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Effect of branched loops on the diamagnetism of disordered superconductors
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We discuss a model of a disordered superconducting film consisting of small loops with
dead-end arms. de Gennes showed that the arms markedly increase the field at which the
loop is driven normal. Our numerical solution of the Ginzburg-Landau equation shows the
enhancement of the magnetic moment of the loop to be less remarkable.

I. INTRODUCTION

Disordered superconducting materials have a
number of interesting and potentially useful
features. ' One idealization that has been studied is
the network of thin superconducting wires. de
Gennes has noted the importance of the topology
of the network to its physical properties: The di-

amagnetism is primarily due to currents flowing in

closed loops. In a second publication he has noted
that the dead-end parts of the network do have a
role even though they cannot carry current, because
they will tend to prevent the closed loops from be-

ing driven normal. Specifically, he treats the case
of the circular loop of radius R with a dead-end
arm of length L (Fig. 1, inset), and shows that the

0.5

critical flux at which the diamagnetism of the loop
vanishes is given by

cos(2774 /4p) =cos(2mR/g )

——,sin(2nR/g)tan(L/g), (1.1)

where 4p ——hc/2e is the flux quantum and g is the
coherence length. This relationship is represented
by Fig. 1. The response is periodic in 4 with period
4p. Specific conclusions that might be drawn from
Eq. (1.1) are that diamagnetism never vanishes for
loops of radius greater than g/2, or for loops with
pendant arms longer than (ir/2)g.

de Genne's analysis is based on a linearization of
the Landau-Ginzburg equations and thus is silent
on the question, what happens below the critical
flux? We have answered this question by solving
the Landau-Ginzburg equations numerically. Our
results, as shown in Fig. 2, are the following:

(1) The diamagnetism is zero at 4=4p/2 for
R & g/2. For small L it also vanishes in an interval
about C&p/2.

(2) Although an arm can raise 4&, above the value

R@p/g that is obtained for a simple loop, the di-
amagnetic moment is quite small when 'the enhance-
ment of 4, is large.

(3) In the film geometry, where the loops and
arms are of random sizes, the pendant-arm effect
will be difficult to observe.

0.0
0.0

I

0.5 1.0 1,5

FIG. 1. Critical flux for a loop with a dead-end arm.
The lines give the critical flux (measured in units of 40)
as a function of the length of the arm (measured in units
of g) for various values of R (also measured in units of g).
A loop with radius 0.4$ is driven normal by combina-
tions of 4 and I. that put it in the shaded region. Inset:
a loop with an arm.

II. THE GINZBURG-LANDAU EQUATION

Inhomogeneous materials can only be handled
practically by the phenom enological Ginzburg-
Landau equation, obtained by choosing the order
parameter P to minimize the free-energy density'
(Gaussian units)

(2.1)
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taken tangent to the loop with constant magnitude
A =4/2m. R, where 4 is the flux through the loop.
Equation (2.1) is minimized by

X =Xo+a sn (Py/g)

where Xo is the minimum value of X,

(3.8)

y einy/R (2.3) 4P2 2 3X2+ [(2 X2)2 gJ2X —2]1/2

(2.4)

where y is the coordinate along the loop, and
periodicity in y requires that n be an integer. The
magnitude of the order parameter is

a g 4&

fo ———„1— n—
R p

2a =2—3XO —[(2—Xo) —8J Xo ]'/

and the modulus of the elliptic function is

m =k =a /2P

(3.9)

(3.10}

(3.11)
where g =E/a is the coherence length and n is the
integer nearest to 4/4O. This shows that the order
parameter, free energy, and supercurrent are period-
ic in the flux with period 40—the Little-Parks ef-
fect.'

The coordinate y is measured from the point where
the minimum occurs.

The order parameter on the arm may be taken to
be real

' 1/2
III. SOLUTION FOR THE LOOP

WITH DEAD-END ARM
X(y),a

b
(3.12)

It is convenient to write the order parameter on
the loop in the form

1/2

X(y)exp[i8(y) —in HRy/40],
b

I ~/o'= —X'+X'/2+('
~

i8'X+X'
~

'.
This is minimized by X and 8 such that

Xe"+2X'8'=0,
—g'x" +g'(8')'x —x+x'=0 .

