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Phase averaging in one-dimensional random systems
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We calculate the resistance of a random sequence of scatterers and show that, in general, the

phase uncertainty does not increase with the length of the wire. We elucidate the special cir-

cumstances under which phase averaging is appropriate.

In recent years, there has been considerable con-
troversy surrounding the resistance of thin wires
described by a random one-dimensionai (1D) poten-
tial. It has been assumed that the phase of the wave
function becomes random for a sufficiently long wire
and that phase averaging occurs. ' Although phase
randomization can occur by phonon scattering and/or
by variation in the local phase between scatterers, in

the zero-temperature theory discussed by many au-

thors, only the latter is relevant. In this Cornmunica-
tion we examine this limit in some detail and show
that phase averaging only occurs if the phase is ran-
domized after scattering from each obstacle. Using
longer segments will not, in general, increase the ten-
dency to phase average. We illustrate these points
with a simple example; a fuller account of the general
case will be given in a forthcoming paper. '

The resistance of a one-dimensional wire may be
written'

h 8R=——
2

where h/e2 = 26 k 0, T and R = 1 —T are the
transmission and reflection coefficients. A one-
dimensional potential can always be broken into a
series of segments. There may be a natural way of
doing this, as in Fig. 1, where each segment contains
a single 5 function, or it may be done more arbitrarily

for a less structured potential. As scattering takes
place at each segment, T gets smaller and the resis-
tance (R increases exponentially with length.

Thus the appropriate quantity to average is the log-
arithm of the resistance, as it is this which obeys the
central limit theorem. "

In general, neglecting spin, the dimensionless resis-
tance R /T for a sequence of n segments, written z„,
may be obtained from the transfer matrices T„ that
control the scattering of amplitudes at single segments.
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where the scattering is characterized by an amplitude
p„and phases H„and $„. A similar matrix M„
describing the scattering by n segments is given by
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This satisfies

+ 1n(1+ t„+2t„'/'cose„) (sa)

M„=T„M„)
from which one obtains the following relations for z„.
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r„exp[i (p„—n„) —i (p„ t
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s„+r„,exp(ie„)
exp(ie„) +s„r„,

where

&n = nn t+ pn t+ tin 4-n—-
and

(5c)

FKJ. 1. Sequence of equal strength 8 functions, with ran-
dom spacings. The segments i —1, i, i +1, etc. , are separat-
ed by dashed lines.
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These equations are exact and completely general.
They are in a convenient form, because in the ther-
modynamic limit (n ~), r„1and all quantities
are well behaved. The random-phase assumption
suggests" that there is a "randomness length" at
which the phases a„and P„become independent ran-
dom variables uniformly distributed over 2m. How-
ever, in the thermodynamic limit it is clear from (Sc)
that u„—P„becomes independent of n Th. us,
although they may individually be distributed over
2m, they are not mutually independent. The phase of
interest, when one addresses questions concerning
phase averaging, is the quantity e„on the right-hand
side of (Sa), and we now examine this in some detail.

For purposes of illustration we restrict the discus-
sion to the example of randomly spaced S functions
of equal scattering strength p. Initially, we divide the
system into segments in the most natural way, with
one S function per segment as shown in Fig. 1.
Iterating (Sa) yields

ln(1+ z„)= n a = n (at+ az)

the interval yp+ hy, we have

1 for e+ Eke ~ e ~ e —b, eP(e)= 2he
0 otherwise,

L

where

&=2(tan 'p' —k y )
and

h~ = 2kpdty (12)

The integral for uz [Eq. (9a) with r = 1] can be ob-
tained numerically. In Fig. 2, this is compared with

where
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Since all segments now have equal scattering strength
and in the thermodyamic limit terms of order n ' and
n ' can be neglected, we have
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and

n)=ln(1+ p) (8a)

= Jl deP (e) 1n(1+r +2r'i'cosa) (9a)

+n+1 2 tan 'p' 2kpyn (loa)

where kp is the wave vector of the electron and y„ is
the separation between the n and n +1 S functions.
If these separations are distributed uniformly over

where P (e) is the distribution function of the cumu-
lative phase e and t = [p/(I+ p) ]'i2. The situation is
particularly transparent in the large p limit, ' where
t 1, and from (Sb),

1e=I+os+1 + g n
—4n+1 + 4I

In this case, e„ is determined entirely by the local
phases and therefore averaging can only occur if the
phase is randomized locally. Phase uncertainty does
not build up along the chain. Indeed, it may even be
useful to regard the phase e„as being reset at each
scattering event.

