. The correlation function C(1), plotted in Fig.
24, clearly shows the lattice distortion surrounding
the electron. In the adiabatic limit when t »0, the
size of the polaron is approximately given by t/co&
with cos ——A, /2K. This is equal to 2 in our case in
rough agreement with Fig. 24 although the parame-

0.8—

A
+

0.6
C

0.4—

0.2-
I

-4
I I

-2
I I

4

FIG. 24. Average lattice distortion C(l)=(M;x;+~)
surrounding an electron vs I.

ters are not really into the adiabatic region
(A=&K/m =0.5). The effective mass can be
determined by calculating

(n(i +l,P/2)n (i,O) )

as discussed in Sec. III for the case of a free parti-
cle. Figure 25 shows a plot of

r

(n (i+1,P/2)n (i,O) )
( n (i + 1,0)n (i,O) )

vs 1 similar to that shown in Fig. 5 for the nonin-

teracting case. The open circles correspond to the
noninteracting case with t =2.0 and A, =O.O. In this
case the effective mass m" =(2t) '. The solid cir-
cles are for the interacting case with t =2.0,
K =0.5, M =2.0, and X=1.0. The effective mass
has clearly increased. The solid line passes through
points corresponding to a noninteracting system
with t = —, and implies an enhancement of the ef-

fective mass by a'factor of —,. The adiabatic theory

of the large polaron gives an enhancement of
( —„)(co&/II ) =2 for these parameters.

By increasing the fermion occupation number it
is possible to study a variety of problems ranging
from a dilute polaron gas to the case of a half-filled
band. In Fig. 26(a) typical fermion and boson con-
figurations for the case of a half-filled band of
spin-up and -down electrons in a strong coupling
case with t =1, 0=0.5, and A, =0.75 are shown.
From the fermion trajectories it is clear that the
system is in a charge-density-wave state. The
phonon-field configuration in Fig. 26(b) is charac-
terized by writing a + sign for a positive value of

px
I

x
C3

C

0:.
0

fx&
—x;/

FIG. 25. Electron density-density correlation function
vs distance at an imaginary-time separation v =f3/2.
Open points are for a noninteracting system (A, =O) with
t =2.0. Solid points are for the interacting system with
t =2.0, K =0.5, M =2.0, and A, =1.0. For comparison,
the solid line runs through a set of points obtained for a
noninteracting system with t =

3
.
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FIG. 26 (a) Typical electron configuration for t =1„
0=0.5, and A, =0.75. (b) Sign of the staggered field

(—1)'xI for the associated-lattice —Monte Carlo lattice
configuration. System is clearly in a Peierls state in

which the electrons exhibit a CDW and the lattice is
dimerized.

the staggered field ( —1)'xt and a —sign for a nega-
tive value. With these parameters the system is
clearly dimerized. This is just the we11-known

Peierls distortion.
If we add a pair of electrons of opposite spin to

the system shown in Fig. 26 and let it evolve for a
few hundred Monte Carlo sweeps, we obtain typical
configurations as shown in Fig. 27. In the electron
configuration one sees two objects that evolve in
time similar to the fractional charges in Fig. 10.
Note that each of these objects must have a charge
of I, since we added two electrons to the system.
However, unlike individual electrons, these objects
do not carry spin, since it is clear from Fig. 27(a)
that electrons are paired almost all of the time.
Thus, they will not contribute to the magnetic sus-
ceptibility. These are the charged solitons (charge 1

and spin 0) discussed by Su, Schrieffer, and
Heeger. ' The lattice configuration [Fig. 27(b)]
shows clearly the existence of two solitons and the
tunneling from one dimerized ground state to the
other (remember we are plotting the staggered field).
Thus, our Monte Carlo simulation is in agreement
with the Su-Schrieffer-Heeger ' picture that doping
occurs through the formation of charged solitons
and not through semiconductor-band doping in
these systems.

For the case of spinless electrons, as previously
suggested and more recently studied in detail us-

ing the present method, the Peierls state can be

destroyed by zero-point fluctuations of the lattice
when 0/t exceeds a critical value. As an example,
Fig. 28 shows the lattice staggered correlation func-
tion

D (l)= ( —1)'(x;x;+I )

for t =1.0, A. =0.9, and two different values of the
ion mass M (M =1.5 and 0.2, with K =0.25) for
the spinless case. For M =1.S there is clearly
long-range order, reduced by about 15% from the
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FIG. 28. Lattice-staggered correlation function
D(l)=( —1)'(x;x;+I) for t =1.0, A, =0.9, and two dif-
ferent values of the ion mass M. For an infinite chain
there is a critical value of M below which the Peierls di-
merization of the ground state is destroyed by the zero-
point fluctuations of the lattice. Note the much larger
zero-point fluctuations on site (I =0,40) for the smaller
ion mass.

