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There exists a variety of compounds consisting of two (or more) interpenetrating incom-

mensurate lattices, e.g., Hg3 ~AsF6, tetrathiafulvalene iodide (TTF-I„), Nowotny phases.
In such materials one expects new hydrodynamic modes associated with a broken transla-
tional symmetry. We examine a continuum model of these excitations which appear as.
"extra" acoustic modes. We consider the case of Hg3 qAsF6 explicitly and find a set of
"generalized" elastic constants which violate conventional rotational symmetry relations in

agreement with existing experiments. At high temperatures there are five acoustic modes;
at low temperatures there are four in this material. Owing to the liquidlike properties of
this material certain modes become purely dissipative in some propagation directions.

I. INTRODUCTION

Among the various types of incommensurate sys-
tems' one of the conceptually simplest is that which
we will term intergrowth compounds. In their sim-

plest form they consist of two or more regular inter-

penetrating sublattices with lattice periods which
coincide (or are commensurate) in some direction(s)
and not in others. It is often helpful to think of one
sublattice as the host or receptor lattice into which.
the second grows. If the host sublattice has linear
channels they can be filled with atoms or molecules
which can be accommodated into the channels. We
call these linear intergrowth compounds and the
two sublattices may be incommensurate along the
channel direction (Fig. 1). Hg3 sAsF6, many salts
of planar organic cations with iodine [e.g.,
tetrathiafulvalene iodide (TTF-I» }], and various

binary alloys with the so-called Nowotny structure
are examples. If the host lattice has a layered as-

pect, they may form regularly staged "sandwich"

compounds with appropriate intercalants. We call
these planar intergrowth compounds and the two
sublattices may be incommensurate along both or
only one of the planar directions. For example, gra-
phite forms planar intergrowth compounds with a
variety of intercalants.

The purpose of this paper is to investigate the na-

ture of the long-wavelength excitations in such sys-

tems. In general there may be more than three
acoustic modes. Consider for instance the simple
intergrowth compound made up of two sublattices
(Fig. 1},with average periods a and b, respectively.
Because of the interactions the two lattices A and B
modulate each other and the equilibrium positions
of the atoms in the incommensurate z direction may
be written generally in the form, '

z„"=na+u,"+f(na+u," u~),—

z =mb+u, +g(mb+u, —u,"),
with f(x+b)=f(x); g(x+a)=g(x). For weak
enough interactions, and far enough away from
commensurability, f and g are continuous analytic
functions and the energy of the system remains un-

changed when the "phase" v, =u,"—u, is varied.
There is thus a continuous symmetry associated
with v, and we therefore expect a gapless mode as-
sociated with periodic modulations of this variable.
Note that a uniform shift of u,"—u, does not indi-
cate a uniform shift of the atoms since the func-
tions f and g generally are not constants; on the
other hand, the simultaneous shift Q,":Qz Qz

gives a uniform displacement of all atoms in both
systems. The gapless mode associated with this glo-
bal translational symmetry is the usual
longitudinal-acoustic phonon. If the lattices are
charged the situation is more complicated. When
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u, is shifted relative to u, there will be a restoring
electric force and the mode will acquire a gap as has
already been pointed out by Theodorou. There is
no continuous symmetry associated with relative
displacements of chains in the perpendicular direc-
tions, and the corresponding modes will have a gap
(normal optic modes).

The plan of the paper is as follows. In Sec. II a
general formalism will be outlined. Expressions for
equations of motion and the resulting dynamical
matrix will be derived. The general effects of long-

range Coulomb interactions in screened metals and
insulators will be investigated. In Sec. III a simple
uniaxial example is studied. The theory developed
here may apply to Nowotny phases as found in

Mn„Si~. Since this compound has low conductivi-

ty there may effectively be a gap at long (but not
too long) wavelengths. Acoustic and optical experi-
ments are suggested.

