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Theory of crystallization waves in He at finite frequency
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We determine the spectrum of crystallization waves and Rayleigh waves at the interface
between superfluid and solid He, taking into account the effect of elasticity and the finite-
growth coefficient of the crystal. For k & 10 cm ' the coupling between these two modes
significantly changes the entire spectrum.

I. INTRODUCTION

Andreev and Parshin, ' in investigating theoretical
properties of the interface between superfluid and
solid He, predicted periodic crystallization-melting
waves, in which the flow of the superfluid supplies
the inertia and the surface tension provides the re-
storing force. They conjectured that the surface of
the crystal is atomically rough because of the large
zero-point motion of the kinks and steps and there-
fore crystallization or melting occurs without dissi-

pation, at very low temperatures. These crystalliza-
tion waves were observed experimentally by
Keshishev, Parshin, and Babkin at wavelengths
comparable to or one order of magnitude smaller
than the capillary length (10&k &200 cm ') on the
rounded parts of the crystals. In this wavelength
region the solid and liquid can be considered in-

compressible, the case considered by Andreev and
Parshin, as the frequency of the phonons is much
greater than that of the crystallization waves.

A second type of wave that can propagate along a
solid-liquid interface is an elastic Rayleigh wave, a
sound wave localized in the surface, with no mass
transfer between the solid and liquid, in which the
elasticity of the solid provides the restoring force.
In the case of helium the fast melting and crystalli-
zation causes the Rayleigh waves to behave as if the
solid were in contact with vacuum. Our purpose in
this paper is to study the effect of elasticity on
shorter-wavelength crystallization waves, the cou-
pling of the crystallization and Rayleigh modes at
finite frequency, the damping of the modes, and
their relation to ordinary Rayleigh waves when the
rate of crystal growth becomes small. As we shall
show the coupling between the two boundary modes
becomes predominant at wavelength k & 10 cm
(which is longer than those of the ripplons at a free
superfluid He surface, because the frequency of a

To discover the effect of elasticity on the crystall-
ization waves and melting on the elastic Rayleigh
waves we make the following simplifying assump-
tions: We generally treat the He crystal as an iso-
tropic continuous elastic body, and take the surface
tension of the interface as a constant independent of
curvature of the boundary and strain of the solid.
We also neglect the normal component of liquid
He, and thus limit our discussion to low tempera-

tures.
If we consider only linearized equations, the velo-

city and the pressure of the liquid can be described
in terms of a velocity potential lb by

vz=VQ, 5P2= peak

(we denote quantities for the solid and the liquid by
subscripts 1 and 2, respectively). The potential g
obeys the wave equation

V g ——2/=0.2 1-
C2

(2)

The displacement u(r) of the solid from equilibri-
um can be decomposed into longitudinal and trans-
verse components ( V X ut =0 and V.u, =0) that
satisfy the following wave equations:

V u, ——2u, =0.1"
C,

At the interface we have three boundary condi-

crystallization wave at given k is much greater than
that of a ripplon). Owing to mixing of the crystalli-
zation and Rayleigh waves, the spectrum of cry-
stallization waves for large k remains at lower fre-

quency than predicted by the simple Andreev-
Parshin calculation.

II. EQUATIONS OF MOTION
AND BOUNDARY CONDITIONS
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p~(u j g)—=p~(uzj. g)—=j, (4)

where g is the velocity of the surface and j is the
mass current across the interface, normal to the sur-
face. The second is the usual condition of mechani-
cal equilibrium across the interface

tions. The first is particle conservation across the
boundary

0 0 0 0E'] +P2 —p2p) =0 . (10)

5ocknk+ 5Pz+a, + „n;=0 . (11)

In lowest order the change of energy density is

Where there are small changes, from (5) and (9) we
have

1 1
k k+ + R, +R„ n;=0,

0 0
&&1 = —&1&ii+Oik~ik ~

where

(12}

where O.ik is the stress tensor of the solid at the
boundary, n; the unit vector normal to the surface,
a the surface tension, and R' and R" are the princi-

pal radii of curvature of the boundary. The condi-
tion for chemical equilibrium at T=0 is

