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Anderson-localization dimensionality dependence: Further comments
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A conductance iri any dimensionality is reduced to a one-dimensional (1D) conductance. In
an infinite system a true mobility edge appears at 2D. In a finite system a continuous change
(with the Fermi energy) in the conductance dependence on the system length is determined.

According to the scaling theory, ' ' a one-dimen-
sional (1D) and 2D system resistances R always ex-
ponentially increase with the system's length L when
L is large enough. Numerical simulations4 apparently
contradicted this theory. Recently a power law R
~ L~ was suggested ~ for large L and claimed to be
experimentally verified. ~

In this paper I prove a true mobility edge at any
dimensionality d higher than one when L ~. A
finite L provides a continuous change (with the Fer-
mi energy) in R dependence on L, from lnR cL. L to
lnR ccL' +~' (when d «4) to lnR ceL . 1also
demonstrate that localization in any dimensionality
can be described by a 1D potential, which is the ini-
tial potential averaged over all possible cross-section
positioris of given numbers of impurities.

It is well known that a readily available quantity is
an ensemble average9 (R ) of a resistance R, but a
physically meaningful quantity is' ' (InR ). Howev-
er, one can relate the localization of a 1D representa-
tive R to (R ). According to Ref. 2, an ultimate lo-
calization implies (lnR ) = —, ln (R ). A straightfor-

ward refinement of the corresponding reasoning' im-
plies (lnR ) & (R ) whenever R » 1. On the other
hand, as it was noticed by Azbel and Soven, '0 (R )
= (exp(lnR)) «exp(lnR) =Rwhe, re R is a
representative resistance; in the absence of a strong
localization R = (R) as usual. Thus,

ln(R) ~lnR & —, ln(R) (1)

By Eq. (1) the localization length Lo= (InR )/2L is
determined by ln(R ) within the accuracy of a factor
between 1 and 2, and is related to the averaged sys-
tem "band" characteristics. Also, it was suggest-
ed" and numerically verified' that a drastic differ-
ence between a representative and ensemble average
was related to impurity concentration fluctuations,
while a readily available ensemble average with
respect only to different impurity positions (whereas
the impurity number N is fixed) provides a very ac-
curate value' of Lo even when the averaged quantity
is a wave-function transfer matrix H.

A reduction of a representative R to certain ensem-
ble averages (which are straighforwardly evaluated)

can be performed in any dimensionality.
By Ref. 2, when a dimensionless conductance 6 is

small, then in any dimensionality

G =Tr(t t) (2)

where t is a transmission matrix. The matrix t can be
related to a matrix H, which transfers incoming and
outgoing waves (later on denoted correspondingly by
subscripts a =+1 and -1) through a given resistance.
The matrix elements" 8++ t ', 8~ = t 'p (—p is
a reflection matrix) provide an Hermitian (88 )++
= t '(1+pp+) t ' . Therefore, when localization
implies an almost complete reflection: pp+=1,
then (88 )++=2t 't ' and thus

G =2Tr[(88 ) ] ' (3)

So, whenever G « 1, it reduces to a multiplica-
tive transfer matrix. When, for instance, a current
flows along a lattice axis x, a magnetic field is zero or
parallel to x, and n is an ordinary number of a lattice
plane (1 «n «L), then

H=w wHgwHI ~
' ' ' wH~w (4)

2Tr(Q) ' ' & G &2Tr(Q) ', Q =(88 )++ . (6)

Thus, whenever G « 1, in a general case of arbi-
trary length, cross section, magnetic field, randomness,
lnG ' is at most twice less and never larger than
—ln Tr(Q) '. The average (Q) implies (see later)
the localization length Lo consistent with

Lo' =L 'Rein(8++)~,

where a subscript "p" denotes the averaging with

respect only to impurity positions in cross-section

Here, H„characterizes a site n and w describes prop-
agation between adjacent planes

A

k 0
w =exp(iE) E = - k""= 5 k'" (5)0 —k '

v, p, denote channels; k "' is a longitudinal wave vec-
tor."

