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A definition of the effective dielectric constant incorporates correlation effects between fields

scattered by particles supposed to be distributed randomly in the matrix. The radius distribution

of the particles is taken into account. The field distribution function necessary for a correct
averaging procedure is derived explicitly.

In order to describe the electrical and optical proper-
ties of aggregated systems such as those found in
"composite" materials, one needs a theory of the ef
fective dielectric constant (EDC). '

Two-groups of "theories" are usually considered.
One is the Maxwell Garnett t-heory (MGT) (preferred
for describing the optical properties of granular sys-
tems), the other is usually called the effective medium-
theory (EMT) (and is more often used in the study of
percolation). It will appear that it is important to
stress that the usual MGT and EMT or extensions
are based on a single-site approximation and neglect
correlation between polarization fields. An exact
solution of Maxwell's equations for aggregates in-

cidentally takes into account such effects. Further-
more, if the correct weight factor for averaging the
fields is used (rather than the usual "concentration"
dependence), the EDC will be of much greater value.
We will see that we obtain a very tractable formula
(requiring only a few seconds of numerical work on
our IBM 370/158).

Extending the Clippe-Evrard-Lucas (CEL) theory
for ionic powders' we have included all high-order
polar interactions between (spherical) particles as well

as retardation, and thus presented an ¹itesingle-
cluster MGT. Nevertheless, for the sake of brevi-

ty and clarity here only the dipolar fields will be used,
while retardation effects are not taken into account,
i.e., we present the long-wavelength limit of a general
statistical theory. Our results are in much better
agreement with experimental data.

After having solved Maxwell's equations "exact-
ly,

"one has to define an EDC in terms of an average
over all field configurations. This requires the non-
trivial task of obtaining the probability function for
the fields in a random medium. A second average
must be made, but is generally omitted, i.e., because
the particles inserted in the composite have irregular
sizes, one has to average over their size distribution

as well. This will also be done here; such a distribu-
tion is the log-normal distribution,

In(R/Ro)
(2m)'/2 Ro 2 o.

where cr is a measure of the width of the distribution
while Ro is a radius of particles (thus supposed to be
spherical) such that 50/0 of them have a radius R less
than Ro. Typical values of o-LN—= e are between 1.1
and 1.5 and Ro is of the order of 500—1000 nm.

Beside the spherical hypothesis (HO), three physi-
cal hypotheses are needed in order to render our
treatment as analytical as possible. (H1) We sup-

pose that due to the randomness in the distribution
of particles the system can be described as an average
medium in which the electrical field (hence the polari-
zation field) is weakly varying. (H2) The position of
the particles in space is supposed to be normally dis-
tributed (as in the Gaussian broadening model of
Fuchs') (H3) T. he topology of the a priori large
cluster of spheres is arbitrary but they are considered
to be embedded in a large sphere (of radius a) out-
side of which the MGT applies, and hence outside of
which the EDC has the MGT form.

Therefore (Hl) and (H3) indicate that our theory
will interpolate between the EMT and the MGT by
taking into account clustering effects, while (H2) is

primarily needed below to obtain an analytical form
for the field-distribution function. From (Hl ) and

(H2), it results also that the "small parameter" is

the density gradient.
We expand the various fields outside and inside

each spherical particle and outside the large sphere in

terms of spherical wave-vector functions. ' After
applying the usual boundary conditions at the surface
of each sphere the expansion coefficients b„(j)
describing the fields outside the particle ( j) are solu-
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tions of a linear matricial equation

b„(j) +5„(j) X $b~(i) (X~(i) ~H„~(j)) =—d„~A„(j)

where A„(j) is the 2" polar susceptibility of the ( j)
particle, e.g. , for a homogeneous spherical particle of
radius R it reads

5„(j) = n ( ej —e~) R "+'/( n e, + ( n + 1)eM)

where e, and eM are the dielectric constants of the
particle at "site" jand that of the matrix (M). The
indices n and q refer to the field polar order, while m

and p, respectively, span the space of usual polariza-
tion indices with values, respectively, between

I

[—n, + n ] and [—q, +q]. The coefficient d„
describes the external field, while the interaction ma-
trix elements (X(i ) ~

H( j) ) between the N spheres
are extensively given in Ref. 5.