In Sec. IV the theory is applied to the mercury
chain compound Hg3 ~AsF6. Several experiments
have been performed on this material. ' " Above
a critical temperature T =120 K the mercury
chains form a liquid and the theory must be slightly
modified. Propagating acoustic modes become dif-

fusive along certain symmetry directions. There are
in general five acoustic modes. A simple relation,
involving atomic masses only, is derived for the re-

lative velocities of some transverse modes. The re-

lation replaces the conventional rotational invari-
ance condition and is in good agreement with neu-

tron scattering results of Heilmann et al. ' Below

T, there are four acoustic modes; the fifth mode ob-

tains a gap which develops as QT, —T within Lan-

dau theory. Optical measurements (Brillouin
scattering) and further neutron scattering experi-
ments are suggested to check our predictions.

II. LONG-%AVE LATTICE DYNAMICS

In order to discuss the long-wavelength, low-

frequency excitations it is sufficient to consider two
interpenetrating elastic continua. ' (The extension
to three or more components, when the need arises,
is obvious. ) We begin by specifying the energy re-

quired to elastically deform the material in terms of
the vector displacement fields u'(r) of the two
media and their spatial gradients,

Bpu' =(Bu'/Brp) .

tional and rotational invariance, since additional
point-symmetry restrictions must be analyzed
separately for every case. For convenience we
separate the potential,

Uv= U~+ UE+ Uc, (2.1)

and discuss each separately. Uc is due to (possibly
screened) Coulomb interaction. UD (Ug) is that
part of the remaining interaction associated with
uniform (spatially varying) displacements.

A. Ug)

This can depend only upon relative sublattice dis-

placements so we can write at once,

UD ———,
' fd r g Dgpu

'
u$

aP

= —,fdr gD p(u' —uj )(up —u$), (2.2)
aP

so that D~~=D~~= —D~ = —D ~=D. D is a
symmetric (3 X 3) matrix.

By hypothesis the two sublattices are incommen-
surate in at least one direction, which we choose to
be z. By arguments of the preceding section UD

must also be form invariant with respect to the rela-
tive displacements u, = —u, =U', i.e.,

UD(u A+U 5.,, upp Uhp, , ) = UD—(u A, upp) .

This leads to the requirement QD,p(up —up)=0
which can only be satisfied for arbitrary (u"—u )

if D,p Dp, ——0 for all ——P. If the media are incom-

mensurate along two crystallographic directions it
will be possible to freely translate the sublattices re-
latively in a plane (for example, y —z) containing
the two incommensurate crystallographic direc-
tions. By exactly similar arguments we find in ad-

dition D„p Dp~
——0. Final——ly if the structures are

triply incommensurate, if indeed such structures ex-

ist, the one remaining element D~ vanishes. To
summarize, the energies associated with rigid
translations are specified by a (3 X 3) symmetric ma-
trix D~p which (aside from requirements imposed

by point-group symmetry) has one null row and
column for every degree of incommensurability.

B. UE

[i =(A,B) denotes the sublattice, a =(x,y, z).] In
this section we consider explicitly only those addi-
tional constraints that follow from global transla-

This contribution has the general form,
~ ~

Ug= i fdr gkjrpxBru Biujj
aP

(2.3)
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which is the same as for conventional elasticity, but
the constraints imposed by global rotational invari-
ance are relaxed due to the presence of two sublat-
tices. To investigate this decompose Byua into
strain and rotation matrices, which are, respective-

ly, symmetric and antisymmetric,

(36), for d" and d (18), for f (6). Of course the
number of constants may be further reduced by
point-group symmetry. It is only necessary to note
that cay and co y transform differently under proper
and improper rotations.

i l
~y"a =&ay+ay B

where

(2 4) C. Uc

—
COy CO~ 0,

(2.5)

and (co„,co„,co,} is the axial rotation vector
Br =co)& r. Equation (2.4) can be immediately
rewritten as follows:

p;(r )=p;(1+V.u'(r )),
or in terms of Fourier-transformed variables,

(2.10)

At long wavelengths and low frequencies it is suf-
ficient to treat the Coulomb interaction in the elec-
trostatic approximation. Suppose the two submedia
have charge densities o.;=z;p; where z; is the charge
per unit mass and p; is the mass density. For the
perturbed medium we have

with

+~I.flj,+1] (2.6)
p;( )=v '~'g p;(q) '

p;(q)=P;[5qo+iq u(q)] .
(2.1 1)

kaypx (c +d +f )aypx ' (2.7)

