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At low temperature the long-wavelength perturbations of the amplitude of the supercon-
ducting gap propagate as an undamped collective mode with a finite frequency. The
dispersion and damping of this mode are calculated. The phase or the Bogoliubov modes
of a superconductor are strongly affected by Coulomb interactions and rendered indistin-
guishable from plasmons. By contrast, the amplitude modes ar'e shown not to perturb the
charge density thus remaining unaffected by the Coulomb interactions. Under certain con-
ditions long-wavelength phonons couple to this mode. This coupling is derived and the ob-
servation of the amplitude inode through Raman scattering experiments in the charge-
density-wave compound NbSe2 are quantitatively explained.

I. INTRODUCTION

At long wavelengths and for temperatures close
to the transition, the dynamics of the amplitude of
the superconducting gap is given by the time-
dependent Landau-Ginzburg equation. ' This means
that under these conditions the perturbations of the
gap b,(r, t) are overdamped. We show here that at
low temperatures and long wavelengths there exists
a well-defined mode associated with the variations
of the gap. The frequency of this mode for q~0 is
26 and in this limit it is undamped.

Unlike the mode of the phase of the supercon-
ducting order parameter (the Anderson-Bogoliubov
mode), the amplitude mode does not perturb the
charge density and therefore is unaffected by
Coulomb interactions. The amplitude mode, unlike
the phase mode, therefore, remains experimentally
relevant. We have investigated these modes in order
to understand the result of Raman scattering exper-
iments by Sooryakumar and Klein (SK) on the
superconductor —charge-density-wave (CDW) com-
pound NbSe2. In these experiments, the spectrum
of certain phonons is investigated. We show how
these phonons couple to the amplitude modes of the
superconducting gap so that the latter are observ-
able in a Raman experiment. We are also able to
quantitatively explain the observations of SK using
parameters obtained from a variety of experiments.

As is well known the phase mode in the super-
conducting state arises from consideration of gauge
invariance. * This invariance is satisfied by the full
Hamiltonian but not by the BCS reduced Hamil-
tonian. The amplitude mode may similarly be re-

garded as arising from the invariance of the full
Hamiltonian to a certain local nonunitary transfor-
mation of the field operators first discussed by
Nambu. This transformation is sufficiently gen-
eral so that perhaps we11-defined amplitude modes
exist corresponding to condensation of any sort. As
an example, the familiar optical-phonon mode
below a charge-density-wave transition may be de-
rived from the general considerations with which
we derive the amplitude mode in the superconduc-
tor.

Besides the phase or the Anderson-Bogoliubov
modes, other collective modes for superconductors
have been discussed. There are the excitonlike
modes ' for which no conclusive experimental evi-
dence exist and the Carlson-Goldman modes that
have been observed in Al very near the transition
temperature. The exciton modes may arise due to
electron-electron attraction in angular-momentum
channels other than that of the condensate.
Carlson-Goldman modes are phase modes that are
not pushed up to the plasma frequency because near
the transition temperature the rate of conversion of
normal~superfluid fraction becomes very slow so
that counterflow can maintain charge neutrality.
The amplitude modes for superconductors that we
have investigated in this paper have been alluded to
by Abrahams and Tsuneto. ' To our knowledge no
attention has been paid to them up to now, perhaps
because of the lack of incentive from the experi-
mental side. Several different collective modes in-
cluding the analog of the present one have been in-
vestigated in the context of anisotropic superfluidity
in liquid He. Modes similar to the amplitude
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mode discussed here first appeared in a paper by
Nambu and Jona-Lasinio' in a dynamical
symmetry-breaking theory of elementary particles.
Recently this effort has been revived in the context
of quantum chromodynamics and the o meson has
been identified as the analog of the amplitude mode
discussed here. "

The simplest mechanical example of the phase
and amplitude modes is the motion of a particle in

a "jelly-mold"-shaped potential (see Fig. 1). There
is no restoring force for motion around the poten-
tial valley (the analog of the phase mode), but we
also expect radial oscillation of the ball at a finite
frequency, which is the analog of the amplitude
mode discussed here.

