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The shear modulus of two-dimensional Wigner crystals is calculated as an expansion
about the classical zero-temperature limit. Results are obtained for the classical system at
low temperatures in agreement with numerical simulations of Morf, and for a quantum-
mechanical system in the limit of a large perpendicular magnetic field. Implications of the
results on the possibility of observing Wigner crystallization in electron inversion layers are
briefly discussed.

I. INTRODUCTION

It has been known for some time that a classical
two-dimensional (2D) system of electrons will form
a triangular lattice at zero temperature. ' Recent ex-
periments with electrons floating on the surface of
liquid helium, ' indicate the existence of a triangu-
lar lattice below a melting temperature TM in the
low electron density regime where quantum-
mechanical effects are not expected to be important.
In the opposite, high-density limit, where the zero-
point motion of the electrons dominates over the
Coulomb interactions, the electrons will form a Fer-
mi liquid even at T=O. The existence of a transi-
tion between these two regimes as a function of
areal density n, at T=O (about which very little is
known analytically) was first predicted by Wigner
for the analogous problem in three dimensions. "

Several authors have recently pointed out that a
large magnetic field perpendicular to the plane of
the electrons will tend to suppress the zero-point
motion of the electrons. This will cause crystalliza-
tion at densities for which the system would have
been a fluid in the absence of a magnetic field. In
this paper we will discuss some effects of anhar-
monicity in the electron crystal for the case in
which the temperature is sufficiently low and/or
the magnetic field sufficiently high so that the sys-
tem is relatively near its classical ground state.

In particular, we will be interested in the shear
modulus p of the electron crystal. We first examine
the effects of anharmonicity in a system of classical
electrons as a function of temperature T or
equivalently as a function of the conventional clas-
sical dimensionless parameter,

I =e2+nn, /T, .

which is the ratio of the characteristic potential en-

ergy to the kinetic energy. Kosterlitz and Thouless
(KT) and Nelson and Halperin have shown that
any two-dimensional solid wi11 become unstable to
the presence of free dislocations and melt via a
second-order transition at a temperature T~ at
which

4p(TM') [p(TM')+ ~(TM') I
K(T~ ):

2p(TM')+ ~(T~')

16~TM
2

Qo
(1.2)

where A, is a Lame elastic coefficient and oo is the
lattice spacing, related to the areal density by
W3ao/2=n, Whi. le the solid may melt via a
first-order transition at a temperature different
from TM, the Kosterlitz-Thouless melting tem-
perature is generally an upper bound for the actual
melting temperature. For a classical Wigner crys-
tal, the elastic constants p(T) and A,(T) are of the
form e n, f(I ) and the melting criteria and all

other properties of the system can similarly be ex-

pressed by a characteristic scale times a function of
I only.

At zero temperature (I'= oo ) the shear modulus

po of an electron solid is finite and has been calcu-
lated by several authors. ' Owing to the long-range
Coulomb interactions, however, the zero-
temperature value of A, , A.O is infinite. At nonzero
temperatures, p will be renormalized by (at least)
two mechanisms. The first of these is phonon
anharmonicity, an effect that we will calculate in

powers of I '. The second mechanism, as shown

by Kosterlitz and Thouless, will be dislocation pairs
which will be thermally activated. ' This effect,
though important near TM, will be exponentially—2F. /T
small at low temperatures, proportional to e

(i.e., e '") where E, =O le ~n, is t.he core energy
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of a dislocation computed by Fisher, Halperin, and
Morf.

While phonon anharmonicities alone will not af-
fect the infiniteness of A, , dislocation pairs will
make k finite, ' but it will remain so large even near

T~ that to a good approximation K(T)=4@(T).
If the finite-temperature renormalizations of
A, and p are neglected completely, an estimate can
be made for I M by replacing K ( T) by
K(T=O)=4po in Eq. (1.2). Doing this, Thouless"
obtained I M-79, corresponding to a considerably
higher temperature than the experimentally ob-
served I ~-131.~

Morf has performed a numerical simulation of a
2D system of electrons and calculated the shear
modulus. While it is not clear whether the transi-
tion is of the Kosterlitz-Thouless type, MorPs ob-
served critical value of I ~-128 is in excellent
agreement with the experiments. He finds that the
shear modulus decreases as a function of tempera-
ture, initially linearly but more rapidly near T~.
This behavior is found to be quantitatively ex-
plained in terms of a linearly decreasing "bare" (or
short wavelength) shear modulus, which is then

used as input, along with the known E„ into a
renormalization-group calculation of the long-

wavelength dislocation-pair renormalizations of p
and A,. The resulting TM obtained from Eq. (1.2),
is in excellent agreement with the observed melting
temperature. The only unknown (but numerically
observed) parameter in this calculation is the coeffi-
cient of the linearly temperature-dependent part of
the bare shear modulus. In the next section we

compute this coefficient and find it agrees well with
MorPs observed low-T behavior of p. '

