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Pressure dependence of the vibron in solid hydrogen and deuterium up to 600 kbar
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We have studied the Q ~ (0) intramolecular vibrational transition in solid molecular hy-

drogen and deuterium by means of Raman scattering for pressures up to 600 kbar and tern-

peratures down to 5 K in a diamond anvil cell. We present a semiempirical model

developed to describe the pressure dependence of the transition frequency. The agreement

between theory and experiment is surprisingly good up to about 200 kbar. Deviations at

higher pressures c'annot be explained in terms of this simple mean-field model.

I. INTRODUCTION II. EXPERIMENTAL

In the solid state, molecular hydrogen has three

types of lattice modes: phonons, rotational modes,
and internal molecular vibrational modes called vi-

brons. In this paper we study the pressure depen-
dence of the transition frequency of the Raman-
active Q &+ (0) vibron for which we have made a pre-
liminary report. ' This mode corresponds to the
transition U,J=0,0~1,0, where v and J are the vi-

brational and rotational quantum numbers; the +
refers to the even symmetry of this lattice mode.
We shall refer to this mode as the "vibron. " In the
free molecule the vibrational frequency is 4161.134
and 2993.548 cm ' for hydrogen and deuterium,

respectively. Since these frequencies are much
higher than the other lattice modes and since the in-

teratomic forces are much stronger than the inter-
molecular forces, the vibron is only weakly coupled
to the other modes of the lattice. Its frequency de-

creases by -0.3% in going from the rarefied gas
phase to the solid. With increasing pressure the
transition frequency increases up to about 350 kbar
and then starts to decrease. At our highest pres-
sures of 600 kbar the transitions remain narrow and
well defined, enabling an accurate study.

Sharma et al. observed vibrational transitions in

normal hydrogen * and deuterium at room tem-

perature to pressures of several hundred kilobar.
The interpretation of these data is rather difficult
because the molecules are in different rotational
states. In our study at T=5 K all molecules are in

the J=0, U =0 ground state and we study the pure
U =0~1 transition.

In Sec. II we describe our experimental tech-
niques. Section III presents a model to interpret the
pressure dependence; this is followed by a discus-
sion and conclusion.

Samples of 98 5% .para Hq a-nd 98.5% ortho D2-
were prepared by catalytic conversion in the liquid
state. Pressure was applied in our diamond anvil

cell, which is operated in a He cryostat, enabling

temperature control in the range 1.1 —300 K. Sam-

ples were confined in a cylindrical chamber in a
T301 steel gasket. The typical sample size was

100-pm diameter and -20-pm thick. Present ex-

perimental data were obtained in a few runs on both
isotopes. The Q&+(0) vibron was observed in a Ra-
man backscattering geometry. An argon-ion laser

0

with power up to 500 mW in the 5145-A line was

employed. Pressure was determined from the
luminescence spectrum of a few grains of ruby en-

closed with the sample. Below 350 kbar the 5145-A
line was used to excite this fluorescence, but above

0

350 kbar it proved to be necessary to use the 4880-A
line for excitation. The pressure calibration of Mao
et al. was used. At the beginning of each experi-
mental run the zero-pressure frequency of the
fluorescence line was determined at 5 K. This
zero-pressure frequency was used when applying the
formula of Mao et al. Our experimental results are
presented in Fig. 1, which includes low-pressure
points by Bhatnagar et al. and Lassche et al. We
note that the data of Bhatnagar et at. on deuterium
refer to a purity of 80% ortho-D2 only. We see that
for both isotopes the transition frequency increases
to about 350 kbar and then starts to turn down. A
similar behavior was observed by Sharma et al.
However, a detailed comparison of our spectra and
theirs cannot be made directly since the experiments
were done on quite different samples (normal versus

pure J=0) and since different transitions were stud-

ied: Q&+(I) and Q,+(2) vs Q&+(0). Also the tem-

perature of the samples was different (300 vs 5 K).
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P(r, 8,$)=XJ(r)Fg (8,P),
where XJ(r) is the radial part and the spherical har-
monic FJ (8,$) is the rotational part, we obtain the
following Schrodinger equation:
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with yj(r) =rXJ(r) Th.is is equivalent to
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V(g)=hcacg (1+atg+a2( + ) . (4)

Dunham9 has solved Eq. (3) analytically. The
eigenvalues he finds are given by

(3)

H«e (=(r—r, )/r„r, is the equilibrium nuclear
separation. For the special case where V(g) can be
written as a polynomial

FIG. 1. Frequency of the Q+~(0} transition as a func-

tion of pressure. Low-pressure points by Bhatnagar
et al. (Ref. 7) and Lassche et al. (Ref. 8) are also in-

cluded.