We shall first sketch the familiar calculation of
the phase mode within the Nambu formalism (see,
e.g., Ref. 4), because the derivation of the amplitude
mode follows siinilar lines. A brief account of the
present work has been published earlier. '

Ck

Pk=(ckl~c kl) ~c—kg
(2.2)

and the Hamiltonian (apart from constants) is
rewritten as

H, = g &k'4&3'4
k

+ —, g V(k, k', q)
k'q

X(q k+qr3+k )(+k' qq 3q k') ~

The ~'s are the Pauli matrices
(2.3)

0 —i
0

interaction mediated by the phonons.
We use the Nambu formulation, where the ellx:-

tron creation and annihilation operators are written
as two-component vectors,

II. THE AMPLITUDE COLLECTIVE MODE
IN SUPERCONDUCTORS

A. Model Hamiltonian

1 0
3 0

(2.4)

We consider a system of electron interacting via a
nonretarded potential V; the Hamiltonian is

t
H~ = ~ 6k Ck a Ck

ko

+ 2 ~ V k&k &q)ck+q&ck' qz'ck'&'ckz ~-
k'q

H, =Ho+H),
where Ho is the BCS reduced Hamiltonian

~0 g q k(~kr3+~rl )+k

(2.5)

To obtain the results of BCS, one writes (2.3) in the
form

(2.1) ~a =~k+&k (2.7)

The potential V(k, k', q), which is equal to
(k+q, k' —q ~

V
~
k, k'), includes the electron-

electron Coulomb repulsion as well as the attractive

PLITUDE
MODE

The propagator G (k, co) for 80 is

NI +6k 7 3 +A7 )
G(k, co) =

CO —Ek l5

where

Ek ——eg+ 6

(2.8)

(2.9)

PHASE MODE

FIG. 1. Mechanical analog of a system described by a
two-component parameter be'&. The analog of the phase
modes and amplitude modes are indicated.

is the spectrum for quasiparticle excitations. Re-
quiring the self-energy, shown in Fig. 2, to vanish
glvcs t11c llsllal Hartrcc-Fock rcnormallzatlon Xk of
the single-particle energies (which is the same in
both normal and superconducting states and is
therefore of no interest) as well as the BCS gap
equation
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FIG. 2. Quasiparticle self-energy X with the BCS ap-
proximation.

B. Collective modes

I T.he phase (Bogo-liubou) Anderson mode

b, ~r~h(r~c soa+ rs2i an) . (2.11)

More generally, the results should be invariant to
the gauge transformation

ia(r, t)r3 g
—ia(, r, t)~3

(2.21)

that leads to (2.11) for a(r, t)=const. Satisfying
gauge invariance ensures that in response to a
longitudinal-electromagnetic perturba'tion, the con-
tinuity equation

In Eq. (2.6} the phase of the gap parameter has
been arbitrarily chosen in the ~~ direction in v.

space. In fact, identical results for all physical
properties should be obtained by choosing the phase
to lie anywhere in the r &-r2 plane, i.e., for

2l 6%2qp
1(k+q, k)=r3+

qo —a q
(2.19)

where a = —,U~, with U~ the Fermi velocity. This
shows that associated with a charge-density pertur-
bation (neglecting the Coulomb interactions) the
phase of the superconductor propagates as a collec-
tive mode with dispersion relation

where A is the vector potential of an external field.
An approximation which satisfies the Ward identity
(and hence the continuity equation) is the integral
equation

I'(k+q, k)= y(k+q, k)

+i I r3G(k'+q)1 (k'+q, k')

d4k'
+G(k )r3 vkk'

(2n )

(2.18)

This is shown in Fig. 3 and is simply the sum of
ladder diagrams generated by the residual interac-
tion H~.