With this last piece of input verified analytically,
MorPs renormalization-group calculation becomes
a parameter-free first-principles computation of the
melting temperature of a classical 20 electron crys-
tal. It is hoped that the excellent agreement of this
calculation (which results in a 40% decrease in the
predicted T3r from Thouless's estimate") with ex-

periment is not fortuitous.
Recently, Gallet et al. ,

' have extracted informa-

tion about the transverse sound spectrum of elec-
trons on helium from the effective Debye-Wailer
factor controlling the coupling of the electron sys-
tem to helium capillary waves. They obtain an ef-
fective shear modulus that is a weighted average of
the q-dependent transverse elastic modulus. The re-
sults appear to be consistent with MorPs calcula-
tions; however, there are considerable problems and
uncertainties in the interpretation of the data due to
the rather complicated couplings to the helium sur-
face. In addition, the data are mostly near TM
where the dislocation renormalizations of p will be
important. Experimental verification of the results
of this section and those of Morf will thus prob-
ably have to be via a direct measurement of the
long-wavelength shear modulus.

In Sec. III we consider quantum-mechanical ef-
fects in the presence of a large magnetic field and
calculate the resulting change of the bare shear
modulus. In light of the above-mentioned success,
it is hoped that this will provide a reasonable esti-
mate of the effects of quantum-mechanical flucuta-
tions on the melting temperature. Some of the nu-

merical details are relegated to the Appendix.

II. ANHARMONICITIES
AND LOW- TEMPERATURE EXPANSION

In this section we briefly develop the formalism
to calculate the effects of phonon anharmonicities
and calculate the first temperature correction to the
shear modulus of a classical electron solid. In the
solid phase, we can expand the electron coordinates

t r ) about their equilibrium positions ( RJ:
r =R +u~(R) The potent. ial energy is then

1 eHp-
RQR '

I
+u{R) R' u(R')

(2.1)

By expanding in powers of the displacements u and
Fourier transforming, we obtain

1 a&a&a3H = —, +II (q)u (q)u ( —q)+ ~ g V3 '(qi q„q3N(q, +q2+'q3)
q

Xu '(qi)u '(q2)u '(q3)

R)Q~lx3Q4+ 4, Z g V4' ' ' '(qi q2 13 q4@(ql+q2+q3+q4)
q~q&q3q4

Xu '(qi)u '(q2)u '(q3)u '(q4)+0(u ), (2.2)
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where N is the number of electrons,

u (q)= ge '~' u (R),
N R

and II, V3, V4, etc., are given in terms of Fourier transforms of derivatives of the potential:

(2 3)

by

V
1 2 n(~) y —/q R

R +0 az" az"
e

az "
(2.4)

II ~(q)=V ~(q =0)—V ~(q), V' r(q, , q, q )=—[ V;~r(q, ) +V~r(q )+V ~r(q, )],
V~" (q q q )=+[V~r(0)—V~ (q ) —V~r(q ) —V r( ) —V ( )

+ Vg (q)+qg)yVg (q)+q3)+Vg (q)+qg)],

(2.5)

etc. Note that V2„ is even under I q; I ~ I
—q; I and

hence real while V2„+&
is odd and hence imaginary.

The phonon normal coordinates I Q~ I (where A, is
the polarization: A, = i, t) are obtained by diagonaliz-
ing the matrix II ~(q). In terms of the eigenvec-
tors ex( q ) of II, we have as usual,

u (q)= g —Qq(q)V'm

I

temperature Green's function

G'~(q, r, r') = —Tr[pT„u'(q, r)uit( —q, r')],
(2.11)

where p=e ~ /Tr[e ~
J is the density matrix, T,

the usual-temperature ordering operator, and
O(r)=e 'Oe ', for any operator O. In addition
we define

„,[«(q)+u~( —q)],
[2m'~(q)]'~

(2.6)
where co„=2m n /P.

The bare Green's function Gc is then just

(2.12)

where a~ (co~) is the creation operator (frequency)
for a phonon of polarization A, and I is the electron
mass. The quadratic part of the Hamiltonian is
then simply

H0= Z~x(q)ux(q)uk(q)
qA,

(2.7)

Because of the long-range forces, the longitudinal
mode is 2D plasmonlike for small q,

2m'ns

I q I
(2.8)

while the transverse mode is soundlike,

(2.9)

with the zero-temperature shear modulus found to
be'

pp ——0.245065e n (2.10)

We are interested in calculating the zero-
frequency-retarded Green's function at finite tem-

peratures. To do this we define the usual-

Go (q i~.)=X
2mcoq(q)

X
in

1
(2.13}

iso„+co~(q)

