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Two-dimensional frustrated Ising network as an eigenvalue problem
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The Pfaffian method is used to study the square frustrated Ising network. The formal-

ism is adapted in order to develop a relation with the problem of excitations in random al-

loys. It is shown that the counterpart of frustrated plaquettes are local modes within. a
band gap. Properties of the local modes are examined, including questions of gauge invari-

ance and duality. Numerical calculations are done to investigate the way in which the local
modes broaden into an impurity band.

I. INTRODUCTION

There has been considerable recent interest in the
square ferromagnetic Ising network in which a frac-
tion p of the bonds are replaced by antiferromagnet-
ic ones. The model represents the simplest frustrat-
ed system and it is thus supposed to be relevant to
the spin-glass problem. It appears increasingly evi-
dent however, that no spin-glass state exists (at least
at finite temperature) in two dimensions. A diversi-

ty of approaches has been used to study the system,
but it is still not fully understood.

Most of the early Monte Carlo work' predicted
a transition from ferromagnetic to spin-glass order-

ing for p near to 0.1. It has been argued that com-
puter experiments model a nonequilibrium situa-
tion, and more recent Monte Carlo calculations,
which attempt to overcome this criticism, indicate
that a spin-glass phase exists only at T =0.

There is disagreement between different real-

space renormalization-group results. Jayaprakash
et al. , for example, predict a transition to a spin-
glass state, while the work of Southern et al. indi-
cates that it is a paramagnetic state that occurs.
There is also dispute over the lower critical dimen-

sionality d, of a spin-glass. It is, however, quite
possible that d, =2.

Since the work of Toulouse, the concept of frus-

tration has been emphasized in discussions of the
random-bond system. This is the disorder associat-
ed with plaquettes rather than bonds that cannot be
eliminated by gauge transformations. Studies
which explore particularly the gauge-invariant as-

pects of the problem have been made by Fradkin
et a/. ,

' Kogut, "and Schuster. '

There have been various attempts" ' to con-
struct (essentially by hand) ground states of the sys-

tern, and to investigate the spatial extent of "pack-
ets of solidary spins" as a function of the concentra-
tion of frustrated plaquettes. In the references cit-
ed, the existence of a spin-glass ground state was in-

ferred, bemuse a proportion of the spins are locked
in a fixed relative orientation over the whole area of
the sample studied. In analogous work on the dilut-

ed triangular antiferromagnet, Blackman et al. '

also find an extensive region of locked together
spins, but employ evidence from a real-space
renormalization-group calculation to conclude that
the packets of solidary spins have a large but not in-

finite extent.
Mention should also be made of calculations'

on inhomogeneous but exactly soluble models.
Some useful results emerge including the sugges-
tion that fully frustrated systems form a univer-

sality class.
In the present paper, we investigate what contri-

bution the combinatorial or Pfaffian method '
can make to the understanding of the frustration
problem. This was one of the earliest approaches to
the pure two-dimensional (2D) Ising model, but the
formalism is also valid for the disordered system.
In this method the zero-field thermodynamics are
related to the behavior of the determinant of a skew

symmetric matrix. It is trivial to relate this matrix
to one that is Hermitian and, since the problem is
then expressed in terms of a matrix with real eigen-
values, an analogy exists with models of excitations
in disordered systems (e.g. , electronic tight-binding
alloy models). It is possible that some of the
methodology developed for excitation problems
could be useful in the present context. Although re-
lating the disordered. Ising model to the random-
alloy problem is not new, the connection has not
been made previously in the way described here. In
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particular the manner in which frustration mani-
fests itself in the present formalism is particularly
interesting.