The electromagnetic field couples to the electron-
ic charge density 4 r3% Takin. g y =r3, Eq. (2.18)
has the solution

(0 r34—}+7'P —0' =0yp
Bt Pl

(2.13) qo=aq . (2.20}

or

g qqJp
——0 (2.14)

is satisfied. Here J& is the expectation value of the
four-current operator:

J„(q)=g q't yt (P+qp')q't +e (2.15)

This is as it should be since the variation of the
phase of the gap reads to a supercurrent. The
dispersion relation for the phase collective mode
can be easily obtained from Eq. (2.18) by looking
for solutions of the homogeneous equation with
y=0, and I =P(qo, q)rq.

The relation between the continuity equation and
the integral equation for the vertex can be seen from
the fact that if we put

(p=0}
yp(p+q p)= '

1—(p;~ —,q;) (p, =i=1,2, 3) .
m

(2.16) y =Go (P +q}r3
—r3Go (p)

—1 —1

= +quyp(P+SP) ~ (2.21)

The BCS theory makes a specific choice of phase,
and therefore does not satisfy the continuity equa-
tion in response to a longitudinal-field perturbation,
whereas the full Hamiltonian IIo+H~ does. To ob-
tain the correct linear response, one must consider
the modification of the vertex y to the same order'

as the modification of the propagator. The relation
between the modified vertex I and the propagator
is given by the Ward identity

where y& is the bare charge-current operator [Eq.
(2.16}] and Go is the propagator in the absence of
superconductivity, then (2.18) has the exact solution

BX
~a+

aA„
(2.17) FIG. 3. Renormalization of the vertex I by the resi-

dual interaction Hl.
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I =G '(p+q)r3 —r3G '(p)

= g qual q(p +q,p) . (2.22)

Taken between two quasiparticle states, matrix ele-

ments of (2.22) are zero and thus the continuity
equation for the "dressed" quasiparticle states is sa-
tisfied.

2. Amplitude mode

We have sketched the familiar calculation for the
phase mode because in calculating the behavior of
the amplitude mode we shall follow a similar pro-
cedure. Suppose we are interested in the response to
a perturbation that directly couples to the magni-
tude of the gap; i.e., the vertex in ~ space is propor-
tional to ~]. The signature of a collective amplitude
mode will be that there exists a solution of the
homogeneous version of (2.18) with y= 0,
l =P(q)ri along some line qo(q) that is the mode
dispersion relation. Thus we look for solutions of

P(q)ri ———Vf r3G(k+q)$(q)r&G(k)r3

Some care must be exercised at this point because if
we set v=26, q=0, then the integrand in (2.39)
contains a term 1/ek leading to a divergent integral,
while the numerator is zero. However, in the limit
v~25, q=0, the integral is well defined, and to
order q we obtain

d k v —(E' —e) —4h
(2rr) E(v 4E —)

Performing the angular integral leads to

(2.27}

(v —4A ——,UFq )J =0,

where the integral J is given by

(2.28)

J=N(0) V f de
E(v 4E )— (2.29)

with N(0) the electronic density of states and co, the
cutoff (Debye) frequency. Equation (2.29) is easily
evaluated, and with co, ))5, we have

N(0)V 1 v+[(v —4b, )]'iJ=, —ln
2[(v —4b )]' v v —[(v —4b, )]'

(2.30)

d4k

(2m. )
(2.23) for v) 2A .N(0) V

4A
(2.31)

where we have assumed Vkk
———V in the separable

BCS form. Provided qUF ~&A, and with the as-

sumption of particle-hole symmetry, the right-hand
side (rhs) of (2.23) is proportional to r

&
and we can

perform the frequency integral to obtain (hereafter

$0 v)

d k E+E' EE'+em''

(2rr )' EE' v' (E +E')'+i5—

d'k
1+—, V =0

(2rr) E(v i4 E)—(2.25)

When v=26, this reduces to the gap equation
(2.10) that is satisfied, and we deduce that there ex-

ists a collective mode with a mass 2A in the long-
wavelength limit.