Since Ug can depend only upon relative rotations of
the two media we also have

The Coulomb interaction is

ZZ
UP= fdr p;(r)PJ(r)

UBt= —fd r g [ e'c'& ej+e'd'(a)' roj}— = —,QU;;(q)p;(q)p, ( —q)

(2.8)

= —, g UJ(q)gq qpu'(q)u$( —q),
q~ aP

(2.12)

and on comparing Eqs. (2.7) and (2.8) the general

symmetry properties are as follows:
(a) For c'J, d'j and f'1 (and thus for g'J},

ij ji
~aypA, =~p Xay ~ (2.9)

V &J iJ &j(b) caypx =cyapx =caypp =cyaxp

(c)
ij ij ij ij

daypA, =dyapk, dayxp = d kpya~

i
8gypp —0

(d) fAA fAB fBA fBB f
ij ij ij ij

faypx = fyapx = faye =fyaxp ~

faapx =faypp =0

These conditions restrict the number of independent
constants as follows: For c""and cBB (21), for c"B

where PJ is the electrostatic potential of the jth sub-
lattice. For U;~ we will take a simple isotropic form,

4~a&J
U;, (q)=

eo(q +A,, )
(2.13)

with a Thomas-Fermi screening length,

A,,=(4ne eo 'n, /kBT)'~

for a nondegenerate electron gas,

A,, =(6neeo 'n, /EF)'.

for a degenerate electron gas. A,, goes to zero as

n, ~0 and Eq. (2.13) is thus qualitatively correct
for both free- and bound-electron response. (eo is
the "bare" response of the composite medium. ) In
Eq. (2.12) q =0 is excluded because of charge neu-

trality. The form of Eq. (2.12) reflects the well-

known fact that only longitudinal fluctuations are
electrostatically coupled.
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w' (q) =~p;u' (q),
they take the form

n1 w'(q)= g(p;pj) '~ M'Jp(q)wpj(q) .
jp

(2.14)

(2.15)

The q dependence of M(q) is quite different de-

pending upon the presence or absence of free elec-
trons. For bound-electron systems (n, =0),

r

M.'Jp(q)= D.",+A,'J

The equations of motion are easily derived given
the potential U =g U'~. In terms of Fourier-
transformed "density-weighted" variables,

tor where q «A, -do '
(do being a typical atomic

spacing) the Coulomb term serves only to renormal-
ize the short-range elastic constants A,'J. As is fami-
liar in conventional elasticity both q & A,, and q & A,,
regimes may be valid for lightly doped materials in
which case additional dispersion occurs as the elas-
tic behavior passes from metallic to insulating.

III. A UNIAXIAL EXAMPLE

Consider the case where both sublattices have
uniaxial symmetry with the unique axis coinciding
with the common (p = 1) incommensurate z axis (as
in Fig. 1). To further simplify the expressions we
assume elastic isotropy in the x-y plane (hexagonal

D6s symmetry). There are two invariants bilinear in
the displacements u:

qrqA,
+q X~-rpx

ra q

where AIJ=4zro;ojeo ', while for n, +0,
M'Jp(q) = (O'Jp)

2 tj ~J

+q g(A, rP2+Af5 r&P2, )

. rA q

(2.16)

(2.17)

—,D„"„"[(u„")+(u") ] and —,D""[(u,") ],
and similar terms involving D~~ and D~~. There
are five invariants bilinear in the strains e~& (analo-
gous to the bulk elastic constants):

z C1 [(Exx+eyy ) ], C13 [(exx+Eyy )6 ]z~z

AA[( A A )2+4( A )2] AA[( A)2]

and
~ ~

where Af ——4m 0;ojeo /(q +&,).
The rigid displacement matrix D can always be

diagona1ized by choosing optic and acoustic modes,

(2.18)