Here we neglect all terms with n or q «1. This
has been proved acceptable if the density of particles
is not too high, or if the particles are not in close con-
tact. 4

In such a case, the matrix elements are explicitly
given by

+1 I

( X~](i)[H] ( j)) = —2a]J exp[i(p —m)PJ] g, ,
O(l, p, l, n&)O(l, m, l, a,&)1+f ! 1 —i !

where (aj, u„",Po) are the spherical coordinates of
the center of particle j in a reference frame centered
on particle i, and 0 (n, m, i, a) is the "Jeffreys coeffi-
cient" relating spherical harmonics in different refer-
ence frames. '

Mathematically, (Hl) means that we can write
b] ( j)/4]( j) =B, i.e., B is a constant for all j;
this is obviously true in the absence of interactions
between particles or for spheres regularly distributed
on a lattice. ' Defining

G~ (j)—= Xb,](i) (X]~(i)~H] (j))
l&J

and supposing that the external field is uniformly ap-
plied in the z direction between the parallel plates of
an infinite condensor we are led to conserve only the
m =0 term in the above equations.

The solution of Eq. (1) is obviously (dropping here
the index j)

b]o= —d]o~](1+Goo) ' (2)

since G~ =0 if p & m. Notice that d]2o =4m/3.
An algebraic calculation of Gpp allows one to recov-

er the MGT and, hence, the Clausius-Mossoti rela-
tion for the EDC. ' We define the "field fluctuation"
G as G = Gpp —GMG, and search for the field distribu-
tion function of 6 in order to average b]o in Eq. (2).
Because G is in general a complex function, one must
look for a two variable distribution function
W(6', 6") with 6 =—6'+iG" Furthermore . the
terms G' and G" are not statistically independent.

I

Let us write"
p+oo +ao

W(6', 6")=
z J ~ dt du A(t, u)

x exp[ —i (tG'+ uG") ]

A(t, u) =A(0, 0)
fO N—1

J eup(i(tg'+ug")]d )R (4)

where the brackets ( ) R denote an average with
respect to f (R ), while the volume of integration (3

is that outside a sphere (of radius r ) containing only
one particle but inside the large sphere defined in
(H3), and

g'—= h](R ) (X]o( r ) I H]o(0) )

and similarly for g". Let a and N tend to infinity
such that N —1 = J], (4vra3/3). One obtains
A (t, u) =exp[ —C(t, u)] with

C(tu) =(Jl (i —eup(i(tg +ug")]]d )R . ('5)

Expanding the exponential in Eq. (5) up to the qua-
dratic term leads after some algebra to

(3)

and calculate the characteristic function A (t, u). Be-
cause of (H2), A (t, u) is the product of the charac-
teristic functions of the distribution of each term in
the dipolar sum, i.e.,

~(6,6„1 1 1 (6'/(r')2+(6"/(r")2 2pG'6"/(r'(r—"
exp ———

2n (r'(r" (1 —p2)]t2 2 1 p
(6)
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with (o.')'=
5 3

mh. (AP/r') R and similarly for a-",

while

p = (&i~i') n/((~P) a (~i') a) .

~hen p= +1 (i.e., in the case of homogeneous
spheres) our solution is formally similar to that of
Fuchs when f (R) is a delta function.