In order to determine the dispersion relation at
long wavelengths we make use of the gap equation
to write (2.24) in the form

d k E+E' v —e' —e —4h
(2~)' EE' v' (E+E')'—

(2.26)

(2.24}

with the notation ck 6 E'':6k+q etc. We notice
that in the limit q =0, Eq. (2.24) becomes

Thus the dispersion relation for the amplitude mode
1s

'Vq =4~ + 3 UF (2.32)

1+VE(q, v~ iy~) =0—, (2.33)

and separating the real and imaginary parts (assum-

ing y~ &&v~) we obtain

r}ReE(q, v )

V=V
q (2.34)

where v~ is given by Eq. (2.32). From (2.31) we
have

BReE(q, v) N(0)
av

(2.35)

while the imaginary part is

Since the frequency at finite q moves up into the
continuum of quasiparticle states, the mode will be
damped, i.e., v is complex. This corresponds to the
fact that (2.24) has an imaginary part for v) 26.
We write (2.24) formally as
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d k EE'+gg' —52
In~K =—

4 (2n. )3 EE'
If the Lagrangian

We obtain

m N(0) (v —2b )

2 UFq

q 24
UFq

X5(v —(E+E')} (2.36)

(2.37)

(2.38)

is required to be invariant under an infinitesimal
version of the transformation (2.41), one gets the
"continuity" equation

a 8
iO

at at

(2.42)
and consequently the mode will be overdamped for
qUF/6 ) 1.

The T=O calculations presented here are actually
valid at finite temperatures as long as quasiparticle
lifetimes are long. The latter vary at low tempera-
tures as exp(b /k&T). Near the transition tempera-
ture the collisionless limit in which the present cal-
culations are performed is no longer valid, and the
mode becomes overdamped. The amplitude of the
superconducting gap is then describable by a time-
dependent Landau-Ginzburg equation.

3. Invariance relations

The existence of the amplitude mode is related to
a transformation property of the Hamiltonian in the
same way as the phase mode was seen to be related
to the charge-continuity equation. If we assume a
bare vertex of the form

}'=Go '(p+q)&i+riGo '(p»},

then the solution of (2.18) is exactly

I =G '(p+q)r, +r, G '(p) .

(2.39)

(2.40)

%~e (2.41)

The existence of these exact solutions is a conse-
quence of the invariance of the full Hamiltonian
(2.3) to the nonunitary transformation

This is precisely the procedure by which one gets
the usual continuity equation (2.13) except that one
uses the gauge (unitary) transformation (2.12).
With the use of the definitions of (2.39) and (2.40),
Eq. (2.42) becomes

4'y% =0, (2.43)

where 4 is the true Heisenberg operator. Thus the
Ward identity (2.40) guarantees that Eq. (2.42) will

be satisfied in the quasiparticle picture. Equation
(2.42) can be interpreted in a straightforward
manner as a "pseudocontinuity equation" for the
Cooper-pair density. The current operator for
Cooper pairs is

j„'(q)= g %kg„'(k +q, k)%'k+~,
k

where

(2.44)

y„'(k+q, k)= . p=O
—l /2Plg 7 p, P =1 = 1,2, 3

(2.45}

and Eq. (2.39) becomes

y = g (2k„+q„)y„'(k +q, k) . (2.46)

As pointed out by Nambu, there exist two other
continuity equations that follow from requiring the

invariance of the Lagrangian under infinitesimal

transformation of the form

and simultaneously changes the gradient operator
by

V~V+a~) .
and

qy ia(x)qy qy f qy 4 ia(x )

%~e ' 0 0'~%'e '

(2.47)

(2.48)
The invariant is most easily seen by writing the
Hamiltonian in real space

0= f p'p (r)&3Vqi(r}

There exist %ard identities corresponding to both
these transformations, that are of the form
(2.21},(2.22) and (2.39),(2.40), viz,

+ V r, r'%' r w3'0 r

Xq t(r ')r3%(r ') .
) =Go '(p+q) —Go '(p)

I =G '(p+q) —G '(p),
(2.49)
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and k+q

G0 (p +q)r2+r2GO (p)

I =G '(p+q)r2+r2G '(p) .
(2.50)

However, either of these lead to any new collective
modes, since y= I in each case.

k

FIG. 4. Screening of the vertex via the Coulomb po-
tential V, in a charged superconductor.