Suppose there are p directions along which the sub-

lattices are incommensurate (a p-fold incommensu-

rate structure). Diagonalizing D shows that there
will be a q =0 energy gap for all the optic modes
with displacements perpendicular to the incom-
mensurate directions. These (3—p) modes can be
omitted from further discussion. (Through elastic
interactions they produce corrections to the remain-

ing mode velocities of order

[1—(cq /cos, p)]' ~0
as q~O. Here c is a typical elastic stiffness. ) The
three acoustic modes and remaining p optic modes
constitute the (in general coupled) "slow" or hydro-
dynamic degrees of freedom. ' Note, however, that
the optic-acoustic mode transformation does not di-

agonalize the Coulomb interaction, which for insu-
lators contributes an additional q =0 longitudinal
stiffness [Eq. (2.16)]. As a result additional q=0
gaps open in the p optic branches except for trans-
verse propagation. By contrast for a good conduc-

—,c3 [(~ )'+(ey", )2].

There is one invariant linear in g ~~,
AA

d44 (~xz~xz+eyzn1yz) ~

and two invariants bilinear in ~,
f A[( A )2+( A )2]

1fAA[( A )2]

A
Z0

ZA ZA
2

A

n

(&Cb Cb 00 C 006 66 66 6SS SS 60 0 0 0 0 0 0"()6 66 66 6SS SS 60 0 0 0 0 0 0
(9(P @6 66 @ 66 66 6

I I I

ZB ZB ZB ZB
0 2 m

FIG. 1. Uniaxial intergrowth compound. The posi-
tions z„" and z for the two sublattices are given by (1.1)
with u,"=u, =0. Sine functions were chosen for f and g.
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and
fAA AA

There are again similar terms in c,d",f" andc,d,f . The corresponding Coulomb terms
with the same symmetry exist and can be written by
inspection.

First consider the q~O modes. When Eq. (2.15)
is diagonalized by the ( u", u )~ ( u, v ) transforma-
tion the acoustic-mode frequencies vanish and the
optic modes are given by

D& +Aqj —pcs
2

Aq~~qz

D] —pN

Aq~~q,

0

Aq
~~

—pro

=0, (3.1)

ql ql I q I
and q~~ =q~~ I q I

are the com-
ponents of q parallel and perpendicular to z, and

P=PAPa(PA +Ps)

is the reduced mass density. We assume the two
sublattices are polar and insulating (oA = —0~ ——o),

2= 2 2
co~ =aqz+fq~~ . (3.2)

The remaining variables are coupled for a general

propagation direction and are solutions of the fol-
lowing secular equation:

in which case A=4no eo ', otherwise A=0. If
A+0 the behavior of the q=O modes depends
upon the direction along which q —+0 as shown
schematically in Fig. 2. There is a mode with dis-
placements Uz perpendicular to the scattering plane,
with a frequency co~ independent of q. The remain-

ing two modes are linear combinations of U~~, uj and
there are two distinct cases [Figs. 2(a) and 2(b)] de-
pending upon whether D~ & A or not. One of these
additional modes is gapless only when q is perpen-
dicular to the incommensurate axis. ' For nonpolar
or conducting media the behavior at q~0 is not
singular, and the U, mode is gapless for all propaga-
tion directions.

Now let us investigate the nature of the four slow
variables u„, uz, u„and u, at finite q. u~ is decou-
pled and has a frequency given by

~x

(a +b)qg +fq
~~

—co

dqllq

d q~~qy

dqllq

eq
~ ~

+fq j.

'qfii+f'q~

d qiiqi

e q~~+f qf

+f' q', +A(q)q~~ —~'

=0. (3.3)

The constants (a, b, d, e,f) can be evaluated from the
invariant forms in a straightforward manner. These
are the bulk elastic constants [divided by

pT =—(pA+ps)] and involve only the sums of the
strain couplings, c'J. In fact only the term diagonal

(a)

D, +A

2
(dy

D

q llx qllz q llx q ll z

DIRECTION IN x-z PLANE

FIG. 2. q =0 mode frequencies off a uniaxial polar in-
commensurate insulator. The gap vanishes only for the
transverse propagation direction. There are two cases:
(a) large mechanical forces, D l g A, and (b) large
Coulomb forces, A gD&.

(f+f")+[(f f")'+4f']'"—
2

(3 4)

equals that of the transverse mode with qIIz, for
which U =f.