In Sec. II, we give a brief summary of the com-
binatorial method and its reexpression in terms of
Hermitian matrices. The features of the eigenvalue
spectrum that are important in determining such
quantities as the specific-heat and pair-correlation
function are investigated. The frustration aspects
of the problem are pursued in Sec. III. It is shown

that there is a one-to-one correspondence between
frustrated plaquettes and localized eigenvalues

which appear within a band gap as a consequence of
the presence of frustration. The number of local
modes and the temperature dependence of their
eigenvalue near T=o are gauge-invariant quanti-
ties. Isolated defects and also small groups of de-

fects are studied with regard to their local-mode
behavior. In Sec. IV higher concentrations of de-

fects are examined numerically to investigate
impurity-band formation. The purpose of the paper
is to describe the formalism and to show that cer-
tain features of the local modes make them a more
attractive entity than the frustrated plaquettes with

which to study the 2D Ising system.

II. FORMALISM

II / ii o

3 ~

~ 1

4

FIG. 1. Section of lattice showing group of four points
associated with each site. Labeling of points displayed at
one of the sites.

the square lattice as in Fig. 1. D then comprises di-
agonal blocks U given by

0 1 —1 1

—1 0 1
U=

1 —1 0 1

—1 1 —1 0

(2.3)

U connects the four points within the group, label-
ing being counterclockwise as shown in Fig. 1. The
off-diagonal block of D connecting the group of
points associated with site i to the neighboring
group along the positive Cartesian x axis at j is —X,
where

The partition function for the nearest-neighbor

Ising model on an ¹itesquare lattice is

Z= g coshK; Tr ff (1+t; S;S )
. (ij& . . (ij&

(2.1)

0 0 tij 0

00 0 0
00 0 0
00 0 0

(2.4)

K; (=JJ/kT) is .the coupling between spins and
t j ——tanhKJ. The trace is over the 2 spin configu-
rations (S;=+1) and the products are over the 2N
pairs of nearest-neighbor sites (ij ). In the Pfaffian
method, the second factor in (2.1) can be written
diagrammatically as a sum over closed polygons.
Green and Hurst showed how this sum can be ex-
pressed as a determinant so that

InZ = g ln coshK, t +N ln2+ —,ln
~

D
~

.
j&

(2.2)

JD
~

is a 4NX4N skew symmetric determinant
sparsely filled with 4X4 blocks which either are as-
sociated with a particular lattice site or connect
pairs of sites.

Following Green and Hurst it is convenient to
associate a group of four points with each site on

000 0
oootj

~= ooo o
000 0

(2.5)

If j is a neighbor in a negative direction the ap-
propriate blocks are +X and +F, where tildes
represent transposes. Although the formalism was
originally presented for a perfect lattice, it is also
valid for any distribution of values of Jtj. Villain, '

for example, has used the method in his fully frus-
trated model.

There is some desirability in working with Her-
mitian matrices, if for no other reason than the pos-
sibility of developing correspondences with the

Similarly if j is the nearest neighbor in the positive

y direction, then the off-diagonal block is —I;
where
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problem of single particle excitations in alloys.
This is easily accomplished by multiplying each ele-
ment of D by i .Clearly ~D

~
is unchanged: It is

merely multiplied by unity (i ). We now replace
Eqs. (2.3)—(2.5) by

the density of states, pH(e}, associated with H,

lnZ = g lncoshK, J+N ln2
&ij }

1+ —, 1nepH(e)de, (2.10)

0 i —i i

0 t —t

—i 0 i

where the integrated density of states is now

~ ~ ~

~pH(e)dF. =4N. The relationship between the two
densities is

i —i 0
p(e) =AH�(e ) . (2.11)

0 0
X= 00

0 0

0 0
0 0
0 0

000 0
0 0 0 itj
000 0
000 0

00itj 0

(2 6)

It is straightforward to show for a perfect system

(JJ —J =const) that pH(e) has the step-function

discontinuity, e(e —eo) at the lower band edge, eo,

that is typical of excitation models in two dimen-

sions. The lower band edge has a parabolic tem-

perature dependence near the critical temperature:

eocc (T T, ) . T—he logarithmic divergence in the

specific heat of the pure Ising system immediately

follows using (2.10) and the standard relation

With these definitions, Eq. (2.2) is unchanged but D
is Hermitian. The eigenvalue spectrum is now real

and symmetric about zero (all odd moments of D
vanish).