1 1&)+P2+&, +
(6)

p&

where e& is the energy density of the stressed solid
and p2 is the chemical potential per unit mass.
Here we have assumed that the newly formed solid
has the same strain as the old one (going beyond the
isotropic continuum approximation). If the solid is
unstressed the quantity on the left-hand side of (6)
reduces, from the mechanical equilibrium condi-
tion, to (e~+P~)lp~ which is the usual chemical
potential )Lc&. The derivation of (6) is given, for
those not familiar with the details, in the Appendix.
If we neglect dissipation in crystal growth at the in-

terface, then the chemical equilibrium condition (6)
is the third boundary condition. If the solid is not
stressed and there is dissipation in the growth at the
interface, as in Ref. 1 (see also Ref. 6), we can as-
sume that the rate of crystal growth is proportional
to the difference of the chemical potentials,

1

R'
Q2g

ax2
(14)

The conditions (11) and (13) become

6cr~+ 5P2 —cx
2

——0,
Bx

(15)

(16)

a
~ik +

2 BTk Bf;
I

is the strain tensor. From (8) and (10), with the
help of (9) and (12), we obtain

1 ——5P +a, + „=~, (13)
p& 1 1

P2

which gives the pressure change in the liquid in
terms of the curvature of the surface, and mass flow
across the interface.

Let us assume the interface to be located in the
x-y plane at z =O„and that the solid is in z &0, and
consider boundary waves propagating at the inter-
face in the x direction. Then one of the radii of
curvature (which we take to be R") is infinite and
the other is related to g by

J=&(P1 Pz) ~ (7)
and

1 1e)+P2+a, + R"

pi
J—P2=

In the absence of dissipation E~ 00 and one recov-
ers (6}.

In equilibrium with a flat interface, (5) and (6)
reduce to

where K is the crystal-growth coefficient. We may
generalize this assumption to the case of a stressed
solid, by replacing (6) by

pi c} g pi .
1 ——5P —a

P2 BX'
(17)

g =lgoexp( Kzz+ikx ico—t ) (z )0—),
g =goexp(ikx icot ), —

ut utoexp(K——tz+ikx icot) (z &0—),
u, = u, oexp(K, z+ikt icot) (z &0),—

(18)

(hereafter we omit the symbols indicating the equili-
brium quantities). We look for waves localized at
the interface and put

+ik +P2~ik (9) where the x s which are inverses of the penetration
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depths, are defined by

2
co

~ =k— (19)

N
P2 ak

(pi —p2)'

we obtain the dispersion relation of the boundary
waves:

F(k, Q ) =F~(k,Q )+iAFI(k, Q) =0, (21)

Cg

to satisfy the wave equations (2) and (3). Combin-
ing (4), (15), (16), and (17), and using the familiar
stress-strain relation

2 4 2
5&(k =p((c( —

3 Cg )QII5;k+ 2P]c~ (ug —
3 5g(uII ),

(20)

1 1 Pi P2
1 ——S2+ —k

2 1 —SI p, (P, P2)

(29)

where S2 =c, /cz and S~ =c, /c~, in this approxima-
tion the effect of elasticity on the crystallization
wave is to reduce the frequency by a term of rela-

tive order (co/c, k) .
Equation (26) has a second solution, Q2, compar-

able to k. In the limit of small k the effect of the
surface tension, the second term of (22), is negligible

and Q2 satisfies

where f(k, Qp)=0, (30)

Fit (k, Q )
—=Q'(1 —R )'f(k, Q )

+k a[~(Q Rir2f(k—,Q)], (22)