We want to emphasize that the transition observed

by Sharma et al. in H2 was identified by them as a
transition of the J= 1 molecule, which is present in

our samples as a contamination only.

III. INTERPRETATION

In this section we develop a simple model to
describe the behavior under pressure of the Q &+(0)

vibron. We first consider the problem of finding
the vibrational energy levels of an atom once the
potential is known. We consider the hydrogen mol-
ecule as a rotating vibrator. The proper Hamiltoni-
an is

H= p„+ +—V(r),
1 2 J

m

where m = —,(2m, ) is the reduced mass, m, is the
mass of the atom, p„ is the momentum operator,
and J is the angular momentum operator. By using
the wave function

hc
= gyi. (u+ , )'P(J+1)J—,

where U and J are the vibrational and rotational
quantum numbers, respectively. The coefficients ytj.

(not spherical harmonics) have been calculated by
Dunham and are expressed in terms of 8„tu„and
a;, where t0, is the classical frequency for small os-
cillations, 8, is the classical rotational constant
h /(8n mr, c) and ac ——to, /48, . We will use the
following scheme to calculate the vibrational fre-
quencies in the solid:

(1) Write the atom-atom potential in the gas in

the form of Eq. (4).
(2) Modify this potential to incorporate the effect

of the surrounding lattice.
(3) Calculate the vibrational frequencies from this

TABLE I. Coefficients {in cm ') for Eq. (4) for the
free hydrogen atom according to van Kranendonk and
Karl (Ref. 10); the value for a0 is from Stoicheff et al.
(Ref. 2).

a0 ——79566
a l ———1.607

a2 ——1.898
a3 ———2.060

a4 ——1.965
a5 ——0.11
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modified potential.
The problem of writing the atom-atom potential

in the polynomial form of Eq. (4) has been solved

by van Kranendonk and Karl. ' Their coefficients
are calculated precisely for the purpose of fitting
spectroscopic data and are given in Table I.

To calculate the atom-atom potential in the solid,

V„we assume this to be the sum of the gas-phase
atom-atom potential Vg and a lattice contribution
potential VI due to the surrounding molecules:

Vl(k) y Vam(Ri rj k) (6)

where R; is the position vector of molecule i and rj
is the position vector of atom j. The index j has
been omitted on the left-hand side because we are

going to calculate the vibrational frequencies in hcp
solid hydrogen for which potential (6) is the same
for all atoms. To perform the actual calculation we

used the H-Hz atom-molecule potential of Gengen-
bach et al." This was summed over 15 subshells

(maximum radius of the sphere was thus 3R) and

V, =Vg+VI .

The lattice potential is calculated by considering
one molecule j and summing an atom-molecule po-
tential V~ over the whole lattice

averaged over the orientation of molecule j. This
orientational average is directly built into the calcu-
lation since the potential of Gengenbach et al. al-

ready contains the average over all orientations of
the molecule. Correlations between the rotations of
the molecules were taken to be zero. After substi-

tuting the potential of Gengenbach et al. in Eq. (6)
we expanded this equation into a polynomial. The
constant term of this polynomial can be neglected
as it does not influence the results of the present
calculation. The total solid-state potential is calcu-
lated using Eq. (5). Because Vs was already given
in polynomial form, the total solid-state potential is
now expressed in polynomial form. The presence of
a linear term in the potential indicates that the
equilibrium distance is different from r, . By choos-
ing a new r,', the linear term can be eliminated, and

V, can be written as Eq. (4), but with different coef-
ficients a,'. We must stress here that the use of an
average atom-molecule potential for the interactions
between a molecule and an atom that is part of a
covalent molecule is a gross simplification. This
procedure is only justified by the fact that no other
simple approach was available and by the reason-
able agreement that is obtained with experimental
data.