While it is clearly not necessary to use finite-

temperature quantum-mechanical perturbation

theory to calculate in the classical regime, we will

use this formalism later and hence have introduced
it now. It is straightforward to show that in the
classical limit, here given by T » ficoq(q) for all q,
the usual Feynman perturbation theory for
G(qico„=O, ) in terms of G~ reduces to the simple
form that could have been obtained by directly ex-

panding the classical partition function. For the
classical limit the diagrammatic rules are very sim-

ple: Each line carries a factor

Gca(q): Gc~—(qico =,0)„=—[II '(q)] ~.
(2.14)
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Each n vertex carries a V„and there is a factor
(—T) for each independent internal momentum,
and an overall factor of N, ', where N, is the order
of the symmetry of the diagram. The resulting per-
turbation theory is for

G P(q)= ——(u (q)uP(q))c
T

in Figs. 1(a) and 1(b). We note here that tadpole di-
grams [e.g. , Fig. 1(c)] will not contribute since they
contain Gco(q~O) and hence involve an overall
shear or an area change. The former are zero by
symmetry, the latter are zero since the long-range
forces (and the uniform positive background) fix the
total area.

%e thus obtain
where ( )c denotes the classical statistical-
mechanical expectation value. The lowest-order
contributions to G~ are then given by the diagrams

I

Gc (q)=Geo (q) —&(q)

where the self-energy X is given by

(2.15)

& P(q)= —T QGPo(k)V4 (q, k, —k, —q) —T QGPo( —k)GFo(k+q)V3 '(q, k, —q —k)
2N

k
2S-

k

)& Vq ~( —q, —k, q+k)+O(T ), (2.16)

where the —,'s are symmetry factors. It is easy to
see that in this classical limit the expansion parame-
ter is just proportional to I, i.e., is
Tie'~n, =v ~ tr.

(a)

The elastic coefficients can be obtained from
Gc (q). For a conventional solid in the limit of
small q,

[G
—i(~)]ap ~ 25ap+ (P+~) a p

&s ~s

(2.17)

However, due to the long-range forces, for our case
of a layer of two-dimensional electrons,

2 2
[G (q)] P—=~q'5 P+

+ q qp+O(q ) .(P+A) ~ p
P1s

(2.18)

(c}

FIG. 1. (a) and (1) Diagrams which contribute to the
lowest-order anharmonic corrections to the shear
modulus. (c) "Tadpole" diagram yielding no contribu-
tion. (d) Second-order diagram which includes a six-

point vertex.

We can still identify the shear modulus as the coef-
ficient of the q 5 p term of —Gc ' and hence find
the correction to the zero-temperature shear
modulus po by extracting the coefficient 5p of the

q 5 pterm in X p for small q. Note that the longi-
tudinal

~ q ~

term in Eq. (2.18) which arises from
the long-range forces is not temperature dependent.

The nonlinear interaction terms V3 and V4 can be
calculated numerically as shown in the Appendix,
by a generalization of Ewald's method for Coulomb
lattice sums. ' The integrals over k entering the
lowest-order self-energy [Eq. (2.16)] can then easily
be performed numerically. It is most convenient to
work with the derivatives of V3 and Vq with respect
to q atq=O.

It is found that

p=po+ T/1 [—3.66]+e n, O(I ) . (2.19)

The figure in square brackets is the sum of a pos-
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itive contribution (+ 3.48) from diagram (a) and a
negative contribution which is roughly twice as
large ( —7.14) from diagram (b). While it is certain-

ly possible in principle to calculate higher-order
corrections to the shear modulus, note that there are
eleven diagrams which contribute to second order,
some of which depend on V, and V6 [e.g., Fig. 1(d)]
in addition to V3 and V4. At the observed melting
temperature (and that calculated by Morf) the
correction to p, from Eq. (2.19) amounts to a de-
crease in p of -20% or about half the total de-
crease in p at T~. While the appearance of large
dimensionless numbers (such as I sr) may lead one
to be doubtful, it does not seem unreasonable to ex-

pect that the higher-order corrections due to pho-
non anharmonicities are unimportant all the way up
to T~. The linear decrease of p with temperature
in Eq. (2.19) agrees well with that found in Morf's
simulations, lending some credence to the above
claim, at least up to —,T~ where dislocation pairs
start to play a role. A self-consistent phonon calcu-
lation by Platzman and Fukuyama, ' which might
be expected to be valid at low temperatures, yields a
small linear increase in JM. This error is partially
due to the neglect of third-order anharmonicity, i.e.,
V3.