FIG. 27. Typical electron and lattice configurations
for the case in which two electrons have been added to
the previous configuration shown in Fig. 26. Examina-
tion of the electron configuration (a) near the regions
where the staggered field changes sign shows the excess
charges but note that the electrons are dominantly
paired so the effective spin of the solitons is zero. Ex-
istence of two solitons is clearly evident in the staggered
field of the lattice (b).
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static limit results M= oo, while for M =0.2 the
long-range order has disappeared due to the quan-
tum fluctuations. The Su-Schrieffer-Heeger model
with interatomic lattice distortions has also been
treated with this method.

VII. CONCLUSIONS

The method presented in this paper offers the
possibility of studying almost arbitrarily complicat-
ed one-dimensional (1D) interacting many-body sys-
tems. As discussed in the Introduction, it can be
used qualitatively or quantitatively. It also comple-
ments other techniques allowing one to explore and
extend them in a variety of ways. For example,
there have been a number of studies based on
finite-cell diagonalization. Our method gives the
possibility of studying much larger systems. For in-

stance, even for the 1D Hubbard model it becomes
very difficult to diagonalize exactly systems bigger
than eight sites. For systems with a larger number
of degrees of freedom per site, such as the Anderson
model, the number of sites for which one can per-
form exact diagonalization is much smaller.
Perhaps more importantly, for systems with an in-
finite number of states per site like electron-phonon
systems, finite-cell techniques are not applicable at
all. Our method can easily handle systems of as
many as 100 sites in all these cases. Naturally,
there are statistical errors which are not present in
the exact diagonalization for the small systems.
However, knowing the exact results for small sys-

tems, one can match on to these to some desired ac-
curacy using our Monte Carlo procedure and can
then extend them to larger systems in a controlled
manner. An example of this is the spinless-fermion
problem.

For certain problems, the Bethe-ansatz provides
exact solutions for the ground-state wave function
and energy as well as excited-state energies of the
infinite system. However, as is well known, it is
difficult to obtain results for correlation functions
and finite-temperature thermodynamic properties
using Bethe-ansatz techniques. With our technique,
however, we can directly calculate correlation func-
tions. Furthermore, the calculations become
simpler as the temperature is increased since fewer
time slices are involved. Also, the modification or
addition of interactions which move the problem
outside the domain of the Bethe-ansatz approach
can be directly dealt with.

An important result obtained from perturbative
renormalization-group calculations for models of a

1D electron gas are scaling relations ("g-ology")
which provide, in principle, a means of scaling the
original problem onto another whose properties
may be known. The results for the Tomonaga
model and the Luther-Emery backscattering
problem are often used. Our method offers the pos-
sibility of going beyond the perturbative scaling re-

gime to explore the entire parameter space. It al-

lows us to treat retarded interactions that arise from
electron-phonon or exitonic mechanisms. It also
provides detailed information on short-range as well

as long-range correlations. Working in the site rep-
resentation on a lattice, umklapp processes enter in
a natural way, and there are no delicate cutoff prob-
lems. Furthermore, the basic parameters which
enter the Hamiltonian have a simple physical inter-
pretation from a molecular point of view.

For the extraction of critical properties it will be
of interest to combine our Monte Carlo technique
with renormalization-group procedures. One relat-
ed approach is finite-size scaling. This procedure
has been used successfully for the spinless-fermion
model, the extended Hubbard model, and the
Gross-Neveau model.

Finally, compared with other Monte Carlo tech-
niques for 1D systems, our method appears to be
superior. All techniques that use the evaluation of
a fermion determinant involve a computation time
that goes up much faster than the size of the sys-
tem, unlike our method. In addition, most of the
"determinant techniques" become slow when the
correlation length becomes large, i.e., when one ap-
proaches the free-fermion case. In contrast, with
our method the equilibration time is about the same
for the free case as for a case where there is a gap in
the spectrum. Unlike other breakup techniques that
have been used, ' our method allows one to easily
study an arbitrary number of time slices and, most

importantly, does not involve minus-sign problems
in one dimension.