FI(k,Q) =Q[Ra(Q —i~pf(k, Q)]

and

—0 ~lv2k a, (23)

f(k, Q)=4k a, iri (k +a, )— (24)

co p2 a p2Q—=—,R—=—,a—: 2, A—: . (25)
Cg p 1 p )Cg EC

III. CRYSTALLIZATION WAVES
AND RAYLEIGH WAVES

In this section we analyze the solutions of (21)
neglecting for the moment the dissipation term
which varies as K '. First we look for solutions to

F~(k, Q) =0 (26)

R

(1—R)
(27)

This is the crystallization-wave solution for small'

k [ «(1—R)2/aR] with gravity neglected. More
familiarly (27) is

2 P2 3ak
(pi —p»'

(28)

The first correction to (28) is obtained by expanding
(22) in powers of Q /k, which yields

for small Q («k). Since f(k, Q)-Q k +0 we

can neglect the aIQ in (22), and let a;~ k. Then

we find

a(Q3 Rv2f(k, Q3) =0 . — (32)

When the crystal does not melt, that is, A —+ oo

(K=0), (21) reduces to

FI(k, Q)=0, (33)

which is the equation for j=0. The solution is a
Rayleigh wave without melting, and with the effect
of surface tension. At small k the surface tension
can be neglected and we have

R~IQg —v2f(k, Q4) =0 .

pbserve that c,Q4/k is simply the velocity of the
usual Rayleigh wave of a solid in contact with a
liquid. The surface tension also increases 0, and at

which is just the equation describing Rayleigh
waves at a free surface. This becomes perhaps
more evident if we neglect the surface tension, for
then (17) (with E= oo) tells us 5Pz ——0, and there-
fore 50.~=0, which is the boundary condition for
the free surface. At finite k the surface tension
works as a restoring force and pushes up the fre-

quency. As k increases, the frequency finally
exceeds c,k, the penetration depth becomes infinite,
as is clear from (19), and the wave is no longer lo-

calized at the interface. This happens at the critical
wave number k =k„determined by Fz (k„k, ) =0:

k, = . (31)
a (p~+I —S~+P2+1 —S2

This is about half of the wave number at which the
transverse sound and lowest-order crystallization
wave (28) branches cross. In the limit of large k,
the surface tension term of (22) dominates and the
solution becomes linear in k with a constant veloci-

ty, determined by
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k,', which is given by FI(k,',k,' ) =0, the frequency
exceeds c,k:

c, (p2+1 —SI +pI +I—S2 )
2

k,'= (35)a+I —S~g1 —S

This wave number, -10 cm ', is more than
1/(1 —R) times larger than (31) and is far above
our concern.

Numerical results for the entire spectrum are
shown in Fig. 1. The parameters we use here are

eI ——4.8)(10 cm sec ', c, =2.3)(10 cm sec

c2 ——3.7)(10 cm sec ', a =0.16 erg cm
(a =1.6X 10 cm), and R =0.91.

The two branches corresponding to crystalliza-
tion and Rayleigh waves are shown as solid lines.
For comparison we show the crystallization-wave
spectrum using (27) as a thin solid line, and the
Rayleigh-wave spectrum with no melting [Eq. (33)]
as the dashed line. At higher k these two modes be-

come mixed, with the lower (crystallization branch)
being significantly reduced in frequency for k & 10
cm ', and the Rayleigh-wave branch enhanced in

frequency for all k.
I

IV. FINITE-GROWTH COEFFICIENT
AND DAMPING OF THE WAVES

Fi(k Qo)
ImQ =—

F~(k, QO}
(36)

where Qo is the solution of Fz(k, QO)=0 For t.he
crystallization wave at small k we find the same re-
sult as Andreev and Parshin, '

ImQ= —A k .
1

2(1 —R )
(37)

For the Rayleigh-wave branch at small k,

So far we have dealt with the case of nondissipa-
tive crystal growth and melting. In general, at least
at finite temperatures, this is not the case. If
E '

& 0 the dissipative term produces a damping of
the modes which we now examine. When E is large
enough, and hence A small, the imaginary part of 0
is given by