III. LARGE MAGNETIC FIELDS

In this section we consider the effects of a large
perpendicular magnetic field B on a 2D quantum-
mechanical system of electrons. In a large magnetic
field, the cyclotron radius, rc (Ac/eB)'~ c——an be
made much smaller than the average interparticle
spacing, n,

' If the . field is large enough, the
parts of the electron kinetic energy not included in

the high-frequency cyclotron motion (Qc =eB/mc)
become small with respect to the Coulomb potential
energy. In this limit the electrons will crystallize at
sufficiently low temperatures at any density as
T—+0 and 8—+ao, the system will reach a ground
state with zero-point cyclotron motion of
—,RQ~ per electron but with the positions of the

electrons frozen at the lattice sites of a triangular
lattice. The normal modes of the crystal, "magneto-
phonons, "' will have a frequency spectrum very
different from phonons in zero field (see below). As
q~0 there will be one mode with frequency Qc
and another with frequency ~q /8. The pres-
ence of a q mode has often lead to the erroneous
conclusion that the crystal cannot be stable due to
long-wavelength fluctuations. As we will see below,
however, the static properties of the crystal in the

limit B~oo are exactly the same as for a classical
electron crystal. In particular the static shear
modulus is finite, only the dynamic response is al-
tered.

In this section we develop a systematic expansion
of the properties of an electron crystal in powers of
1/B about the classical limit at finite but low tem-
perature. We note that an expansion could easily be
made by the same method at T=O; however, it will
have a different form due to the nonuniformity of
the T~O and 8—+Op limits.

In contrast to the classical electron crystal, there
are now four energy scales: (1) potential energy
ec en——, , (2) temperature T, (3) characteristic
plasmon or phonon frequency at B=0,

fico~ =fico&(q =zone boundary)

i'(n e /m)' (3.1)

and (4) cyclotron energy fiQC. Note that
ficoz a:(ECE+), where EF mfi ——n, /. m is the 2D
Fermi energy. The zero-temperature expansion
parameters are co&/Qc and Ez/fiQC cc rcn, At fin-.
ite temperature, the case we will compute here,
there are three expansion parameters which enter.
The first is just the classical I ' a: T/ec. The oth-
er two enter the desired corrections to the classical
shear modulus. These can be expressed in powers
of (%co& IQcT) and co&/Qc. The expansion will be
strictly valid when all of these parameters are small.
We will consider keeping n„andhence co&, fixed
an/ letting Qc ' and T be small such that
Rcoi, /Qc 7 &&1; this last will turn out to be rather a
strict condition as long as T & TM, which it clearly
must be for the expansion in Q~

' to be about a
point in the classical solid phase.

We now generate an expansion for the tempera-
ture Green's function in powers of Qc '. In the
presence of a magnetic field, the potential energy
remains unaltered, but the kinetic energy must be
replaced by

eA[R+ u(R)]

(3.2)

where p(R) is the momentum of the electron at site
R. For a uniform perpendicular magnetic field B
we can choose the vector potential to be
A(r)=[( —By/2), (Bx/2)]. It is then straightfor-
ward to show that in terms of the phonon normal
coordinates in the absence of a field [Pi ],[Qi ] the
quadratic part of the Hamiltonian can be written as
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Qc QcHo=-, +~Bq)Q~(q)Q~( —q)+-,' g Pt(q)+ QI( —q) P, ( —q)+ Qi(q)
A,

2 2

c+ —, g Pi(q) — Q, ( —q) PI( —q) — Q, (q) (3.3)

This Hamiltonian can be diagonalized to yield

ro (q)
Ho=-, g Q;(q)Q;( —q)

q, P;(q)

+ P';(q)P;(q)P;( —q)

where i = + or —by the transformation

Qc
Q~=Q

c
Qi=Q~ —

2~
P

S —So S +So"= n Q-+ nc c
S —So S +So

P, = Q++ P
c c

The eigenfrequencies are given by

2 & 2 2io+ = (roi +rot +Ac)+S
where

2 2 2
Nl Nt C 2 2 Is = + (~~+~, + nc),

2 2 t

(3.4)

(3.5)

(3.6)

I

the magnetophonons we then have

Q+(q) = [a+(q)+a+( —q)]
2co+(q)

and

P+(q)=i

(3.9)
1/2

co+(q)
[a+(—q) —a+(q)],

2F+(q)
and hence

F
Qi(q) =

2N+

' 1/2

[a+(q)pa+( —q)]

c
2S 2F

1/2

[a" (q) —a ( —q)]

(3.10)

Q«q) =
2co

[a (q)+a ( —q)]

[ai(q) —a+( —q)] .
1/2

Oc CO+

2S 2F+

In the limit of large magnetic field QcgyN one
finds the usual result that

2 2
Nt —N~

So=
2

(3.7)

Qc+NI +Nt +2 2 2 2 P

~c
(3.11)

and

=1 ~c
F+ = S+So+

2S 2

In terms of creation and annihilation operators for
I

2 2 8
cot co, COp

co =
2 2 2+0

Qc+NI +N~ Qc
In addition, in this limit the coefficients in Eq.
(3.10) are given by