As mentioned earlier, it is possible to utilize this
general approach even if H is split according to
quite different criteria. For example, a breakup into
left and right movers has been carried out by
Dahl. 2 This is not only exact in principle for the
free case, but can be extended to handle long-range
derivatives [such as the (SLAC) derivative]. It will

be very interesting to study the effect of these dif-
ferent eigenspectra in certain relativistic models.

The most important outstanding question is the
possibility of extending our method to higher di-

mensions. The formalism described can in principle
be applied to higher-dimensional systems in the
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tr(osgnP ~P
~

)

tr(sgnP
~

P
~

)

(0 sgllP )
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(sg11P )
i
p

i

(7.1)

Here, I' denotes the matrix elements divided by the
partition function. One can then perform a Monte
Carlo simulation using ~P

~

as the probability of
the state and compute separately the numerator and
denominator of Eq. (7.1}. It should be pointed out
that no nonlocality occurs in this algorithm as one
could have expected, so that the computer time per
sweep required for a quantum problem on a 2D
space lattice is comparable to a three-dimensional

(3D) Ising model. However, it is easy to convince
oneself that both numerator and denominator in Eq.
(7.1) go exponentially to zero with the size of the
system at low temperatures. We have performed

H, Hl

H, H,

FIG. 29. Schematic top view of the cubes that make

up the three-dimensional (x,y, v) space. Here we are look-

ing down the r axis. The Hl cubes occupy one hv/2
time slice and the Hq cubes occupy the next h~/2 time
slice, etc.

same way. Consider for definiteness a two-
dimensional (2D) square lattice. The Hamiltonian
can again be broken up as H =H&+H&, with H&

and H2 composed of sums of Hamiltonians of
nonoverlapping elementary squares. The building
blocks for the space-time lattice are now elementary
cubes, schematically illustrated in Fig. 29, and it is
straightforward to compute all necessary matrix ele-

ments. Unfortunately, the product of all the matrix
elements can now become negative for certain fer-
mion configurations. These correspond for example
to cases where two fermions interchange their posi-
tions at time slices 0 and P, and the world lines do
not cross inside of an elementary block (this situa-
tion can clearly not arise in one dimension). In
principle, one can still write for the average of an
operator 0,

numerical simulations for 2D free-fermion systems
and have found that statistical fluctuations make
the evaluation of the quantities in Eq. (7.1}impossi-
ble except for cases where the band is almost empty
or temperatures are rather high. Thus, it remains
an open question whether some modification of this
technique can be applied to higher-dimensional fer-
mion problems. However, our formalism is directly
applicable to certain high-dimensional quantum

spin systems like the anisotropic Heisenberg model.
We believe the method can handle the ferro-

magnetic and antiferromagnetic cases but is prob-

ably not applicable for systems with frustration due

again to minus-sign problems. In addition, single-

electron problems like the polaron for higher di-

mensions are directly amenable to treatment.
Returning to 1D systems, there exists a large

number of organic charge-transfer compounds
whose properties at not too low temperatures can
presumably be modeled accurately by 1D Hamil-
tonians. Also, the effect of three-dimensionality at
low temperatures can be taken into account approx-
imately by using a self-consistent mean-field ap-
proximation for the interchain interactions. It is
straightforward within our method to include such
mean-field terms in the Hamiltonian. We can, of
course, also simulate the full behavior of an array of
interacting chains, as long as no electron tunneling
between chains is allowed.

With our formalism it is simple to compute static
q-dependent correlation functions. It is also
straightforward to compute ~-displaced correlation
functions:

X( )=&A( )A(0)) . (7.2)

P
Xge(to =0)=f dr(A(r)B(0)), (7 3)

which measures the response of A to an external

However, ~ is an imaginary time. From an experi-
mental point of view, it would be of interest to ob-
tain correlation functions in real time or frequency.
One cannot, of course, analytically continue numer-
ical data. However, there exist various Pade ap-
proximant methods for obtaining the correlation
functions at real frequencies from a knowledge of
their analytic properties and their numerical values
at a finite number of discrete imaginary points. It
is however not clear how sensitive the results would
be to statistical fluctuations in the Monte Carlo
data and this problem needs further study. For-
tunately, it is simple to compute the zero frequency-
susceptibility,
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field that couples linearly to the operator B .Work
is in progress to study properties of various quasi-
1D organic charge-transfer compounds using these
techniques.

We have given only a brief description of the re-
sults from an application of our approach to rela-
tivistic models in one space dimension. A full
description will be given elsewhere of the Gross-
Neveau model, the Schwinger model, and possible
extens'ions to models with higher-gauge symmetries.
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