It should be possible to look for the existence of

I

in v, contain the rotational couplings, d'J and f'J.

A( )q=[4mcr /eo(q . +k, )]

is the Coulomb term described in the preceding
paragraph.

The equations of motion given in (3.3) are further
simplified for propagation along and perpendicular
to the z axis, in which case the u, mode decouples.
The phonon dispersion is shown schematically in

Fig. 3, for the polar insulating case A(0)+0. Note
that the Cauchy relation which would require that
the transverse-mode frequencies of Figs. 3(a) and

3(b) be the same fails trivially in the sense that there
are two modes with valid claims to be transverse-
acoustic modes when pl z. Furthermore neither of
these velocities,
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(aj

qllz q ll x

FIG. 3. Phonon dispersion for a uniaxial incommensu-
rate polar material. (a) q along unique axis. (b) q perpen-
dicular to unique axis. Subscripts indicate displacement
direction.

these extra acoustic modes in intergrowth coro-
pounds by ultrasonic and/or light scattering tech-
niques. Of the materials mentioned in the introduc-
tion, the Nowotny phase alloys (e.g., Mn„Si~) are
attractive both because of the relatively simple
tetragonal structure and because the materials are
semiconductors and thus offer the possibility of
plasmon-related dispersion in the longitudinal
modes propagating along the c axis. Another exam-
ple of such a system with tetragonal symmetry is
the organic salt diethyldihydrophenazonium
1od1de.

IV. AN EXAMPLE WITH NEW FEATURES:
Hg3 qAsF6

FIG. 4. Structure of Hg3 qAsF6. The Hg atoms on
the chains are shown schematically. Above 120 K the
Hg atoms form a fluid with no long-range order.

A. Acoustic modes in Hg3 5AsF6,
TQTg

The compound consists of three lattices: one

(AsF6) with three-dimensional positional order and

two mercury chain lattices with two-dimensional

order of the chain positions but no ordering in the
third direction. The continuous symmetry of the

Hg liquid has thus been broken in the two perpen-
dicular directions for each lattice. In a sense, the
structure is similar to a "smectic-A" liquid crystal
where the continuous symmetry is broken in one
direction but the system remains fluid in the two

The structure of the mercury chain compound

Hg3 sAsF6 is formed by a body-centered tetragonal
lattice of AsF6 anions through which pass two
nonintersecting orthogonal arrays of mercury ca-
tions parallel to the basal plane edges of the AsF6
host lattice (Fig. 4). At high temperature the mer-

cury atoms form an incommensurate" liquid with
no long-range atomic positional order, but at
T, =120 K there is a phase transition into a struc-
ture where the mercury chains form an incommen-
surate ordered lattice (Fig. 5).

The theory naturally splits into two parts: one
which is valid above T, and one which describes the
properties below T, . Since the formalism derived
so far applies to solid phases only it has to be slight-

ly modified above T, where the mercury system has
some liquid properties.

[Ilo]

(Z=O) (Z= I/2)

Hg CHAINS )) [IOO]

(Z= I/4) (Z=3/4)——0——Oi ———
Hg CHAINS )) [OIO]

a„

FIG. 5. Ordered structure of Hg3 qAsF6 below 120
K.
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These terms give the potential energies associated
with relative displacements of the three lattices and
involve only coordinates associated with broken
symmetries. In the 9X9 dynamical matrix, (4.1)
determines (together with the appropriate masses)
the gaps of four "fast" optic modes. There are thus
9—4=5 slow acoustic modes. Near q =0 the terms
in (4.1) force the perpendicular displacements of the
chains to follow the AsF6 lattice for the acoustic
modes

x
Qy =Qy

y A
Q~ =Q~ (4.2)

Qg =Qg =Qgx y A

At this point we could in principle proceed as in
the preceding section, introducing center of mass
modes u and modes v for which the center of mass
is at rest. However, for reasons which become clear
later we shall choose instead the following coordi-
nates which are orthogonal to the optic modes at
q=0:

A- x
uy —

z (uy +uy ),

perpendicular directions.
Now, let u„", uy, and u," denote displacements of

the AsF6 lattice in the x, y, and z directions (defined
in Fig. 4), respectively. Similarly, let u„",uy, u," and
Q„",Qy, Q, be the displacements of the two mercury
lattices. The coordinates (uy, u,"), (uy, uy),

(u„",uy, u,") are all ~sso~iat~d with broken sym
metrics, but the coordinates u„" and uyy are of a dif-
ferent nature. They describe translations along
chains of Hg mass density, and their gradients
describe mass-density fluctuations rather than
strains of a mercury lattice. We shall see that this
leads to diffusive modes along certain directions.