4. Coulomb effects

We have so far considered only neutral supercon-
ductors, and the inclusion of long-range Coulomb
interactions is well known to have important conse-

quences for the phase mode. ' Including the
screening of the vertex by the Coulomb potential

V, (q)=4' /q leads to an extra term on the rhs of
the vertex equation (2.18) (see Fig. 4), which is

d4k
i V, (q)—r3 J Tr[r2G (k +q)I (k +q, k)G (k)]

(2~)

(2.51)

With I proportional to w2 or r3, the integral is
finite and thus (2.51) is proportional to 1/q, which

diverges. The next result is that the phase mode is

pushed up to high energy and becomes the plasma

oscillation of the electron gas, that is the same in

both superconducting or normal metals.

For the amplitude mode, we set I =fr~ as in

(2.23), and (2.51) becomes

dco d k 2b, (a+e')
tV, q—r3 (2') (co —E )[(co+v) E'2]—

(2.52)

where the order parameter is the induced charge
density at wave vector q, of the form

pcos(q r+P) . (2.53)

III. INTERACTION WITH PHONONS
IN CDW MATERIALS

For an incommensurate CDW, q bears no relation

to the reciprocal-lattice vector, and hence the total

energy is invariant under a change of the phase P.
This leads to the existence of a phase mode with an

acoustic dispersion relation. There exists also a
mode corresponding to the fluctuation of the ampli-

tude p, that in this case is simply an optic phonon.
The dispersion relation for the CDW phase and am-

plitude modes has been derived before by Lee, Rice,
and Anderson. ' These modes can be derived in a
precisely analogous fashion to the superconducting

amplitude and phase modes. '

A similar analysis also reveals that an amplitude

mode exists at low temperatures also in materials

with a condensed spin-density wave. The analog of
the phase mode in that case is, of course, the spin-

wave mode.

which is zero if there is particle-hole symmetry, and

hence Coulomb interactions produce no renormali-

zation of the r ~ (amplitude) mode. This is to be ex-

pected because the charge 4 ~3%' is invariant under

the transformation (2.41) and there is no coupling

between the charge density and fluctuations in the

amplitude of the gap.

The superconducting amplitude mode is not

directly observable in normal superconductors or
He-8 because there is no coupling to charge fluc-

tuations as we discussed in Sec. IIB4; its observa-

tion requires a field which couples to the electrons

via the ~& vertex.

5. Amplitude modes in other states

We see that there exist two distinct collective

modes in a superconductor which correspond to

fluctuations in the phase and amplitude of the gap.
We believe that this is a quite general result for any

system which undergoes a condensation into a state

described by a two-component order parameter. A

familiar example of this behavior is provided by an

incommensurate charge-density-wave (CDW) state,

A. Deduction of the interaction Hamiltonian

In CDW materials there is such a coupling be-

tween the electrons and the soft-phonon mode

describing the phase transition from the CDW to
normal state as we have discussed earlier in a brief
note. ' The layer compound 2H-NbSez undergoes a
transition from the normal state into a slightly in-

commensurate CDW state at Td ——33 K, and be-

comes superconducting below T, =7.2 K. Measure-

ments of the charge of T, and Td with pressure
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H, t,h gq '(bq+b ——q) g%'t, r)%'a+q,
k

(3.1)

have demonstrated that there is a coupling between
the amplitude of the CDW lattice distortion and the
superconducting gap. ' As the hydrostatic pressure
is increased from zero, the superconducting transi-
tion temperature rises while the CDW transition
temperature falls. At around 35 kbar, T~ falls
below T„and for higher pressures up to 140 kbar,

T, is almost independent of pressure.
It was argued' that this phenomenon can be un-

derstood by considering the effect of the amplitude
of the CDW lattice distortion on the density of
states at the Fermi level, which determines the su-

perconducting transition temperature T, . In the
CDW state, a gap opens up over part of the Fermi
surface in the direction of the q vectors of the
CDW. This reduces the average density of states at
the Fermi surface N(0), and tends to lower T,
below the value expected for a non-CDW sample.
As T~ decreases under pressure, the amplitude of
the CDW lattice distortion Qp will also decrease,
thereby gradually restoring the Fermi surface and
increasing T, as well as the BCS gap parameter A.