In the present model,
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FIG. 2. Variation of a with system size for 8 functions of
strength p =105 and spacing uniformly distributed in the
ranges 6+0.5 A (k), 6 2 1 A (~ ), and 6+3 A (~). All

results are for a wave vector kp corresponding to an electron
with a kinetic energy of 1 eV. The value of e& is the same
for all three cases and is shown in the upper curve. The
three lower curves are the results for a2. For large n, a2 is

self-averaging and approaches the asymptotic value predicted
by Eqs. (9a), (11), and (12) with t 1.



4744 RAPID COMMUNICATIONS

results obtained for a single chain by evaluating Eqs.
(Sa) and (Sb) for a particular sequence of up to 10s

scatterers. It can be seen that for large n, the numer-
ical results settle down to the expected asymptotic
value. For by =O.S A, n2 is almost the negative of
n~, so the latter is very much greater than the sum
n=o. ~+ot2. In the limit of no disorder, n~+a2=0,
which corresponds to the crystalline limit. As the
width of the distribution P(s) increases, u2 becomes
less negative until, for by = 3 A, it is almost zero.
This is approaching the situation in which the phase
randomizes at each site, since he = m corresponds to
by =3.07 A.

Choosing larger segments containing more scatter-
ers does not increase the tendency to phase average.
For example, dividing the system of n = ml 8 func-
tions into m segments each containing l scatterers
yields o. = n& + a2, where

a't = rrt+ (1—1/i)a2

and

u2= u2/I (13)

This result is obtained after noting that the new
phases e, which enter a relation for 0.2 analogous to
Eq. (9), depend only on the phases associated with
the first 5 function of segment i and those of the last
8 function of segment i —1. Thus, in the strong
scattering limit considered here, the distribution
function P (e') = P (s) and is independent of the seg
ment size.

Our discussion in this Communication has centered
on a single chain and ensemble averaging has not
been considered. This is because, in the limit of
large n, ln(1+z„) is self-averaging. It should be not-

ed, however, that the inverse localization length e~
could be obtained by ensemble averaging4 5 over
chains of length I. Clearly, as I gets large, n~ tends to
the correct value a of Eq. (7). However, this is not
because e' randomizes over 2m, rather it is because
the number of terms neglected [there are m of these
yielding a contribution (m/n )a2= ural decreases
while their magnitude remains roughly constant. '4

The form of Eqs. (2) and (3) is determined by
time-reversal symmetry, and so the problem of com-
puting the resistance of a wire described by the 1D
Anderson model, with diagonal and/or off-diagonal
disorder, is readily mapped onto Eq. (4). Thus our
conclusions apply equally well to tight-binding-type
Hamiltonians.

For purposes of illustration we have restricted the
discussion in this report to the strong scattering, large

p limit, where the analysis is considerably simplified.
Analytic results obtained in the small p limit and nu-
merical results in the intermediate regime yield a
similar picture; ~„does not randomize for large n un-
less it randomizes at each site, and this feature can-
not be circumvented by choosing large segments.

Assumptions about phase randomization are
ubiquitous in theories of conduction in disordered
systems. ' ' The results presented here show that all

phases are not necessarily sampled as the size of the
system increases and that the neglect of this feature
can lead to an incorrect result for the inverse localiza-
tion length.
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"This was pointed out by Anderson et al. (Ref. 1). For
long chains in the thermodynamic limit it is irrelevant

whether one considers ln(z„), ln(1+z„), ln(1+ 2z„),
etc. , as all become well-behaved extensive quantities that
obey the central limit theorem.

'2If the distribution of phases e is random over 2m then

21K

~2= {1/2m) d~ in{1+t +2Ti/2cos~) 0
0

0
Hence, for 4y & 3 A, e2 = 0 and the random-phase argu-

ment yields a reasonable approximation to the correct
result.

~3A more complete discussion of this limit will be presented
elsewhere (Ref. 7).

' This is why reasonable results for o. in the thermodynamic
limit can be obtained by ensemble averaging over short
chains (Ref. 4) with a length l & 100. If the ensemble
average is performed over a large number of chains, the
result for nt is correct to within n2/I If o « ~rr.,(, this

method would obviously fail unless I were very large (i.e.,
i » lotl/ol.