Following the program defined in Sec. II we first
construct the terms Uz in the expansion of the po-
tential energy which depend on uniform sublattice
displacements:

+ —,D""(u,"—uy)2 . (4.1)

in the z direction, u„describes displacement of the
AsF6 and the y chains in the x direction, and Qy is
the displacement of the AsF6 lattice and the x
chains in the y direction.

Our task now is to form the most general biqua-
dratic form in the gradients of the hydrodynamic
variables defined above. The potential energy is in-

variant under the tetragonal point-group operations.
We define the symmetric pseudostrains,

6 p
=

2 (B up+Bpu ) IK,P=x,p,z, (4.4a)

1

e p
———,(B wp+Bpw )

1

E'~ z =
2 B@wa'

IZ ~P =»3' ~

(4.4b)

—,c»[(e" ) +(eyy) ],
A

—,C33(e )

A A A
C12~xx~yy ~

A A A A
C 13(exx+eyy )Ezz ~

2c 66(exy )

2C4z[(e" )'+(6'y", )'] .
(b) Three invariants in 6:

(4.5a)

—,CII[(exx) +(eyy) ],
B 8 B

C 126xx

2C66«xy)'

(c) Four invariants which couple e~p and E~p..

(4.5b)

and pseudorotations,

copy =
~ (Bpuy —

Byup )

1

xy
=

2 ( B» Wy
—By Wx ) .

The elastic energy does not depend on the rotations
and e, separately, but only on the combinations

8 A 8 A 8
(~Oyz —

&yz )~ (xz —&xz )~ (pixy —
O3»y )

The combinations az, ——eyz& zz E'zz and 6)zy 6zy

describe global rotations around the x, y, and z axis,
respectively. Group theoretical considerations
based on these symmetries lead to the following in-

variants in the expansion of the potential energy.
(a) Six invariants in e~p. They are the usual in-

variants in tetragonal systems:

(4.3)

Wy =Qy .
Here, Q, describes displacement of the whole system

AB A 8 A 8
C I I (exx exx +eyy &yy ) ~

AB A B 8 8
C I2 ( &xx&yy +&»x &yy ) ~

AB A 8 8
CI3 [Ezz(&xx+eyy )] ~

AB A 8
~66&xy&xy .

(4.5c)
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(d) Three invariants coupling rotations with rota-
tions and strains:

AB A A B A A B
44 [exz(xz exz)+eyz(~yz eyz)) ~

2fAB( A B )2 (4.5d)

2fAB)( A B)2+( A B )2)

The relevant part of the kinetic energy density T is

&= —,(P~+ —,PB)u + —,(P~+ —,PB)uy,

+ 2 (pg+PB)u2+ 2 ( 2 pB)W„,

+ —,( —,PB )wy, (4.6)

where p„ is the mass density of the AsF6 lattice,
and pB is the mass density of the Hg system. Note
that the mass associated with the w modes is half
the mercury mass; the mass associated with the u,
mode is the total mass, and the mass of the u„and

I

B AB AB ~AB ~AB
c66 =c66 =c44 =i 66 =J 44 =O ~ (4.7)

This is the point where the choice (4.1) simplifies
the calculations. Using the standard coordinates
defined in Sec. II the simple condition (4.7) would
be replaced by much more complicated relations.

The dynamical matrix becomes

uy modes is that of the AsF6 lattice plus half the
mercury mass.