The CDW phase transition is accompanied by the
softening of a phonon mode. Below the transition,
this phonon becomes frozen with an amplitude up.
However there still remains a time-dependent oscil-
lation about this nonzero equilibrium value, i.e.,
u(t)=up+u&(t). The mode corresponding to u&(t)
is a q=0 optic phonon with the same symmetry as
the distortion up and is often referred to as the am-

plitude mode of the CDW (CDW-AM). Keeping in

mind that Qo is coupled to the BCS gap 5, the
CDW amplitude mode will produce a time-
dependent modulation of h. Thus the electron-
phonon coupling for this mode will be of the form

&(P)=&p+ &)X(P)

as a function of pressure p at T =0, where

X(p ) =u p(p) —tt p(p =0)

(3.3)

(3 4)

described the variation of the CDW lattice distor-
tion with pressure. Thus we have

gq p
——b ](R/2NMtop)' (3.5)

with N the number density of unit cells, M the re-

duced mass, and top the frequency of the phonon-

amplitude mode.
We assume T~a up (T =0) which is a general

property of a mean-field-like second-order transi-
tion. From the pressure data, we have

BT BT

8Td BP

aTd

Bp
=—0.15,

p=0
(3.6)

and using the BCS result 6=1.76k, T, we obtain

k~ Td5)-—0.5 (3.7)

We define a dimensionless coupling constant

4g' 'N(0) 1

i6co 0
(3 &)

with

separate couplings in (3.1) and (3.2). However, the
data do not allow us to extract separate values of
the coupling constants for each symmetry type, and

so we shall use a model with only a single CDW
amplitude mode.

In order to estimate the value of g' ', we make
use of the measurements of T, and Td under pres-
sure referred to earlier. ' We assume that BCS gap
6 is described by

A, =N(0)V=[ln(2ficop/b, )] ' 0.3 . (3.9)
where b,b are annihilation and creation operators
for the phonon amplitude mode, with q=0. Be-
cause the coupling occurs through the gap parame-
ter b„ the vertex is of r& symmetry. For complete-

ness, we also include the more conventional cou-

pling through the charge vertex ~3, although we
shall see later that this does not lead to any impor-
tant effects. Thus

H, ph gq '(bq+b——q) g% gr3%'g—+q . (3.2)
k

Strictly there are two amplitude modes of dif-
ferent symmetry and so we should include two

The density of states N(0) is estimated from the
width of the lowest d band from band-structure cal-
culations to be —1.5 (eV) ' per Nb. ' We find

a=5&(10 '/up (A) . (3.10)

@=0.3 —0.6 . (3.11)

The atomic displacement uo has not been measured

for 2H-NbSez, but in 2H-TaSez it was found to be
=0.025 A, and in 2H-NbSez it is estimated to be

about
p

to 3
of this, bearing in mind the factor-

of-4 lowering of T, .' As a rough estimate, we ob-
tain
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B. Calculation of the phonon self-energy

The full Hamiltonian is now given by

H =H, +H, ph+Hph, (3.12)

with II, given by (2.5), H, ~h by (3.1) and (3.2), and

H pP
——%coPbq bq (3.13)

is the phonon part of the Hamiltonian describing
the CDW amplitude mode. We restrict our discus-

sion to q=0, and we are interested in calculating
the self-energy of the CDW amplitude mode in or-
der to determine its spectral weight. Owing to the

presence of the superconducting amplitude collec-
tive mode at a frequency close to the BCS gap 2A,
we may expect that the coupling term H in the ~~
vertex will introduce a structure in the phonon spec-
tral weight S(v) for v-2b, . However, to obtain
this result we must perform the vertex renormaliza-
tion that we discussed in Sec. II.