(3.2)

(3.3)

(3.4)

The former equation implies that the dimensionless
quantity

J=(O'X (3.5)

is independent of y. Its physical significance is that
the current circulating in the loop is
4ma cgSJ/b@o, where S is the cross-section area of
the wire. We may use this result to eliminate e'
from Eq. (3.4), giving

g'X"=J'X ' —X+X' (3.6)

The first integral of this equation is readily found

g (X') +J X +X X"/2=F. —(3.7)

where E is a constant of integration, and the equa-
tion can be solved in terms of Jacobian elliptic func-
tions

(3.1)

where X and 6 are real-valued functions. Then the
free-energy density simplifies to

and is also described by Eqs. (3.6}—(3.11), except
that J=0. One boundary condition at the point
where the arm joins the loop is that the functional
forms agree on the value of P at that point.

There is also a derivative condition, obtained by
requiring the free energy to be extremal with respect
to variation of the value of f at the junction; it re-

quires that the three outward-directed components
of 1(*[(V /i) (2n A/4—0)]p sum to zero (this con-
dition includes current conservation but is stronger,
because the imaginary part is also considered).
These conditions reduced to

X)oop ——X, =X,
2X]~p ——X,'

(3.13)

(3.14)

There is also a periodicity requirement that P on the
loop take on the same value at the junction when
this is approached from either side.

To understand the behavior of the solutions, it is
helpful to think of an analogy, in which Eqs. (3.6)
and (3.7) describe the position X at time y of a parti-
cle, subject to a potential J X +X —X /2. The
period of small oscillations in this well is )erg; os-
cillatory behavior need not be considered for loops
with a circumference less than this, and even for
larger loops the solution with the lowest free energy
for a given vector potential is monotonic between
the inner turning point and the junction with the
arm. If we take the origin of y where X is a
minimum, y-reversal symmetry implies that X(y} is
an even function. Thus the distance ~y ~

to the
junction is the same in each direction: The
minimum is opposite to the junction that is at
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y =+mR. The periodicity condition becomes

8(nR)= —8( rrR—) =m (4I@p+n),
where n is an integer.

Returning to the mechanical analogy, the particle
starts at Xo at "time" 0 and moves in its potential
for a time. mR. Its position and velocity X' at that
point determine the initial position and velocity of a
second particle (which describes P on the arm)

through the conditions (3.13) and (3.14); it moves in

the potential X —X j2 (with J=0) and comes to
rest at the end of the arm.

In our numerical solution to these equations we

chose Xo, R, and J as independent variables. We
found it simpler to integrate (3.6} numerically than

to code the analytic solution (3.8}, though the latter
was useful in developing analytical checks and

determining the behavior when J and Xo are both
small. The first integration, from y =0 to the point

where the arm joins, determines X, X', and e at
that point. The value of 8 determines the magnetic
flux through (3.15), and X and X' give the initial

conditions for a second integration along the arm.
The second integration proceeds until X'=0, and

the length required for this to occur determines L.
If the initial E [as given by (3.7)] is too large there

is no turning point: Not all combinations of J and

Xp are physically meaningful. An iteration pro-

gram adjusted Xo to get any desired I..
Figure 3 shows the variation of the order parame-

ter X with y on loop and arm for several values of J.
In Fig. 3(a) we have chosen R =0.2( and L =g, for
which there is a critical flux 4, =0.322@p at which

loop and arm are simultaneously driven normal. In
Fig. 3(b) R =0.2g and L = 1.5$, which is an exam-

ple of the case where the loop cannot be driven nor-

mal except at the special value 4 =4p/2.
We can summarize this figure as follows: Loops

with short arms can be driven normal by an applied
field, just as can loops without pendant arms.
Loops with long arms are not driven normal but do
not have a large magnetic moment either.