In some contexts (e.g., numerical calculation) it

may be more convenient to manipulate real sym-

metric matrices. This can be achieved by working

with the square of D (H =D ), when (2.2) is re-

placed by

lnZ= g lncoshK;1+Nln2+ —,ln ~H
~

.
&Ij}

(2.7)

0 has the same block pattern as D and is real and
symmetric. The blocks are less sparse than those
appearing in D, however. H is positive semidefinite
and all its eigenvalues are doubly degenerate.

In terms of the eigenvalues ex of D, we can write

C =P'd'lm/dp'

where P= 1/kT.
It is instructive to show (Fig. 2) the spectral

bounds of D for the perfect system obtained by the
usual transformation to reciprocal space. There are

two bands which broaden as temperature decreases

and touch at T =0. The figure is reminiscent of di-

agrams appearing in introductory solid-state texts
to illustrate the formation of energy bands from

atomic energy levels as atoms are brought closer to-

ln~D
~
=2+»et, (2.8)

where the sum is over the positive eigenvalues. It is
then straightforward to write (2.2) in terms of a
density of states p(e),

lnZ = g ln coshK, J +N In2
&ij}

+ f 1nep(e)de . (2.9)

The integral is over e&0, and f p(p)dE=2N.
Equation (2.7) can be similarly written in terms of

0 I ~ 1 I I E 1 1 1

0

FIG. 2. Spectral bounds for perfect Ising system.
Horizontal axis represents temperature variation,
t =tanh(J/kT). N-fold —degenerate levels at T = ao are
at e=V2+1. Limits at T=O of the upper and lower
bands are, respectively, 2+ V 2, V 2 and ~2,2—V 2.
Critical temperature is at t =V 2 —1. The gradients,
de/dt, of all lines are +1.
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gether. Here temperature variation replaced atomic
separation. The weight of each band is N. The
lower bound reaches zero at T, . Two more bands
are symmetrically placed in the negative eigenvalue
region.

A further quantity one can obtain from this for-
malism is the spin-spin correlation function. Con-
sider two arbitrary spins S& and Sz. The pair corre-
lation function pi2 (= (S&Sz )) is given by

(2.12)

where
~

D
i

is the determinant defined earlier.

~

D*i is the determinant obtained from iD
~

by re-

placing the tj for the bonds in an arbitrary continu-

ous chain linking S& and S2 by their reciprocals

t,j '. The prefactor in (2.12) is just the product of
the t;i for the bonds in the chain. The equation for
the correlation function originates from an expres-
sion similar to (2.1) but with the inclusion of a
product of spin operators within the trace. One
thus has factors like

S;SJ(1+tiJS;Si) .

Rewriting this as

t;i(1+tj 'S;SJ),

the reason for the form of (2.12) becomes immedi-

ately apparent. Although the magnitude of p&2 is
determined by (2.12), it is necessary to return to
basic definition in terms of Pfaffians (Ref. 22) if the

sign also is required.
Following a similar development to that leading

to (2.9), we can rewrite (2.12) as

pi2 —— II &;, exp»«p(E)«, (2.13)
' &ij)

where Ap is the change in density of states that oc-
I

3i l

4

2

= l' ~ 1

FIG. 3. A single bond defect causes a perturbation as-
sociated only with points (l, 1) and (I', 3).

curs when the continuous chain of reciprocal de-
fects is introduced into the system. Clearly piq
must depend only on the positions of Si and Sq and
be independent of the path connecting them.