We write the Dyson equation for the phonon pro-
pagator D (v, q=p) as

The phonon self-energy including vertex corrections
is given by (see Fig. 5)

II(v)= i j—Tr[yG(k, co+v)I (v)G(k, co)]

d kdN
(2n. )

where we have taken q =0, v+0, and

y g (4 )7P +g (p )7e

(3.15)

(3.16)

and I (v) can be calculated by solving the integral
equation (2.18). If we ignore this vertex renormali-
zation and set I =y, we obtain

II(v) =11,'(v)+11~(v), (3.17)

FIG. 5. Self-energy H of an external field interacting
with a superconductor.

D '(v)=Do '(v) —II(v) . (3.14)
I

where

d kdilo(v)= i(g ) J—Tr[r1G(k, co+v)r1G(k, co)]
(2n. )

d kd
IIO(v)= i(g1') f—Tr[r3G(k, co+v)r3G(k, co)]

(2n )

Equations (3.18) and (3.19) can be readily evaluated and we obtain

(3.18)

(3.19)

ReII0 (v) =
—2N(0)g' '

A,
4A —v2 2

'/'

v2
tan 'x for v & 2b,

for v&2b,
2 2

'/'
(p)(Q)g1 1v4b

1
1 +x

2
"

1 —x

(3.20)

ImH p
——

r

0, v&26
2 2

' 'N(0)
2

v&26
(3.21)

ReII~()(v) =

Q2—8g'~' N(0), tan 'x for v &2b,
v(4g2 v2)1/2

—4g~ N(0), ln(p)2 for v &26
v(v —4b, )'/2

(3.22)

0, v&26
lmII&(v) = 4~g V»1'N(p)q2

v &2k
2 4g2)1/2 '

where

(3.23)
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v
X =

v2 4+2

1/2 2 —1/2

1+
C

(3.24)

Equations (3.20) and (3.21) give a weak, rather featureless contribution to Ilp(v). However, il~p(v) diverges
for v =25; within this approximation this automatically leads to a 5 function in the phonon spectral weight at
a frequency just below the superconducting gap 2b, . This is the result obtained by Balseiro and Falicov, ' who

used the Hamiltonian (3.21) with g' '=0, neglecting vertex corrections
Vertex corrections make a dramatic modification to these results as we should expect from our discussion in

Sec. II. We concentrate first on the r3 vertex, and calculate I from (2.18) with the inclusion of the Coulomb
corrections (2.51). In the long-wavelength limit Eq. (2.51) gives the dominant term in the vertex equation ow-

ing to the 1/q behavior of V, (q) and we obtain

d4k
1+iV, (q) fTr[r3G(k+q)r3G(k)]

(2~ )
(3.25)

and from (3.15),

II'r '(q, v) =IIIt'(q, v)/[I —( V, (q)/g'~' )IIp(q, v)] . (3.26)

Thus the singularity of IIp(q, v) for v~26 and

q~0 disappears in the screened version, and we ob-

tain

g(p)~
II~( q, 2b, )=-

(4m e /q ). (3.27)

1 ——ITr[r)G(k+q)r)G(k)]
V

2

and from (3.18),

d k

(2n )
(3.28}

which is small. We note that the denominator of
Eq. (3.25) is just the random-phase-approximation
dielectric function e(q, v). Both the vertex I and

the polarizability II will diverge when e(q, v)~0,
which occurs only at the plasma frequency co„~ in

either a superconducting or a normal metal. Since

co&~&&cop, this has no effect on the phonon self-

energy. This is physically reasonable since the
electron-phonon coupling term 0, ~~ excites
particle-hole pairs near q=O, which are screened by
the Coulomb interaction, leading to effects only

close to the plasma frequency of the electron sys-

tem.
We now turn to the renormalization of the r&

vertex. As we remarked in Sec. II, the Coulomb re-

normalization of the r& vertex by Eq. (2.51) is zero,
so we can work with Eq. (2.18). We set y =g' 'r&,

and multiply (2.18) by r
&

and take the trace, to give

l

leading to an expression for the phonon self-energy,

Ila(v)=II (v)/[1+(V/2g' ' )II (v)] .