N

1/2
coi

N~~c

I /2 2 2
1 NI 3 Nt

1 —— —— +Og2 4 g2
Np

Qc

1/2
+

co+

~c
2S F

2

1 ——
2

3 coi

4nc
1/2

2 4
COp+0

4 c ~c

2 2 4
NI 1 N~ Np

1 —— —— +0
4 c 4 ~c c

(3.12)

QC co+

2S F+

1/2 2 2 4
coI 3 co, cop

1 ——,——,+0
4 &c 4 c ~c
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To lowest order in Qc ' (with corrections of relative order
co&

/Qc) we then simply have

~+(q) =nc
col( q )co,(q )

co (q) =
C

and

(3.13)

Q, (q) =Q (q) — ~+( —q) =
c 20cN

Q((q)=Q+(q) — I' ( —q)=1 1

c C

' 1/2

[a (q)+a ( —q)] i-
20c

1/2

[a+(q)+a+( —q)] i-
20cNt

' 1/2

[a+(q) —a+( —q)],

(3.14}
1/2

[a (q) —a ( —q)] .

We can now calculate the bare-temperature Green's
function,

Go (q, i~. )=—+ex (q)e~( —q)1 u, (q i~.»~ u
(3.15)

where I xx(q, ico„) is the Fourier transform on
r' [as in—Eq. (2.12)] of

We note that due to the magnetic field, 6 is no
longer time-reversal invariant:

G ~(iso„)=6~ ( iso„)@G—~( ice„—), (3.20)

and hence G P is not symmetric in a,P. The sym-
metric part of Go (which we will use later) can easi-
ly be seen to be

I ~v(q, r, r') = —Tr[pT, Q~(q, r)Qx ( —q, r')]

(3.16)

Gosym ~ A, A, ~A,A, '
APL

(3.21)

+co (q)a" (q)a (q)] . (3.17)

To lowest order in Qc ', we have

N~ 1

2cN t lNn co lN++N

with the imaginary "time" evolution given by the
noninteracting Hamiltonian,

Ho ——g [co ~ ( q )a+ (q)a+ (q)
q

The self-energy X can be expanded by the usual-
temperature perturbation theory in terms of Gp.
We are interested in the behavior of X for low tem-
peratures and large magnetic fields. The limits
B~ao and T—+0 do not commute and hence X
cannot be expanded uniformly in T and 8 '. The
corrections to the classical X at fixed T (and density

n, ) can, however, be expanded in powers of B '. In
particular we can write (with q dependence
suppressed),

X(B,T)=Xo(B,T)+X, (B,T)+X2(B,T)+

1 1+ 20c lN„—N+ lN++N+

(3.18)

where

XJ(B,T)=B 'fj(T)

(3.22)

(3.23)

O O—I lt
——I,I 2Qc lN„—co

—l+.
lN+ +CO

i i+ . +.20c ico„—co+ lco„+co+

(3.19}

I'Il is the same with I and t interchanged. In addi-

tion, however, the off-diagonal parts of I are
nonzero:

with fj independent of B By considerin. g term by
term the diagrammatic expansion of X, the XJ(T)
can be expanded in powers of T. The expansion of
the zeroth-order term Xo(T) is just the classical ex-

pansion discussed in Sec. II. As will be shown later,
the dominant low-temperature behavior of Xo, X1,
and X2 can be derived from the two lowest-order
diagrams considered previously [Figs. 1(a) and 1(b)].

The contribution to X from diagram (a) is
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Xg ~=—X, ~( q, ico„=0)

, V4' q, q', —q', q e&' q'e, —q' coth —,
'

m q'
27fz q 2mnccot(q ')

+ coth[ —,pco+ (q')]
1 1

2mQc

+eI ( q ')eI'( —q ') co, (q ')

2mnc~l(q ')
coth[ —,pco (q ')]

+ coth[ —,Pco + ( q ') ]
1 1

2IQc (3.24)

where the ellipsis represents terms of relative order
co~/Qc, and where the asymmetric .part of the
internal line Go' does not contribute and we have
thus replaced G o' by G o,'„. For fixed T as

1 1Ac~ oo, coth —,pco+ ~1 while coth —,pco

~2/pco + pco /6 +O(pco ) . [Note the zero-
temperature expansion is obtained by taking all
coth( —,pco+) equal to one. ] The integral over q'
denotes (2m. ) J d q'.