The dynamical matrix D may be derived from
(4.5) and (4.6) in the usual way. The general prob-
lem of finding the normal mode frequencies,
D(oi)(u xuy, u„w xwy)=0, is Prohibitively comPli-
cated. However, the problem is greatly simplified
by the extra constraint that since the mercury
chains form a liquid there can be no elastic energy,
or restoring force, from shear strains, By,w„B„,wr
in the Hg "lattice, "hence

ux
2 A 211'+ 66qy

A 2
+C44qz

—(P~ + 2 PB )oi

uy

(C i 2 +C 66 )qx qy

2 A 2
C11qy +C66qz

A 2
+c44q,

(Pa + PB )—oi

uz

(C i3+C44)q„q,
A A

A
(C i3+C44)qyq,

A 2 A 2 2
C 33q +C 44 (q„+qy )

(P~+PB)~—

AB 2
11 x

AB
C12 qgqy

AB
C13 qxqz

Ny

AB

AB 2
C11 qy

C13 qzqy

B 2 ~ 2 Bq„—2 pBco c12q„qy

B 2 ~ 2
c11qy —

2 p

The matrix is symmetric and only the upper right triangle is shown. In special directions it is possible to
derive explicit expressions for the normal modes. For instance, in the b, (100) direction (qy=q, =0) the
dynamical matrix becomes

2
Ciiqx —(P~+ 2PB)oi

uy

c66q» (2 PB+p~ )ro—2

C44qx2 (PA +pB)oi

AB 2

B 2
C 11q — pBCO

Ny

1

2 pBN

The normal modes are as follows:
(i) Two longitudinal modes involving u and w„.

The modes are mixed because of the cii term
which couples density fluctuations in the x chains
to strains in the AsF6 lattice plus y-chain system.

I

Emery and Axe' have analyzed the spatial fluctua-
tions of the Hg atoms along the chain as derived
from neutron studies ' and showed that they are
liquidlike. Good qualitative agreement (-10%%uo)
was obtained with the assumption that the mea-
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sured modes are purely of the w„(or w~} type.
However, in principle the Hg fluctuations involve
both (coupled) u and w modes. It is possible that
this may contribute to the remaining discrepancy
between theory and observation.

(ii) Transverse mode polarized in the z direction.
Its velocity is

u(&„~}=l(c44~(pA+pB}] ' . (4 8)

(iii) Two transverse modes polarized in the y
direction. The uz mode and the m~ mode are,
respectively,

u(&L„~}= [c6s ~(p~+ ,pa)]'"—,

u(Tz~, b, )=0. — (4.9)

(ii) Two degenerate u„, u~ modes,

u(&L A }=[c44~(p~+—,pa)l'" (4.10)

(iii) Two degenerate transverse w„, w~ modes,

u(T2, A)—:0. (4.11)

Note the relation between the velocity of the trans-
verse mode propagating in the x direction and po-
larized along the z direction, and the mode pro-
pagating in the z direction and polarized in the x
direction

In the A(001) direction the five modes can be
characterized as follows:

(i) One longitudinal mode,

u(L, A) =[c33/(pq+p~)]'

a simple matter to insert known atomic masses to
calculate R:

p~ -M(As}+6M(F}=189,

p~ -(3—5)M(Hg) =285,
(4.13)

(4.14)

where g is an appropriate viscosity.
In general directions all modes are propagating

because of the coupling between w„z modes and u

modes. Near the high-symmetry direction there is a
crossover between diffusive and propagating
behavior. For a similar situation, see the discussion

by Martin et al. '3 on diffusive and propagating
modes in a smectic-A crystal. The transverse modes
propagating perpendicular to the smectic planes are
diffusive because the smectics are liquidlike within
planes, but generally the modes are all propagating.

The predicted behavior of the mode velocities as
a function of propagation direction in the x-z and
x-y planes is shown in Figs. 6(a) and 6(b). The
internal regions of the figures are schematic, but the

which gives R = 1.27. Heilmann et al. found
R =1.25+0. 1, and the value derived here is well
within their uncertainty.