Let us consider the effect of introducing a single
reciprocal defect. This will determine nearest-
neighbor correlations. The basis states of the defect
subspace (see Fig. 3) are

i
1, 1) and

i
l', 3). D* is

obtained from D by a perturbation V that, within
this basis, is

0 —tv
V= (2.14)

Although we will not use the second form of (2.15),
we note for completeness that the two are related by

G(e') = —g(~)g( —~)

=(2e) '[g(~) —g( —e)] . (2.16)

The Green's functions can be evaluated by
transforming to reciprocal space in the usual way.
The particular ones required here are, in a notation
obvious from Fig. 3,

where U =(t ' t) and t =tan—hK. The change bp
in the density of states can be found by standard
resolvent Green's-function techniques, where
Green's functions for the unperturbed lattice are de-

fined as follows:

g(e)=(EI —D) ', G( 'e)=(e'I —H)-'.
(2.15)

g,,"=g,'.,' =w ' f f d8dg[e' e(3+2t co—s8+t')]If(e;8,P),
0 0

giI = giI' i~ f—f——d8dg[(3t 1 e)cos8+t—(t —+1 E )]lf(e;8,$)—,
0 0

(2.17a)

(2.17b)

where

and

f(e;8,$)=P —Q (cos8+ cosP) (2.18a)

gJ =gi I EtQ '(1 Ph——)+e(e —3 t )h, — —

(2.19a)
13 3f . 1

gll' = gl'I i
2 (E + 1 —3t2)Q '(1 ph)

P =e —e (6+2t2)+(1+r2)2,

Q =2r (e '+1—r') .

(2.18b)

(2.18c)
where

+ir(& +1—e )h (2.19b)

Equations (2.17) can be simplified into the follow-

ing form:
h =m f f f 'd8dg. (2.20)
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h can be expressed as an elliptic integral,
'2

h =2(nP) . 'E 2
P

(2.21}

This has a solution for all temperatures greater than

T, . The position of the local mode is plotted in Fig.
4. The second one occurs symmetrically at negative

A consequence of the reciprocal defect is the ap-
pearance of a pair of local modes in the band gap at
high temperatures. The local-mode condition is the
usual one, ~I —gV~ =0, where Vis given by (2.14)
and g here is the Green's-function matrix in the
same subspace. The local-mode condition written
out fully is

13 31 2 13 31 33 11
1 iu—(gll' gl I}+'U (gll'gl I

—gl I gll ) =0 .

(2.22)

T(n) V(n)(I V(n)) —1

The change in density of states relevant to (2.13) is

i).p= n(I—m T.-r(g T(")g),

which can be expressed in the usual way
" as

i)),p= ——Im ln
~

I —gV'"'
~

.1 d
7T

(2.25)

A useful relation for an arbitrary function F(e),
which is analytic everywhere except for a cut along
the real axis, is

facilitated if (2.13) is rewritten in a different form.
For a single reciprocal defect the subs pace
comprises two basis states (Fig. 3). If the spins S(
and S2 are separated by n bonds, then the corre-
sponding subspace is of size 2n. Let us denote the
perturbation and the associated scattering matrix by
V'"' and T'"', where

The scattering matrix of the single bond defect is
given by

00 d '(I7'f lnelm F(e)de= F(0)—.
de 2

(2.26)

T = V(I —gV) (2.23)

which has a pair of poles whose position is given by
(2.22). The change b,p in the density of states when
a chain of defects is present can be written

~p=gTg +gTg Tg + (2.24)

//
/

I
/

I
I
I

I
I
I

I
I

I
I

I
I

I
I

I
n

I I I I I I I I I

0 1

FIG. 4. Lower bound to eigenvalue spectrum for
pure system {solid line). Position of local mode for re-
ciprocal defect (dashed line). Position of local mode for
negative defect (dashed-dotted line) —this case is dis-
cussed in Sec. III.

There is a restricted summation in the nested g's as
all scattering at a single defect has been included in
(2.23). b p corresponds to the spectrum produced by
a linear chain of atoms with two energy levels per
site which are broadened by a long-range overlap
(the nested g's). As the length of the chain ap-
proaches infinity a finite density of states is pro-
duced at e=O which, from (2.13), causes p(2~0.