The zeroth-order term of Eq. (3.24) in powers of
Qc is clearly just the classical contribution to the
self-energy (as in Sec. II) which is proportional to T.
The first-order term (-Qc ') arises from the inter-
nal line with frequency co+ and yields a contribu-

tion to X
&

from diagram (a),

~~P(T) 1 I VQEEP(~ ~i ~t ~)
~&s c

(3.25)

This expression can be readily evaluated by writing
V& in terms of V4 and noting that

V4~r ( q ') =0. We obtain that for small q,

X (T)= q"q "V " '""(0)—1

4~&c
2 3/2

( qo ~E3+ qq—~E3), —
4mnc

E.=" ""X I
R

I

"
R @0

(3.28)

There is also a contribution to X2 from diagram
(a) that comes from the second term in the expan-
sion of coth —,pco in Eq. (3.24). This term is, for
small q,

24m TQc

X Va5eP, pv Va5eP, pv
O

X [5"(Vp(0) —V2" ( q ') )

—V2'(0)+ V2'(q ')] . (3.29)

The integral over q
' can be done easel by express-

ing V4(q ') and V2(q ') as sums over R. Symmetry
arguments and rearrangements then yield, for small
Q',

4 3

~here

Vlxprs, pv( )
~ c) V&prs

(
aq, aq-

and

(3.26)

(3.27)

(3.30)
Numerically, it is found that E3 ——8 89 and
E,=4.14.

The expansion in powers of 1/Qc of the contri-
bution from diagram (b) is slightly trickier. The
self-energy contribution from this diagram is (for
ico„=0)
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+ap l Va56 g ~ ~g Vpgg ~ ~l +~+~I
Pf

where

A. A, A, A.

&( g eq (q')e", (q')ex (q +q')e~&, (q+q')F, ' ' ' '(q', q+q'),
Arfkr] Ar212

(3.31)

I gl

F, ' ' ' '(q', q+q')= glqx, (q', iso )lxq, (qpq', ir0 —) . (3.32)

In contrast to the evaluation above of diagram
(a), it is here necessary to include both the sym-
metric and asymmetric parts of the internal lines

Gosh' and G0C, i.e., not just the diagonal pa~s of I ou, .
The expression F, in Eq. (3.32) vanishes, however,
unless either

or

(i) A, , =A, '& and A,2 ——A,z

(ii) A, &+A.I and A2+iz .

(3.33)

In addition, if either of the internal lines in diagram
(b) carries frequency ca+-=Qc, the contribution to
the self-energy will be small due to the large energy
denominator. The parts of (b) with lines carrying
frequency co+ will not contribute to Xo or X~ and
will give rise to terms of order T/Qc in X2. These
terms are down by order T from the dominant part
of X2 and we will ignore them. To the order
desired, the contributions to Xo, X~, and X2 from
diagram (b) can thus be obtained by dropping the
co+ parts of I from Eqs. (3.18) and (3.19).

The zeroth-order (in Qc ') part of Eq. (3.31) is
given by the diagonal parts of I; i.e., (i): A,

&
——A,I,

A, z
——A,z. This is straightforwardly shown to be

equal to the classical result from Sec. II. There is
no contribution to X

&
from diagram (b), due to the

absence of closed loops. The contribution to Xz of
order I/QCT comes from the off-diagonal parts ofI, i.e., (ii) A, ~QA, ~ and k2+A, q. In the limit that

q —+0, the part of the frequency sum F, [Eq. (3.32)]
of order I/Q&T is

0 if X)——A, ] or l2 ——A,2,

x (5'5 v& —5'&5 v')
(3.35)

Here V3 has been expanded in terms of V3, and the
antisymmetry of V3 under q~ —q has been uti-
lized. As in the evaluation of X2„ the integral over

q
' can be trivially done by expanding V3 as a sum

over R and the result can be manipulated into the
form

4 3

[q5 ( ——,E3 ——E, )
P ~ 2 aP 9 2 4S

24m 2' 2 32 4

+q'q~( , E3 E6)]—.

(3.36)

We can combine the above result with Eq. (3.30) to
obtain the small-q limit of Xq to lowest order in T,

2e4

24m 2Tnc

+q q~(3E3 24E6)], —

and from Eq. (3.26) we have

(3.37)

p v
XaB —q q [Vase@(-, i) Vase, p(0)]2b =

24m 20'Tn. q
' ' q

x [ v~&&'(q ') —v~&&'(0)]

if A, (
——A,2+A, ') ——A,p,

121'Oc
(3.34) tie n

X,~ = - ( q'-5~~E3+ qq~—E3), —
4mc

if A, )
——A,pQkp ——&),

12TQc

and the resulting sum over the polarizations in Eq.
(3.31) yields a contribution to X2 from diagram (b)
(again for small q),

(3.38)

where A"s have been inserted.
The corrections to the above terms in the self-

energy arising from diagrams (a) and (b) will gen-
erally be of relative order
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m
COp

Qc T Qc2

3/2 2 3/2 2 2
s s

(eB)

(3.39)

where k is the number of independent internal mo-
menta. There will in addition be contributions to
X, (for j) 1) of order

e'~n,
e n,

m
rKu& 6)&

QcT Qc

(3.40)
with j =n+2m.