The transverse co =0 modes arise as a result of
the lack of potential energy associated with shear
strains in a liquid. We expect the modes to be dtf-
fusiue,

u(T„,A)R=
u(T„b, )

pi +p~
I

—,Pa+P~

1/2

& 1 . (4.12)
(a)

Wx(Ux)

(b)

In a conventional elastic medium with tetragonal
symmetry R =1 since both modes involve the iden-
tical strain component e . (In the long-wavelength
limit the two modes differ only by a rotation about

y.}The violation of the conventional R =1 rotation-
al symmetry condition was noted in an inelastic
neutron scattering study by Heilmann et a/. ' The
reason for this violation is that for the transverse
mode polarized along z, both Hg sublattices are
coupled to the AsF6 whereas for the transverse
mode polarized along x, the x-axis Hg chain sublat-
tice is decoupled. In either case the shearing of the
Hg sublattices contributes to the inertia but pro-
duces no restoring forces due to the liq'uidlike na-

ture. Thus R depends only upon the masses of the
various lattices, not upon the effective elastic con-
stants which are not known a priori. It is therefore

20
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FIG. 6. Phonon velocities vs propagation direction in

Hg3 |;AsF6, T& T, . {a) Propagation in x-z plane. {b)

Propagation in x-y plane. The symbols denote the nature

of the mode along the symmetry direction {or within the

plane, if appropriate).
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velocities along the principal directions are fixed at
their measured values. '

8. Acoustic modes in Hg3 qAsF6, T&T,

Below T, the phases or displacements of the x
and y chains lock together (Fig. 5). The densities of
the condensed mercury atoms can be written in the
orm

p„=g„exp(iq& r)+c c.
p» =f»exp(i q, r)+c.c. (4.15)

where P„= f» an—d q~ ——(2m/a)(5, 5,0). It costs
energy to slide the x system without sliding the y
system in a similar way. The symmetry is lowered
(orthorhombic) since the (5,5,0) direction is singled
out relative to the (—5,5,0) direction. The poten-
tial energy associated with the phase locking is of
the form'7

(4.16)

~ 2T~= 2pgw (4.17)

An optical mode with a q =0 gap, given by

COO ——(&„'»»/PB ) '~',

develops. Within the Landau theory,
DPz-(T, —T) so coo-(T, T)'~. ' W—e are thus
left with four slow modes. Three of the hydro-
dynamic coordinates are associated with the dis-

1

placements of the whole crystal; v„=—,(u„+w„~,
U»= —,(u»+w»), and u, . The fourth mode is w

=
z (wz+w„). This last mode is unusual in that it

involves Hg chains moving in perpendicular direc-
tions. Also, there is now a transverse restoring
force in the Hg lattice, and the elastic constants
(4.7) are nonzero. The kinetic energy associated
with the w coordinate is

The dynamical matrix is 4&(4. In the q„direction
there is one mode polarized in the z direction with
velocity,

U ( T2~6) =[(C44+f66 C4—4 )/(pA +pB )]

and three modes mixing u„,uz, and w. There is no
mode with zero velocity. In the q, direction there is
a longitudinal mode with velocity

U (L,A ) = [C33/(PA +PB )]

as above T„and a transverse mode with u =u„. In
addition there are two more transverse modes mix-
ing u„=u» and w. At T, one of these modes be-
comes degenerate with the (1,—1,0) transverse
mode; the other becomes dissipative. A Landau
theory analysis yields a velocity proportional to
(T& T)'~ . '—The ratios between transverse mode
velocities in different directions always depend on
effective elastic constants which we do not know.

Existing neutron scattering experiments have es-
tablished very clearly the existence of the extra
acoustic modes in Hg3 ~AsF6, as well as the
remaining qualitative features of this treatment, .'0'"
In particular, the lack of propagating shear modes
of the Hg lattice above T„and the growth of such
modes below T, have been observed at short wave-

lengths. It would be very interesting to extend such
measurements to the long-wavelength regime treat-
ed here using acoustic or light scattering methods,
although the former may be difficult because of the
sensitivity of the material to ambient environments,
and the latter difficult because of small light-
penetration depths.
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F= —,r'(
( i'„) '+

) f» )
')+ r "(P g»'+ P»g,*)+ .

, r'A'+r—"A'cos(P, —P») .

The phases P„and i))» are defined by g„=A expiP„,
f»=A expi(('i» .The second term gives the energy asso-
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i i df i g di))
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