We can now directly find the frequencies of the
vibrational transitions by substituting the new coef-
ficients a in Dunham's formulas. For instance,

TABLE II. Comparison between calculated and measured values for the Q &+(0) frequency. For the calculation, see
text. Unless otherwise noted, "measurement" data points were obtained by interpolation of the data obtained in this
work.

3.789
3.605
3.499
3.380
3.200
3.050
2.895
2.686
2.530
2.376
2.288
2.180
2.038

(kbar)

gas
0

1

2
5

10
20
50

100
200
300
500

1000

Hydrogen
Q+, (0) calc.

{cm-')

4159.87
4162.65

4165.83
4167.49
4170.72
4174.66
4183.57
4204.32
4230.43
4270.22
4302.92
4354.93
4449.53

Q+~(0) meas.
(cm-')

4161.134'
4149.81b

4155.1'

4180
4210
4238
4270
4279
4276

P
(kbar)

0
0.4
1.2
3.7
8.0

17
45
92

188
284
480
970

Deuterium
Q+~(0) calc.

(cm-')

2991.80

2995.15
2995.96
2997.11
2999.33
3002.04
3008.23
3022.61
3040.77
3068.47
3091.06
3127.29
3193.25

Q+, (0) meas.
(cm-')

2993.548'

2984.79

2987 8'

3004
3024
3046
3070
3081

'From Stoieheff et al. (Ref. 2).
From Bhatnagar et al. (Ref. 14).

'From Lassche et al. (Ref. 8).
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FIG. 2. Frequency of the Ql+(0) transition as a func-

tion of relative density; the full squares indicate the re-

sults of the calculation discussed in the text. Low-

pressure points by Bhatnagar et al. (Ref. 7) and Laasche
et al. (Ref. 8) were also included. The density is scaled

H~
to the zero-pressure volume, Vo ——23. 14 cm /mol.

The calculations incorrectly predict that the gas
to solid phase frequency shift is a small blue shift,

lQi ( ) j=3'I,0+23'2, 0+343'3,0+ ' ' ',
vl Ql (1)j yl 0+232 0+3 $3 3 0

+2/ ~ & +4/2, ~ + ' ' '

vlQI+(2) j =pi 0+2&20+3 A/30

+6y»+12y, , , +
These frequencies were calculated for various values
of the lattice parameter. Table II shows the results
for Ql+(0). Since the calculations are done as a
function of lattice parameter or density we must use
an equation of state to compare with experiment.
The pressure scale in this table is based on the equa-
tion of states (EOS) of Silvera and Goldman' and
should be modified as our knowledge of the EOS
improves. Figure 2 summarizes the calculational
results.

IV. DISCUSSION

whereas in reality it is a 10-cm red shift. The
same problem was encountered by Helmy and
Etters' in a similar calculation on CO2 and N2.
However, using a slightly different model, Bhat-
nagar et al. ' correctly predict this shift with a
Lennard-Jones potential. When put into our own
model their potential still correctly predicts the
gas-solid frequency shift but yields quite unrealistic
frequencies at higher pressures. We therefore con-
clude that the difficulties in predicting the gas-solid
shift are not inherent in the model but must be at-
tributed to the potential used. It may well be that
the Lennard-Jones potential gives a better descrip-
tion of the zero-pressure behavior whereas the po-
tential of Gengenbach et al. " is better suited for
the high-pressure region. In this respect it seems

appropriate to note that Gengenbach et al. claim an
accuracy in the well region of 30%%uo whereas their
accuracy increases up to l%%uo in the repulsive core.
In our calculation zero-point motion (ZPM) was not
taken into account. The effect of ZPM would be to
yield a slight increase of the blue shift, itself de-

creasing with increasing pressure.
The phase transition discussed in Ref. 1 causes a

downward jump of -2 cm ' at 290 kbar in deu-

terium and does not yet occur in hydrogen for the
pressure range investigated. An extension of our
model which takes into account the effect of the
quadrupole moments of the molecules was used to
calculate this jump. If we take the zero-pressure

EQQ moment from Ref. 15 and scale this with R
for molecules fixed on a Pa3 structure, which is
predicted for the orientationally ordered phase, a
change in frequency of ——5 cm' is found. This
is in reasonably good agreement with experiment,
considering the simplicity of the model. The turn-

ing over of frequency with increasing pressure also
occurs in hydrogen and thus cannot be attributed to
the phase transition.