Similar to Eq. (1) G from Eq. (3) yields to"
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planes (while their number is kept fixed). According to Eqs. (4) and (5)

(88 ) =w ~+' (wHL(wHL ) (wH)8)w) HL iw)HLw)w —= w +' PLw +' (8)

P„=(M)P„, . (10)

Matrix indices of P„are a;a2, a —= (u, v); n is +1 or
—1, and (M), which is independent of n, equals

(M), , ,i——exp[i(E, , E, )] (8—„,,8„,,) . (11)

By Eq. (4), wH„ is a transfer (by one site) matrix for
an amplitude A" of a wave function (l( = XA,"
&&exp(ink'" ))xSo M. by Eqs. (11) and (5) is a
transfer matrix for A A&. Consider, for simplicity,
periodic boundary conditions in the cross-section r
plane (the period along the axis q being Lq). Then
A" ~ exp(iX„r), where X„is a transverse wave vec-
tor (whose projection on the q axis is an integer of
2qr/Lq) and thus A "Aa ~exp[i(X„—X„)r]. An

"1"2
averaged system is homogeneous; therefore, (M)»
preserves X„,—X„,=X„,—X„,~ w)

—i)2 (later it is

proven by a direct calculation). By Eq. (9), Pp
~ 5~ „,so the conserved p, 1

—p,2=0, and thus P„areP182

diagonal with respect to channel numbers. There-
fore, Eq. (10) provides

(where w+= w = w ', a bar denotes a complex conju-
gation). By Eq. (8),

P„= (wH„P„)H„w); Pp—= i

where i is a unity matrix.
Since P„1 is independent of the impurity situation

at the nth plane, so the averaging in Eq. (9) is per-
formed only with respect to H„and is independent of
n. Thus,

I

k " 's, of which the most transparent survives and
determines the localization length.

By Eq. (8), Pis Hermitian: P p=Pp . So, by Eq.

(10), M&,'p,
' = Mp, &, . Since P1 = )822= 1, this allows

for the presentation of the M eigenfunction p& &1 2

=ps, p, as ps, p =pp+p)P) +p)P2+p2P(P2 (with real

pp, p2). As in a 1D case, q the calculation reduces to a
cubic equation. To determine Mexplicitly, follow
Ref. 11 and consider a dimensionless Schrodinger
equation for a "disk" scatterer:

ay+ k'y = S(x) V(r) y, (13)

where r denotes coordinates, orthogonal to x (and V

and boundary conditions are periodic with respect to
r) At x=. 0, by Eq. (13),

8+I ~=—41„~+—41„~-=0, (13a)

8 ~ = V(r) y(0) .
()X

(13b)

A wave function ([i at x &0 is

Q=S 'i Xa" exp(ink "x+iX„r) (14)

0 =5 —inl
na aa VV

r, =v, /2k„,

(15a)

where k'") = (k' —X„')' ', S = gL, is a cross-section
area. A straightforward matching of Eq. (13a) and
(13b) by wave function at x (0 and x & 0 implies

P„"~= 8„„(M)"„"„P„"")= 5„„M"; (10a) V„=S '
J exp(iX„r) V(r) dr (15b)

where M=M(i)) = (M)"„"„. By Eqs. (6) and (8),
(Q) '=[(M )++] '. Suppose the eigenvalues of M
are )(.„(where n = + 1) and L » 1. Then, e.g. ,
Tr (0) ' = X„(max )(.„) ', and by Eq. (6),

in Eq. (15b), 0 ~ rq ~ Lq.
Consider, for simplicity, one kind of impurities

N

V(r) = $ V(P()r —r, ) (16)

lnG ' —min„max in~)(.„~ (12)

Thus, essentially the conductance reduces to the sum
of one-channel conductances related to different

where r, is the jth impurity location. Just for simpli-
city, allow for any number of impurities per site.
Then

N q

(V„)= VtP) g( ex(pi Xr, )) = VtP)S-) g X ..p(;X„«,) = V«) 8„,A,„,
j 1r 1Je , av

where a subscript "av" denotes an average over the number of impurities per site; while