We thus see that the term in XJ ( T) lowest order
in T will (for all j) come only from diagrams (a) and

(b) and will have the form

with respect to the classical term Xo-T. The first
part of this expression arises from higher-order ex-

pansion of (e ——1) ' and the second from the
corrections to co+ and I'+ of order co&/Qc as given

by Eq. (3.12). The leading order terms X, and Xi
[Eqs. (3.37) and (3.38)j correspond to n= 1 and 2,
respectively, and m =0.

Higher-order diagrams [e.g. , diagram (d)] will

contribute to Xo terms of order
k

2 T
ns

first coming from the Green's functions in each
loop being expanded to 1st order in fico& /Qc T (as in
the evaluation of X&,). This part can be expressed
simply in terms of the E„. The second part comes
from one of the G to zerodi order (i.e., classical)
and the other to second order in fuoz/QcT. This
part cannot be simply evaluated and the integrals
must be done numerically (as in Sec..II).

Before proceeding with the physical conse-
quences, we briefly digress to comment on the clas-
sical limit (irido) of the perturbation series for X.
We note that if the limit fi~o is taken term by
term of the perturbation series only the n=o terms
[in Eqs. (3.39) and (3.40)j will contribute. However,
there will still be corrections to the classical finite-
temperature results of order co&/Qc. This appears
to contradict the known absence of effects of a
magnetic field on thermodynamic properties of
classical systems. The problem is simply one of or-
der of limits. In the above discussion, terms of the
form coth —,Pfico+ [e.g., in Eq. (3.24)] were set to 1,
with negligible corrections of order exp( —piriQ&).
This approximation is clearly invalid in the limit
fi—+0, with Qc finite. If the limit A' —+0 is taken be-
fore Qc~ ao, it is easy to verify that, as expected,
there are no corrections to the classical zero-field
statistical mechanics or any static properties of the
system.

&,(T)-, , , [1+o(T)] .1 1

c
(3.41)

IV. DISCUSSION AND CONCLUSIONS
The higher-order (in powers of T) corrections to
each X~ will be given by other diagrams. For exam-

ple, the two-loop diagram (d) will give rise to a T
independent term in Xz,X2d-l/Qc. The coeffi-
cient of this term can be seen to have two parts, the

From Eqs. (3.37) and (3.38) we find that the lead-
ing corrections in powers of B ' to the finite
temperature classical shear modulus pc(T) (see Sec.
II) are given by

2 5/2 W2e4n4 3/2

p(T,B)=pc(T)+0.83 [1+O(I ')]—1.34
2 z [1+0(I ')]+0

mc m'T&c m TQc
nsT (4.1)

%e note that the term of order Qc ' agrees with a
calculation of Fukuyama and Yoshioka' but the
second-order term (and in general higher-order
terms) does not. It appears that the calculation of
Fukuyama and Yoshioka does not represent a sys-
tematic perturbation expansion in powers of 8

It is useful to rewrite the shear modulus in terms
of the conventional dimensionless parameters I and
the filling of the first Landau level v =2mrcn, . We.
get

~/q„= r-'[A, (r)+vrA, (r)
+v I Ap(I )+ ],

where

Ao(I )= —2.65+0(I '),
A, (r)=o.54+0(r-'),

A, (r)= —o.78~0(r-') .

(4.2)

(4.3)
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Note that the coefficient of the O(I '} term in
Az(I') includes a constant part and a term propor-
tional to r„which we have assumed to be of order
unity. We can draw some conclusions from these
results although they will turn out to have a very
small range of validity. If the corrections to the
term in Eq. (4.2) of order v that arise from higher-
order diagrams and dislocations are small at
I =I, then the melting temperature will initially
increase as a function of v. This suggests that small
quantum fluctuations, in contrast to small classical
thermal fluctuations, stiffen the electron solid.

In the form in which Eq. (4.2) is written, the nar-
row range of validity of the expansion in powers of
v becomes apparent. Since I = 130 and I y I, v
must be extremely small for vt' to be small. This
restriction is typically much more severe than

cop Q( Qp which is also necessary. The appearance
of powers of vt in the perturbation series for p
about its classical finite-temperature value makes it
impossible (as mentioned previously) to expand p
uniformly in powers of I ' and v about the ground
state. There is, however, a way to get around this
difficulty. If both v and I ' are small (but with no
relation assumed between them), the contribution to
X from diagrams (a) and (b) should dominate over
those from all other diagrams. The self-energies X,
and Xb can in principle be evaluated from Eqs.
(3.24) and (3.31) as a function of v and I' without

expanding explicitly in either. (In fact it is also pos-
sible to consider cases in which cop is not negligible
compared to Q~, although this complicates
matters. ) The small parameter in this case is the
magnitude of the anharmonicity, which can be
roughly measured by the mean-square displacement
of an electron at R relative to its nearest neighbor
(NN) at R+Rzz.

