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Calculation of the nonlinear dielectric function in semiconductors
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We have developed a nonperturbational treatment for the calculation of the optical suscepti-

bility of semiconductors in the vicinity of the two-photon biexciton resonance, based on opera-

torial techniques. The analytical expression of the intensity-dependent dielectric function shows

a two-photon polariton effect, which displays bistability when local-field considerations are in-

cluded in the calculation.

r

The observation of strong nonlinear-optical effects
in semiconductors in the vicinity of the biexciton
two-photon resonance, such as up to ten-photon mix-

ing, ' has raised the problem of the description of the
nonlinear optical susceptibility in such systems.
Clearly, the near-resonance conditions and the giant
oscillator strength of the exciton-biexciton transition
render doubtful the validity (especially at high inten-
sities) of the traditional perturbational formulation of
nonlinear optics in terms of successive orders of the
optical susceptibility. At the same time, the interpre-
tation of biexciton spectra in semiconductors has met
with many difficulties which stem essentially from
the fact that at present —despite some attempts"—
there is no comprehensive theoretical description for
the optical response of biexciton at high light intensi-
ties. For example, the broadening of the biexciton
absorption line was thought to result from collisions
in the exciton-biexciton gas, a hypothesis that has
been discounted by recent experiments which argue
in favor of power broadening due to the radiative in-

teraction. '
In this Communication we outline a semiclassical

nonperturbational method for the calculation of the
nonlinear optical susceptibility of semiconductors in
the vicinity of the two-photon biexciton resonance by
treating the electromagnetic field classically and the
material excitations quantum mechanically. The
method relies on second quantization operator tech-
niques which consist of simple algebraic manipula-
tions of the material excitation operators while at the
same time clearly underline the physics involved and
the approximations invoked. Damping is treated
phenomenologically by simply including at the end of
the calculation an imaginary part in the corresponding
frequency. We apply this method to the description
of experiments involving one laser beam. That is, we
calculate the nonlinear dispersion (intensity-dependent
refractive index) of the semiconductor for the case of
negligible exciton and biexciton damping. Application
of the method to multibeam experiments, as, for
example, four-wave mixing, is quite straightforward.

The Hamiltonian of a semiconductor interacting
with an electromagnetic plane wave with real electric
field Ecos(kr —cut) near the biexciton two-photon
resonance can be written as

H =Hp+H) (la)
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where bk and bk (Bi, and Bk) are the creation and
annihilation operators for an exciton (biexciton) of
wave vector k and frequency c»( 0). These operators
are assumed to follow Bose commutation relations.
The exciton transition dipole per unit is denoted by

p, , N is the number of unit cells in the crystal, while

Q represents the exciton-biexciton transition dipole

I

matrix element. By dropping the antiresonant terms
in H~ the rotating wave approximation has been in-

voked. Because of the selection rules of the radiative
interaction only excitons with k' = k and biexcitons
with E =2k need be considered. We may thus
suppress for brevity the wave-vector indices and the
phase factor e'~ in Hp and H~.
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The polarization induced on the system by the radi-
ation field is given by

p +P +

N —b +b +—8 b+Bb
V V

=—P] +P2 (2)

where Vis the crystal volume. For the sake of clari-

ty, the overall polarization is separated into two parts,
P~ the direct contribution of the ground state to exci-
ton transition, and P2 the exciton to biexciton term.

~
P+) is the perturbed wave function at large positive

times, when the radiative interaction is turned-on adi-
abatically. The adiabatically accessible state is relat-
ed to the initial (unperturbed) state of the system

~ yo) by the unitary transformation

/++) = U/+ )

overall nonlinear susceptibility is given by

P +P jy p, '5'5
E V [Sn-(@E/2)']' '

If we disregard all other polarization sources in the
system, the dielectric function is given in cgs units by

cdLTA 5

[&&—( E/2)'1'

where ~Lr =4m Np, '/V is the longitudinal transverse
splitting. If relaxation mechanisms are included, the
detuning parameters ~ and 5 are complex, so that the
dielectric function is also complex. It is easily shown
that the expansion of e in powers of the electric field
yields the classic dispersion relation for the exciton
polariton, the standard expression for the third-order
susceptibility X", and so on.