ImQ = —A—1 R
4 (1—R)

g 1 —S)A,
. A, k, (38)

where A, =Q2/k.
The dependence of the real and imaginary parts

on A is shown in Fig. 2 for several k. As A becomes
larger the real part of the solution moves toward the

I

solution for a Rayleigh wave without melting. This
happens when the imaginary part (38) is comparable
to the difference of the solutions of (30) and (34). If
we take the values (see Fig. 1) Qz/k =0.94 and
Q4/k =0.79 we expect the crossover to occur at

1.0
Qp/k

2 -0.01 . (39)

At long wavelength (k (2&&106 cm ') on the
crystallization branch

0.5 ImQ/ReQ cc k (40)

0' I I I I I I I I

I 2 5 k~ 4 5 6 7 8
c k(106cm i)

FIG. 1. Spectrum of crystallization and Rayleigh
waves of He, with elasticity and melting, neglecting dis-

sipation. The value 0/k =1.0 corresponds to transverse
sound. The solid lines show crystallization and the Ray-
leigh waves with perfect melting, the solutions of (26),
and the dashed-line Rayleigh waves without melting,
(33). The thin solid line (0&/k) is Andreev-Parshin's

spectrum given by (27). The limiting velocities divided by
c, [see (30), (32), and (34}]are also indicated.

so that as k decreases the mode eventually becomes
critically damped. This occurs when

A )2(1—R} =2R' (1—R)a' k'
k

(41)

The shorter the wavelength, the more well defined
the mode is. Nevertheless we note from (40) that
the mean free path of a crystallization wave is
~ ReQ /k ImQ cc k ', so that the longer
wavelength modes propagate further. At large k
the damping falls off, and this branch moves up-



4932 MAKIO UWAHA AND GORDON BAYM

ward, becoming the Rayleigh wave without melting.
As we can easily see from (41) or Fig. 2, the cry-
stallization wave is very sensitive to the crystal-
growth coefficient especially in the small-k region.

V. DISCUSSION

Pi ~'Pi(pi —P2)

k vga

~'(pi —p»

(42)

(43)

Comparing with the result 5g i ——g'2 ——g' for
E=O, we see that the boundary displacement for a
given displacement in the solid g'/g', is much

0.5
I

Re /k

1.0 0.5
Re"/k

As seen from Fig. 1 the coupling between cry-
stallization waves and Rayleigh waves has a signifi-
cant effect on the spectrum at k ) 10 cm'. Surface
tension raises the Rayleigh-wave frequency; from
(31) and (35) we see that this effect is much more
significant for the fast melting case (E=ao). We
may understand this by noting that since melting
produces large amplitude displacement of the boun-

dary, the resulting effect of surface tension is much
greater in this case. To calculate the relative ampli-
tudes of solid 5(i, liquid 5(2, and the boundary dis-
placement g' perpendicular to the surface, we use
(4) and (17) to obtain for E= ~,

larger for E= (x), and hence so is the ratio of the
surface tension to elastic forces.

For shorter wavelengths, comparable to the lat-
tice constant, the effect of the lattice becomes im-
portant and our continuum model breaks down.
We also have to take into account several effects
such as' the curvature dependence of the surface
tension and the actual phonon spectrum at very
short wavelengths.

According to the experiment of Keshishev et al.
the crystal-growth coefficient at relatively high
temperatures, which is attributed to rotons, is
1/plEAp =3.4&( 10 e " cm sec ', which corre-
sponds to

a =13&&e-7 8~', (44)

where m is mass of a He atom and Egp is the
crystal-growth coefficient as used in Refs. 1 and 2,
related to our current definition of E (and that of
Ref. 6) by E=mpiEAp. The value given by (44) is
about 0.005 at T=1 K. As we recall from (39) the
Rayleigh wave, for A (0.01, propagates with melt-
ing; we expect this to continue up to rather high
temperatures. However, with A given by (44) the
long-wavelength crystallization modes will be high-
ly damped at higher temperature.