IV. AN APPROXIMATE TREATMENT

The solutions to the Ginzburg-Landau equation
found in the previous section can be categorized as
follows: (1) f nearly constant on loop and arm (for
loops with short arms); (2) 1( small on loop, variable
over a length -g of the arm and constant on the

rest of the arm; (3) g zero everywhere. The free en-

ergy is measured relative to case (3).
The first case is a good description over a wide
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range of current and flux (note the parameter values
for the top curves in Fig. 3) and so it is instructive
to estimate the free energy corresponding to it. The
condensation energy, as given by Eq. (2.1) is

F=( gl('+ , bg4)S(L +2—nR)

~2~2R 2

+E 2 f S(2rrR),
0

(4.1)

where S is the cross-section area of the wires. In
general the factor S(L +2~R) should be the total

FIG. 3. Order parameter as a function of distance
along loop and arm, for loop radius R =0.2 (in units of
(l. The central vertical axis is the junction point; to the
left we move around. the loop (only half the loop is
shown), and to the right we move out the arm. (a) L =1.
From the top, the curves are for (J,4)=(0,0), (0.2,0.041),
(0.4,0.094), (0.4,0.198), (0.2,0.253), (0.1,0.280),
(0.05,9.297), (0.01,0.316), (0.001,0.321). The curve for
(J =0, 4 =4,=0.322) coincides with the horizontal axis.
(b) L = 1.5. Curves from top are (J,4 ) = (0,0),
(0.2,0.041), (0.4,0.093), (0.4,0.209), (0.2,0.276),
(0.15,0.296), (0.10,0.323), (0.05,0.369}, (0,0.5). (@ is in
units of 4I).)
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volume of the superconductor. The last term can be
interpreted as one-half the product of the magnetic
field and the magnetic-moment IirR /c of the loop,
where the circulating current can be calculated
from Eq. (2.2),

4m.cE mHR

4p 4p

Minimizing (4.1) with respect to 1( gives

a g 4 2vrR

b R'@,' L+2~R

(4.2)

(4.3)

R L
2n.R

(4.4)

This describes the rise in 4, with small L which

may be seen in Fig. 1. The result can also be ap-
plied to the case of long arms [case (2)], by replac-

ing L by g. Equation (4.4) can then be regarded as

an effective critical field above which the magnetic
moment is small. Although this approach is less
accurate than the solutions presented above, it does
have the advantage that is readily generalized to the
cases of nonconstant cross section and multiple
arms.

which is similar to (2.4), except that the effect of
the field is decreased by a geometric factor, which
raises the critical flux to

field energy density in the Ginzburg-. Landau equa-
tion and simultaneously minimizing with respect to
A and g.

VI. RELEVANCE TO EXPERIMENT

Looking at Fig. 1 one might be led to expect that
dangling arms would lead to dramatic effects in the
magnetic properties of superconducting networks.
However, Fig. 2 casts some doubt on this, especially
in the context of the disordered superconductor.

The field axes in Figs. 2(a}—2(c) have the same
scale, showing that the universal periodicity in
4/4p leads to rather different field dependences
for loops that are not greatly different in size. A
disordered film would undoubtedly contain a wide
distribution of loop sizes; the superposition of their
magnetic responses shows an initial rise for small
fields until II (r & =4p,' it then decreases to zero
since the signs of the diamagnetic moments are ran-
dom for large fields. The curve is otherwise
featureless.

The presence of dead-end arms has two effects.
The first is to decrease the effect of the magnetic
field. The argument of Sec. IV indicates that the
magnetic field is scaled by a geometrical factor:

—1/2
L

Hdf ——H 1+
2~R

V. THE INDUCED FIELD

The induced current gives rise to a magnetic field
that has been neglected in the foregoing, appropri-
ate to the case where the cross-section S of the wire
is small [see Eq. (4.2)]. If S is not negligible, the
first effect is that the flux through the loop is less
than that due to the external field alone:

(P R 2H
C

where in this equation

in(64irR } 7
S 2

is the self-inductance of a circular loop. If S is
small the dependence of the induced magnetic mo-
ment on an external field is similar to Fig. 2 but
with a nonuniform shift to the right. The critical
field is unaffected since /=0 there. However, for
larger S the transition becomes discontinuous. This
effect is properly treated by including the magnetic

The second effect occurs when L & (ir/2)g; then
the loop is not driven normal. However, as Fig. 2
shows, the magnetic moment is quite small in this
region. It is difficult to imagine circumstances in
which this effect is measurable.

Experiments on the effects of applied field on
disordered superconductors more commonly study
the onset of resistance rather than the diarnag-
netism. Here the only relevant loops are those con-
nected to the external circuit. This is necessarily
the "long-arm" case, for which de Gennes's result is
that the loops cannot be driven normal: The mag-
netic field has no effect. Our results suggest that
under certain conditions, some of the loops will
have very small critical currents, complicating the
interpretation of resistive transitions.
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