It is illustrative to compare all existing measure-
ments on hydrogen and deuterium with respect to
the bending over of the frequency at high pressure
(see Fig. 3). To make the comparison we must
know the expressions for the vibron frequencies in
the solid state. These frequencies are given' by
subtracting 6e' from the frequencies given in Eq.
(7), where e' is an energy contribution due to the ef-
fective vibron-vibron coupling. The magnitude of
e' at zero pressure can be obtained by comparing ir
and Raman measurements on hydrogen, and one
then obtains' e'=0.5 cm '. Alternatively, com-
paring the zero-pressure Raman measurements on
hydrogen and deuterium, a better agreement is
found if e'=0 cm '. It can be shown that e' de-
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FIG. 3. Scaled vibron frequencies as a function of
pressure. Scaling is done such that, apart from thermal
effects, all curves should coincide. Data points of Shar-
ma et al. were taken from their plots in Refs. 3 —5.
The density is scaled to the zero-pressure volume

Vo —23. 14 cm /mol.

mass. From the experimental frequencies all terms
in Eq. (7) except y& o were subtracted according to
this calculation and the result was multiplied by
Wm thus yielding a mass-independent "experimen-
tal" value for +my~ o. These values are plotted in

Fig. 3. If our application of the Dunham theory
remains valid all data points should follow one
curve. We note that in the experiments by Sharma
et al. , at room temperature, a distribution of Q ~+ (J)
transitions may have been measured due to the fact
that not all molecules are in the rotational ground
state and that they use a normal ovtho-para mixture.

They observe broadening of the vibrational lines.
The fact that the different curves diverge in the re-

gion where the turning over starts and also the dif-
ferent points of maximum frequency may provide
insight into the mechanism responsible for the turn-

ing over.

V. CONCLUSION

creases with increasing pressure. For these reasons
we take e'=0 in the following analysis. The com-
parison is still made with a slight degree of delicacy
due to the fact that we measured the Q&+(0) transi-
tion in H2 and D2 and Sharma et al. measured
the Q&+(l) in Hz and Q&+(2) in D2, especially be-

cause these frequencies are composed of different
contributions [as indicated by Eq. (7)] and these
contributions have different dependences on the
mass m. For example, y ~ p ~m, y2 p ~ m

—1 /2 —]

andy3p oem

All frequencies were transformed to a mass-
independent value by the following procedure. First
we note that the first three terms in the expressions
for Q&+(0), Q~+(1), and Q~+(2) are the same [Eq.
(7)]; these expressions differ, however, in the
higher-order contributions. The value of yq0 was
calculated at the appropriate pressure along the
lines discussed previously in this section. The term

2y2 p is 5% of y & p, and yz p itself was found to
change only 7' over the investigated pressure
range. Higher-order terms contributing to the vi-

brational frequencies were taken to be pressure in-

dependent and equal to their zero-pressure values as
given by van Kranendonk and Karl. ' For deuteri-
um these values were appropriately scaled with

The model used to describe pressure dependence
of the vibron frequencies is in reasonable agreement
with experimental data up to pressures of -200
kbar. The low-pressure deviations may point to a
possible inaccuracy in the potential of Gengenbach
et al. The fact that above -350 kbar the vibron
frequency starts to decrease with increasing pres-
sure cannot be described by the present analyses.
This and the fact that the curves for the experimen-
tal values of +my& 0 no longer coincide in this re-

gion point to new phenomena becoming involved
here, for instance, charge transfer and electron-
correlation effects, which may be a precursor to the
solid becoming metallic. One might also speculate
that the bending over is a precursor of a soft vibron
model which would eventually lead to an atomic in-

stead of a molecular solid. However, this requires a
careful theoretical investigation.
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