Andreev and Parshin' pointed out that crystalli-
zation waves (CW) would produce a temperature
dependence of the surface tension proportional to
T / . Quantitatively this effect is, from (28),

( )2
3/2 k7/3

1 ~ 7 ( 7 Pi P2 a—
7/3

477 3 3 p2Q T 0

k=10 cm k=2xIO cm
= —6)& 10 T (45)

-0.5-
Im"/k

0
A=Q A=co

1.0 0.5 I.O

in units of ergcm, with T in kelvin. The Ray-
leigh waves (RW) also contribute to the surface ten-
sion an amount

-05-
Im"/k

k=3xlO cm
' -0.5-
Im /k

Q

k=10 cm' +RA
g(3) 1 kB 3 4T = —9X10- T,
2m

FIG. 2. Reduced frequencies in complex plane, solu-
tions of {21),for several wave numbers, as a function of
the inverse of dimensionless crystal-growth coefficient A.
From point to point along the curves, A is changed by
0.001, and the points for A =0.01 are indicated by
crosses. The ends of the arrows are for A ~ co, that is,
the Rayleigh waves without melting. The sets of points
at lower ReQ/k for k=10 and 2)&10 cm ' show the
complex frequencies of the crystallization waves at these
wave numbers.

(46)

in units of erg cm (using A, =0.94), and the refiec-
tion of sound at the interface has a similar effect. '

However, as seen from Fig. 1, the spectrum of the
crystallization wave deviates from co ~ T ~ consid-
erably for k &10 cm '. On the one hand the de-
crease in the spectrum will lead to a more rapid in-
crease in the magnitude of mew with T than given
by (45) (-50%%uo at T)0. 1 K). Also this contribu-
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tion to the surface tension will be modified by
damping of the crystalhzation mode. However the
net effect is probably too small to be observed prac-
tically for T & 1 K.

the surface. Its change is given by

bE, = f d f5$(r) + a,
R'(r) R "(r)

(A3)
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APPENDIX

where a is the surface tension. The total volume
and the total mass of the system are conserved in

growth or melting:

f d f5(( r ) +b. V2 ——0, (A4)

f d f5((r)p&(r)+bM& 0. —— (A5)

AE =hE)+EE2+AE,

With the help of (A4) and (A5) we obtain the
change of total energy,

b.E& ——f d f5((r)e~(r), (Al)

where the integration is over the interface and 5( is
the displacement of the surface due to growth or
melting. Considering the liquid reservoir to be very
large and I'2 and p2 constant we can express the en-

ergy change of the liquid as

We give here a brief derivation of the chemical
equilibrium condition of a stressed solid in contact
with a liquid [Eq. (6)], first given by Gibbs. Let us
consider a stressed solid in a liquid reservoir whose
pressure is P2 and chemical potential p2. Suppose
that the solid grows or melts by an infinitesimal
amount, and that the ne~ly formed solid has the
same strain as the. adjacent old one when the solid
grows. The change of energy of the solid bE& is re-
lated to the energy density of the distorted solid at
the interface by

= f d fg(r) E~(r)+Pq

1 1+a
R'(r) R "(r)

—
) ei(r)

1 1e)+P2+a —P2P&=0 . (A7)

Note that when o;k ~ 5;k, we can define P, as

Pi ——1/3o;; (AS)

When the solid and the liquid are in equilibrium,
bE is zero for arbitrary infinitesimal change of
5((r). Therefore the quantity in brackets is identi-
cally zero at any point of the interface,

~E2 = ~2~ V2+P2~~2 ~ (A2) and

where b, Vz and bMz are the change of volume and
mass, respectively. In addition we must consider
the energy of the interface. We assume that the in-

terfacial energy E, is proportional to the area of the
surface and independent of stress or curvature of

e)+P]
p&

Then, with the help of (5), (A7) reduces to

P&=92

(A9)

(A 10)
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