5=n, ([u(R+R~~) —u(R)] } . (4.4)

It seems reasonable to assume (based on the suc-
cess of the procedure of Morf discussed in Sec. II
for the classical case) that the shear modulus in the
absence of dislocations is well approximated by the
zeroth plus first-order corrections [i.e., those from
diagrams (a) and (b}] as long as the first-order term
is small compared to po. A quantitatively good es-
timate of the melting temperature as a function of
1/B should then be possible in the regime where the
quantum corrections are small.

We finally consider the implications of the actual
numerical coefficients appearing in Eqs. (4.2) and
(4.3). In order for the second-order term v I' A2 to
be less than Ao, vt must be less than 20. For

1"=IM this implies v&0.15. In the absence of
more detailed calculations (such as that suggested
above), it is natural to guess that the characteristic
value of v at which the melting temperature will be
changed significantly from its classical value, is of
this order: v- —,. For a magnetic field of 100 kQ,
this gives n, -4)&10' cm —for densities lower
than this (or higher fields) a 2D electron layer (e.g. ,
in silicon inversion layers or GaAs-Ga Al~ As
heterostructures) is likely to crystallize at sufficient-
ly low temperatures. With a typical dielectric con-
stant e=-10 and an effective mass m*/m =0.1,
rs—- 10 at ns —-4&&10' cm —a factor of 3 lower
than what is believed to be needed for crystalliza-
tion in the absence of a field. ' With these parame-
ters,

10 2 3/2

~~ ~c (4.5)

The author wishes to thank R. N. Bhatt, and R.
Morf for useful discussions.

APPENDIX

In this appendix we briefly sketch a method for
numerically evaluating phonon matrix elements

QIC2 ' ' ' 0
V„' ' "(q) defined by Eq. (2.4) using a generali-
zation of Ewa1d's method. Following Bonsall and
Maradudin, it is convenient to rewrite V„ in the
form

and I =130 at T=0.5 K, which will be the charac-
teristic scale of the melting temperature. We note
that the smallest values of v achieved without the
inhomogeneities dominating the physics is
v-0. 3."

Fukuyama, Platzman, and Anderson' have per-
formed a Hartree-Fock calculation of the free ener-

gy of an electron layer in high magnetic fields.
They find an instability of the uniform density state
at a relatively high temperature to a charge-density
wave with lattice spacing primarily determined by
the Landau radius rather than the particle density.
While the location of phase boundaries by Hartree-
Fock is highly questionable, these calculations may
suggest the presence of short-range correlations in
the electron fluid. However, in the range of param-
eters considered in the present paper, the approxi-
mations of Ref. 19 will certainly not be valid, and
the lattice spacing will definitely be determined by
the density.

ACKNOWLEDGMENTS
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V„' "(q)

=( —1)" lim
x~0 g~

where

[e T(x, q)],
Bx

(A 1)

where erf and erfc are the error function and com-
plementary error function, respectively. Sums on R
of the second term in Eq. (A3) converge very rapid-
ly due to the Gaussian falloff of erfc for large argu-
ment. The first term in Eq. (A3) is equal to

iq. ( x —R )
iq—xg

R fx —Rf

1

fxf
mn2 (") - -22

e
—I"—Rt &dt

fx —Rf
[erf[(~ns)'

f
x —R

f ]
fx —Rf

+erfc[(trn, )'
f

x —R]I,
(A3)

(A2)

To get rid of the troublesome large-R behavior of
the sum in T ( x, q ) we write

and the sum on R in Eq. (A2) can be exchanged
with the integral over t. Poisson's summation for-
mula can then be used to rewrite the sum on R as a
sum on reciprocal-lattice vectors G. The integral
over t again yields an error integral; and we obtain

T(x, q)= g ~+@(pm,
f
x —R

f
)e ' "+gMn, +(

I q+G I'~4~n )'
R+0 6

+~n, 4(trn,
f

x f')—
fxf

(A4)

where rp(z) =(m. /z)'~ erfcv z falls off exponentially
for large z. The sums on R and G in Eq. (A4) both
converge very rapidly. The derivatives of T with

respect to x and the limit x~O needed to obtain V„
may be expressed in terms of derivatives of 4 or
equivalently in terms of simple functions and erfc
which can be computed rapidly numerically. The

resulting expressions, which are rather cumbersome,
we will not reproduce here.

In addition to V„(q), derivatives of V„(q) with

respect to q are needed in order to efficiently calcu-
ate the small-q behavior of the self-energy X. These
derivatives can also be evaluated from Eq. (A4) for
T(x, q).
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