The actual calculations of the pair correlation is

This is easily obtained from the Kramers-Kronig
relations with the condition on the function that
ImF(e)in@~0 as e~O. From (2.25) and (2.26) the
exponent of (2.13) is rewritten as —,ln

~

I —gV'"'
~ o,

where the subscript indicates evaluation at e=O.
Thus,

p12 QI" ~I —gV'"'( ' 2

(EJ )

If g is the Green's function of the perfect lattice and
S1 and S2 are widely separated, the determinant in
(2.27) can be evaluated by the Kac-Szego theorem.

It is instructive to use (2.27) to retrieve the fami-
liar expressions for the nearest-neighbor correlation
functions. The determinant is now the left-hand
side of (2.22) evaluated at e=O. From (2.19), this
can be simplified to (1 ivgll ), an—d, denoting
—igI) by 613, we obtain for neighboring spins,

(2.27)

(S(S2)=tanhK +h)3sech E . (2.28)

h» is related to the function I, defined in Eq. (177)
of Domb's review. In particular, at T„
h 13 —(2W2} ', and so (S(S2 ) =2

III. FRUSTRATION

We consider how the eigenvalue spectrum is
changed when a single antiferromagnetic bond re-
places one of the ferromagnetic ones (J~—J).
Like the reciprocal defect in the preceding section,
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the negative bond also produces a local mode but, in
this case, in the low-temperature region (T&T,).
We can again use (2.22) to determine the local-mode
position; u is now equal to —2t. The position of the
local mode and its variation with temperature is
shown in Fig. 4. By expanding the quantities ap-
pearing in (2.22) in terms of exp( 2J/—kT), it is
easily shown that the local-mode eigenvalue ap-
proaches zero as T~O like exp( 2Jl—kT).

The necessity for the existence of the local mode
is immediately appreciated from a consideration of
the zero-temperature free energy. The first term of
Eq. (2.9) gives a contribution 2NJ t—o the free en-

ergy (there are 2N bonds). As a result of the
"wrong bond" that occurs in the single-defect sys-
tem the actual free energy is

FIG. 5. A single negative defect denoted by the
heavy line. If J'&3J, it is also the wrong bond in the
ground state. If J'&3J a state of lower energy exists,
for example, that in which slashed lines denote wrong
bonds.

I' = —2NJ+2J . (3.1)

—2J' —6Je =+—exp +5 exp
2 kT kT

(3.2)

Which term of (3.2) is dominant depends on wheth-

er J'$3J. If J'~3J, the antiferromagnetic bond is

the wrong bond in the ground state. If J'&3J, a
configuration of lower energy can be found. The
two cases are illustrated in Fig. 5. Clearly the
correct zero-temperature free energy is given by
(2.9) and (3.2). For the rest of this paper we restrict
ourselves to J'=J.

These singularities in the band gap are highly lo-
calized spatially. At T=O, we have a doubly de-
generate local mode at e=O, whose eigenfunctions
can be written in an obvious notation (see Fig. 6),

I&&=g '"(
I
l&+ I2&+ I3&+ I4&+ I5&

—I»+ I9&+ I
1o&)

I P ) =&-'"(
I
5)+

I
6) —

I
g) —

I
9)+

I
11)

—
f
12)—

I
13)—

f
14) ) . (3.3b)

(3.3a)

It is the local mode and its exponential temperature
dependence that gives the correction 2J through the
third term of (2.9).

We turn now to the more general case in which
one bond of the lattice, all of whose bonds have
value J, is replaced by one of value —J'. Again, ex-
panding the functions appearing (2.22) in powers of
small quantities, the temperature dependence of the
local mode can be obtained. The result is

Using this linear combination one obtains eigen-
values

e= + —,exp( 2J/k T)—
by first-order perturbation theory.

Various effects arising from groupings of nega-
tive bonds can be illustrated by means of Fig. 7.
The number of local-mode pairs for each configura-
tion is given in Table I, together with the tempera-
ture dependence

e a: +exp( 2rJ/kT)—
of each. Thus entry (e) indicates the presence of

ll=
)2&i

=13

ii]Q

2 ii o3

FIG. 6. Pair of frustrated plaquettes produced by
single negative bond t,'heavy line). Figures refer to label-
ing of basis states which contribute to local-mode eigen-
functions.