(3.30)
Note that for v = y 2A, we have

no (2b ) = —2g /V ~ (3.31)

and so the denominators of both (3.29) and (3.30)
become zero, leading to singularities in both I and

II. This is of course the signature of the r& collec-
tive mode with a dispersion relation given by (2.32).

%e now find a pole in the phonon spectra1
weight, at a frequency just below 2h given by the
solution of (3.14) and (3.30), viz,

vg =N p +2N p II ( vg ) (3.32)

In terms of the dimensionless coupling constant o.,
we have for u «1,

(3.33)

which has the approximate solution, for a « 1,

2a 4h
' —2

vg
——2b 1 —

2
1 ——

27T'
COO

(3.34}

The spectral weight S(v)= —1/vr ImD(v) is for
v &2A,

8~ 3 (26/ro p )
S(v) =5(v —vg)

vr (1—4b /cop)

1(v)=g' 'r, [/I+( V2/g' ' )ll (v)],
(3.29)

(3.35)

while for v g 2A we find a broadened peak close to
the bare phonon frequency cop (see Fig. 6).
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FIG. 6. Phonon spectral weight of the CDW' ampli-
tude mode for three different values of the coupling con-
stant a, for cop=4.8kp.

C. Experiments in NbSe2

28-NbSe2 is a good candidate in which to ob-
serve this new mode. Here we have ~o-40 cm
and 26=17 cm ', and we have already shown that
the coupling constant a is quite large. Phonon Ra-
man scattering measurements have already been
made on 2H-NbSe2 by SK. They showed that in

Since a varies with the phonon frequency as coo

from (3.5) and (3.8), the strength of the pole at vs
varies like coo,' consequently coo/26 must not be
too large or the effect will be unobservable.

In Fig. 6 we present the spectral weight, calculat-
ed numerically using Eq. (3.30) for a varying from
0.1 to 0.5 with coo ——4.860 as is appropriate for
NbSe2. The phonon in the normal state is assumed
undamped, The theory states that below the super-
conducting transition the peak at coo broadens and a
sharp peak appears just below 260,

CDW samples, the CDW amplitude mode (CDW-
AM) can be seen in both A and E symmetries close
to 40 cm '. On cooling below T, =7.2 K, they
found new "gap" modes in both symmetries at fre-
quencies close to 25. Neither the gap modes nor
the the CDW-AM seen in superconducting samples
of 2H-NbSe2 with sufficient impurities seem to
'suppress the CDW transition. Where both sets of
modes are seen, spectral weight is transferred from
the gap modes to the CDW-AM when a magnetic
field is applied, demonstrating that the gap modes
are a coupled excitation of the CDW-AM and su-
perconductivity.

Our theory is in good agreement with the above
results; we identify the pole at v=vg with the gap
modes of SK. To obtain SK's result that 10—15 'f/o

of the phonon spectral weight is transferred into the
new gap modes, we need a =0.4, which is roughly
the value we estimated earlier for the coupling con-
stant in 2H-NbSe2.

Especially noteworthy in the experiments is the
fact that the phonon peak near coo broadens below
the superconducting transition and the new feature
near 260 is actually much sharper than the one near
~0. As discussed above this behavior is reproduced
by the theory.

SK observe that as a function of a magnetic field,
the strength of the peak near co =26 decreases and
that in the main phonon peak increases; the posi-
tions of the peaks do not change if fields are consird-

erably below H, 2. This is precisely the behavior one
would expect in a type-II superconductor, where the
field increasing above H, i, the density of vortices
increases. The volume of the "normal" region (core
of vortices) thereby increases, but the magnitude of
the gap in the superconducting regions remains al-
most the same. The strength of the peak near
ar =26, then reflects the volume of the "supercon-
ducting region. "

NbSe2 was an especially favorable case for ob-
serving the amplitude mode since coo is not too far
above ho. Other places where it ought to be looked
for by Raman scattering are 2H-TaSz and the 315
compounds, where both the right optic phonon and
superconductivity exist. Direct propagation or reso-
nance experiments to observe the amplitude mode
appear to be difficult because of the vanishing
group velocity as q~0 and the relatively high fre-
quency of the mode and due to the fact that elec-
tromagnetic radiation is not a suitable coupling to
the modes.
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