(V V ) = V~rrV. Xeeo(iX r, —reer )= Vr rV. (e ocr(NO)-+(e .—e oe o)N)-
j.j

As stated previously, i)t —v2 is conserved in M~'„'. By Eqs. (11), (15a), (15b), and (16),
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cx] A2
( ) =exp['(, — )kt"l] [(8,,~,

—
2
',k "~ 'Vo N,„)(5 ~ +

+-,', ,kt &-2(V&ol)2[(N'),„-(N,„)']] . (17)

The first term in figure brackets, by Eqs. (11),
(15a), and (15b) is related to a periodic set of scatter-
ing planes with the averaged potential Vo in the
plane. Such a one-channel (for a given v) periodic
system implies allowed and forbidden bands with the
mobility edge between them and an (independent of
S) "localization length" on the forbidden side.

Now consider the second term in the figure brack-
ets in Eq. (17). When N,„))1 then (N'), „differs
from (N,„)2 only in virtue of fluctuations, so (N2),„
—(N,„)2—N„and provides a relatively (~1/N, „)
small perturbation. When N„—1, then

~ Vo

x [(N'),„—(N„)'] is relatively small compared to
~ Vo '

~ N,„(their relation is ~ S '). This perturba-
tion does not alter the energy-gap solutions but im-

plies lnG ' ~ L/S for allowed band solutions. In a
multichannel 1D wire with S ((L this provides the
localization Lo changing from Lo independent of S to
Lo c S. In any dimensionality above 1, when S )L,
this provides a mobility edge. A quantative formula
for Lo immediately follows, by Eq. (12), from the
eigenvalues of Eq. (17), whose evaluation reduces to
a cubic equation.

Equation (17) is related to a one-channel wave
vector k'" and a 1D set of potentials with the
average VotolN, „~N„/Sand a dispersion ( Vo

' )'
&& [(N'),„—(N,„)'],cf. Ref. 9. This agrees with the
claim" (proven'0 in 1D) that an ensemble average of
a transfer matrix with respect to all possible cross-
section positions of impurities (with the impurity
numbers in cross-section planes being fixed) provides
a very accurate value of the localization length. Such
an averaging, in virtue of Eqs. (15a) and (15b)
reduces 0 to that of a 1D potential Vo 'N = S '

&&N f Vtol(r) dr, whose randomness is related to a

random number N of impurities in a cross section. I
demonstrate the results by an example of a continu-
ous disk impurities distribution with the effective im-

purity potential S ' f Viol(r) dr —= S 'v and an aver-

age x distance between impurities (nS) ', where n is

I

an impurity density in the original ramdon system.
(This dD-1D scaling was first presented in Ref. 11.)
Suppose v & 0. Then, according to a 1D formula, '

L,(k) =max„L, (k' —aC') '~' (18)

Lo(k) =(vn —k') '~' (19a)

At k = (n )v ', Lo (8S—/v n) ~. Then Lo(k) be-
comes related to k'"' = (vn) ' ' and remains constant
in the interval Bk —(v n)' (8S) 2 . Thereafter,

Lo(k) =8S(k' —nv)/(v'n) (19b)

When S ~ and a dimensionality d ~2, Eqs. (19a)
and (19b) provide a true mobility edge for the ex-
ponential localization.

Note that small Fermi energy may belong in a lo-
calized state and that the Fermi energy changes with

impurity density magnetic field pressure. Equation
(12) provides the G ' exponent. When the localiza-
tion is weak (i.e., Lo= ~), then the right-hand side
of Eq. (6) (with the above calculated (g)) provides
the resistance 6 ', which cannot increase with the
system length L quicker than linearly. This is con-
sistent with Refs. 5—7, and does not exclude the
power-law localization.

To summarize. A multichannel localization length
Lo and its dependence on a cross section S and a ran-
dom system parameters is mapped onto a one-
channel' L When S ~, in any dimensionality
above one Lo becomes infinite at a (determined) mo-
bility edge.

Lo (k" ) =(Re(vn —k" )' +v n/8S[nv —k"
(18a)

where k " =(k —X ) By Eq. (18a), Lo(k " )
has a sharp minimum in the vicinity of k = (vn) ' 2.

In any many-channel case (when k'"' almost continu-
ously changes from 0 to k), Lo first monotonically
increases with /c
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