Note that the eigenfunctions are localized on the
perimeter of the frustrated plaquettes for this de-
generate e=O pair. The correct linear combination
to use as we move slightly away from zero tempera-
ture is

2 '~
( fa)+i IP)) .
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(a) ~

X

(b) x x (e) xlL
X X X

g n, =NF, (3.4)

where X+ is the number of frustrated-plaquette
pairs. If Ns signifies the number of wrong bonds,
it is clear, by generalizing the discussion leading to
(3.1), that

X

(g)~
X

pm„=Ng . (3.5)

(k) "I
X

(j)
X

X

FIG. 7. Some configurations of small groups of nega-
tive bonds (heavy lines). Crosses signify frustrated pla-
quettes.

TABLE I. Number of local-mode pairs for various
configurations of negative bonds. Configuration letters
refer to labeling in Fig. 7. r is the integer appearing in

exp( —2rJ/k T).

Configuration
Number of

1oca1-mode pairs

I

2
1

2
2
2
1

1

1

1

I

I

1,1

2

I, I

2, 1

22
2
2
3
I

2

two local-mode pairs, one varying like
+exp( 4JlkT—) and the other like +exp( 2J IkT—).
Note that, as far as (2.9) is concerned, only one
member of the pair is relevant.

Apart from cases where a wrong bond lies on the
boundary of a finite sample, the boundary does not
affect the number of local modes present or their
eigenvalues or eigenvectors as T~O. Indeed wheth-
er the configurations in Figs. 7(a) —7(i) are isolated

small samples or are embedded in large lattice is ir-

relevant for the particular considerations summa-

rized in Table I.
Table I provides examples of two general rules.

It will be noticed that the number of local-mode
pairs is equal to the number of frustrated-plaquette
pairs. Let n, denote the number of local-mode pairs
whose temperature dependence is exp( 2rJlkT). —
Then

The rules (3.4) and (3.5) also apply for a finite
sample with negative bonds lying on the boundary.
Examples are (j) and (k) in Fig. 7. In (j) the outer
boundary is a closed ring with one unsatisfied bond
and the region exterior to the sample should be re-
garded as equivalent to a frustrated plaquette. We
thus have one frustrated-plaquette pair and one
wrong bond which leads to consistency between the
entry in the table and the above rules. In case (k),
the exterior is not frustrated. We have an internal
frustrated plaquette pair, but two wrong bonds.
Again there is consistency.

It is worth noting that a complete set of T=0
local-mode eigenvectors can be generated by inspec-
tion. As in the single-defect case [Eq. (3.3)] a con-
venient set can be defined, each member of which is
associated with the perimeter of a single frustrated
plaquette. The completeness follows from the one-
to-one correspondence between frustrated plaquettes
and local modes. The temperature dependence of
the local modes, exp( —2rJ/kT) near T=0 can be
obtained by perturbation theory. If r =1, first-
order perturbation theory within the local-mode
basis suffices. If r+1, then a higher order is neces-
sary involving states in the continuum.

It has been emphasized ' that it is generally pos-
sible to realize a particular configuration of frus-
trated plaquettes with several different distributions
of negative bonds. The frustrated-plaquette config-
uration is a property which is invariant under gauge
transform ations. Not surprisingly this gauge-
invariant property extends to the local modes. Dia-
grams (g) and (h) of Fig. 7 are related to each other
by a gauge transformation, and it will be noted that
the corresponding entries in Table I are identical.
The gauge invariance of the number of local-mode
pairs and their temperature dependence near T =0
is a general result.

We complete this section with some observations
relating to duality transformations. Because of the
self-duality of the square lattice, the properties at
high and low temperatures are related by such a
transformation. ' A coupling E has a dual K*,
the relation between which can be expressed in vari-
ous equivalent ways, for example,
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sinh2Esinh2E* 1 (3.6a)

p(2K*) =cothE . (3.6b)

&f all ththe links are positive th
quite straightforw

ansformation js
Consider

links ~hich have b
.