It is useful at this stage to compare Eq. (8) with

the expression obtained by Marz et al. ' through
Green s-function techniques. Within the rotating
wave approximation, and taking e =1 and co = 0/2
their expression can be written in our notation as

such that U '(Ho+H&) Udiagonalizes the Hamil-
tonian.

The nonlinear polarization is therefore obtained as

0)LTD

65 —n, (P )e'
(9)

~= AoU —Ufo
V

(4)

The response of the system at the frequency ~ is
easiest calculated if we place ourselves in a rotating
frame at frequency co for the excitons and 2~ for the
biexcitons. In that frame of reference the Hamiltoni-
an is

FIJI,2E

T'78 —(yE/2)' '

Q+2y2E3
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If E is identified with the incident electric field the

H'=Sb b+bB"B—JN (b +b)
2

—(~ ) (B'b+Bb"),
2

where S=~o(k) —co and 5= A(2k) —2&v. The uni-

tary transformation which diagonalizes 8' can be ex-
pressed as three successive partial transformations:
two translations, one for the exciton and one for the
biexciton "oordinates, and a rotation mixing the two

types of coordinates. While the details of the calcula-
tions will be developed elsewhere, ' we just give here
the expression for the induced polarization calculated
according to Eqs. (2) and (4). If the exciton-
biexciton system is in its ground state before the ra-
diative interaction the only nonzero terms in the po-
larization are

where n~ is the polariton density and e the unit elec-
tric field. It is readily seen that if the direct contribu-
tion of the biexciton transition to the polarization P2
[Eq. (6)] were neglected in the calculation of the
dielectric function, our Eq. (8) would reduce to Eq.
(9) for n~=E'/4.

Figure 1 presents a comparison of the intensity-
dependent dispersion relation calculated (a) according
to Eq. (8) and (b) according to Eq. (9) with the sub-
stitution n~ E2/4. The parameters used are those
of CuC1: coo=3.204 eV, Q =6.372 eV, eoLT=5.6
meV, and /=1.65 X10 '7 esu, with no damping.
The dispersion relation in the vicinity of the two-
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FIG. 1. Polariton dispersion relation near the two-photon
biexciton resonance in CuC1 (a) using the total polarizability,
(b) neglecting the direct biexciton contribution as in Ref. 6.
Curves correspond to intensities of 1 MW/cm ( ), 10
MW/cm2 (———), and 100 MW/cm2 ( )
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6+2
Eloc =

3
Einc (10)

The dielectric function is then given by the implicit
equation

photon biexciton resonance (equals the two-photon
polariton effect) is qualitatively different in the two
calculations. The scarcity of experimental data at
present, however, does not permit us to validate one
calculation over the other through a quantitative fit.

Now, the field seen by the exciton-biexciton sys-
tem is not equal to the incident field but contains
also the contributions of all polarizable entities in the
crystal. If the electrons are not delocalized with

respect to the holes in the excitons and the biexcitons
(a condition which is approximately satisfied in CuCl)
the local field is related to the incident field according
to
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FIG. 2. Calculated refractive index of CuCl as a function
of incident intensity, in the vicinity of the two-photon biex-
citon resonance (3.186 eV): (a) without local-field con-
siderations and (b) including local-field effects,

Figure 2 presents a numerical solution of Eq. (11)
in the vicinity of the two-photon biexciton resonance
in CuC1 as a function of the incident intensity. As
seen in Fig. 2 for some frequencies the refractive in-

dex of the semiconductor is not a single-valued func-
tion of the intensity. That is, the local-field effect in-

troduces a feedback which may produce an intrinsic
bistability in the optical response of the semiconduc-
tor. Since near the biexciton resonance the light in-

tensities involved in bistable behavior are relatively
low, bistability should be readily observable in the re-
flectivity or transmittance of CuC1. In addition, since
no optical cavity is necessary to provide a feedback
mechanism this bistability should display a very fast
response.
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