Ow the negative
e een introduced

d'"""h' b Ey ~
———E. In order

it can be seen th E*
ten as K*, =E~+i 2

at „the dual of K m&, must be writ-

+i' 2 there are eqm
in efs. 10 and 2

0.15

020—

1

\
\

I

26

tanhE i
——(tanhK*)

It is immediediately apparent that the local

to
negative derects at T & T ar

eciprocal defects at T
ality transformation.

Useful relationtionships can be establish
f *i h„

d lit
i ion unction obtained

ormation, then

Z Z~

g( o h2K)'~ g( o h2K* ' (3.7)

0.00 i ' i
0.0 0.8 0.4 . . 12.4 0.6 0.8 1.0 12

FIG. 8. Soli
'

s oo ] line represents bo r
bound of puree system and the sin le-

s oth lower spectr 1

g - I

h
' 1' f'

r igures. e refers t
h h D dK==J/k T. Lowernf-=

(dashed line) and 0 25

'
s o impurity" band s

dotted line).

The rp oducts are over all 1' k t i duas

lDl d'an itsdual ID
e-

l
D*

l
1+t*'

lD Ij.
bonds 1+t

(3.8)

where t =ta,"~nL~ and t*=tanhK~.
It should be emphasized that a loca

y antiferroma neti
f

fo T . b,l,
"'T '"""" ~ g

e ow „and its ositi
.i ecreasin terng p
at T=O. What is c

1 1

at is characteristic of

proach to zero as T~
o e in the rustration case is its ap-

the recession of th he ost band w
the eventual domination by the im
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for the largest sample are shown in Fig. 9. The
sample size was 50' 50 and the method used was a
block Lanczos routine developed by Scott for
sparse symmetric real matrices. The minimum in
the spectrum, which is a feature of the host band,
disappears at between 4%%uo and 5% of defects. The
value of e at the lower bound is dependent on sam-

ple size. The presence or absence of a minimum at
a particular p is independent of the size of the sam-

ple, however.
There appears to be some sort of crossover from

host-band-dominated to impurity-band-dominated
behavior at about 4.5/o of antiferromagnetic de-

fects. This observation is consistent with certain as-

pects of the Monte Carlo calculations of Morgen-
stern and Binder. They found a well-defined

specific-heat maximum coinciding with the transi-
tion temperature for values of p below about 5%.
Above 5% a broader maximum was obtained, but it
was not one that coincided with the transition tem-
perature.

Clearly, to explore these matters further with the
use of the present approach, one needs to study the
density of states. Consideration should be given to
band-tailing effects. These would be important, for
example, in the rounding of the logarithmic
specific-heat singularity as frustration is introduced
into the system.

V. CONCLUSIONS

The purpose of this paper has been to explore a
formalism that relates the disordered 2D Ising sys-
tem to the random-alloy problem in what is prob-
ably a more explicit way than has been done previ-
ously. A very instructive result of the approach is
the mapping of frustrated plaquettes onto local

modes. These have a characteristic behavior in the
low-temperature limit that reflects the correction to
be made to the internal energy because of the pres-
ence of wrong bonds. Questions of gauge invari-
ance and duality have been considered. Apart from
any insight it might provide, there are certain ad-
vantages in the present approach in comparison
with those which study the frustrated plaquettes
directly. For example, temperature is included in

the specification of the local Inode itself. Further-

more, no difficulty arises if the bonds within a pla-

quette differ in their magnitudes; again the local

modes can encompass this subtlety.
We also considered higher concentrations of de-

fects at which impurity-band formation becomes
apparent. Using a somewhat arbitrary, but
nevertheless reasonable criterion, we estimated that
there is a transition from host-band- to impurity-
band-dominated behavior at about 5%%uo impurities.
Consideration of various ramifications of this for-
malism are currently in progress.
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