An EDC can now be defined preferably in terms of
electrostatic energy stored (or lost ) U rather than

fields. "The variation of U due to the presence of
spheres is from a "microscopic" viewpoint

m= 10 83.1635
1.2 —o —87. 4153

= 1.4 ———— 98. 5564

4d 02
La)

p

but is also given by

Eo E,'de, ~~ 0.5-
LU

LL
LLj

K

which thus defines e,ff. The latter equation is so
written because it is obviously imposed that the
sources of the D field remain constant both in the
"effective" and '"microscopic" cases (we suppose
that e~ is real). Hence, "one obtains a very tractable
analytical formula, i.e.,

e,«= eM(I +412mb. ((b,o) a) )

from which one can calculate typical quantities. We
have chosen cases as those discussed by Lamb
et al. ,

' i.e., spherical metallic inclusions in a dielec-
tric matrix. For a delta-function distribution of
sphere radii it is observed that the position of the
maximum in &,'ff corresponding to the peak in the
usual absorption coefficient A (Oi) =2e (co)"/n (oi)c
occurs much below the Frohlich mode cu„and the
shift of the peak is toward lower frequencies as a

function of filling, as seen in usual experiments. '6
On Fig. I we reproduce the reflectivity (at «i = co~/5)

as a function of the filling factor f as obtained in Ref.
15 for EMT or MGT; it is seen that taking into ac-
count correlation between fields in the case of equal

size particles (o.LN= I) already modifies the value of
the reflectivity (at f A 0). The size effect is even
more drastic (o.LN = 1.2 and 1.4 curves).

The reflectivity as a function of frequency is seen
on Fig. 2 where different filling factors and size dis-

tributions are considered. The dashed line indicates
the position of the expected reflectivity peak at the
Frohlich mode when the spheres are noninteracting.

An interesting result is seen on this figure. As
here, the reflectivity spectra are experimentally found
to be asymmetrical: a sharp rise at low frequency is

followed by a smoother decrease at high frequency.
Except for fits introducing "depolarization" fac-
tors,"' " only an averaging procedure explicitly taking
into account the field distribution probably leads to
such an agreement with experimental results. We
conjecture that high-order polar interaction terms

0
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FIG, 1. Reflectivity for a metal-insulator composite at a

frequency co =0.2coz as obtained from various approxima-

tions (EMT, MGT) with input data as in Ref. 15, or taking

into account correlation effects, and various size distribu-

tions of the particles.
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FIG. 2. Reflectivity of an insulator containing spherical

particles as a function of the frequency for various filling

factors and different particle size distributions (given by a
log-normal law). The corresponding reflectivity obtained

from a Maxwell-Garnett theory, and the position of the iso-

lated particle Frdhlich mode (co, ) are also indicated.

will, among other things, shift the peak position.
Having shown the positive aspects of the theory,

let us comment on the "negative ones. " (1) The
theory has been worked out for spherical particles
made of the same material. (2) As the MGT, our
theory suffers from not indicating any percolation
threshold. (3) The theory is applicable to random

systems in absence of any anisotropic short-range or-

der due to (Hl, H2). If a chainlike distribution is
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present, the experimental spectra show a two-peak
structure at much lower and higher frequencies. '
This shows that (H2) plays an important role in the
shape of the spectrum and might have to be modified
with respect to specific experimental investigations
when anisotropic distributions are present. (4) At
large ~LN, hence when large spheres are present,

(H2) becomes obviously very unrealistic, and the
neglect of position correlations is quite incorrect.
One could show that the validity of our theory is lim-
ited at the (nevertheless, very reasonable) value
crLN = 1.4.

Formal extensions of this work are obvious and
seem reasonably realizable.

'The basic reference is Electrical Transport and Optical Proper-
ties of Inhontogeneous Media 197—7, edited by J. C. Gar-
land and D. B. Tanner, AIP Conf. Proc. No. 40 (AIP,
New York, 1978); see, e.g. , R. Landauer, p. 2.

P. Clippe, R. Evrard, and A. A. Lucas, Phys. Rev. 8 14,
1715 (1976).

3J. M. Gerardy and M. Ausloos, Phys. Rev. 8 22, 4950(1980).
4J. M. Qerardy and M. Ausloos, Surf. Sci. 106, 319 (1981).
J. M. Oerardy and M. Ausloos, Phys. Rev. 8 25, 4204

(1982).
U. Kreibig, A. Althoff, and H. Pressmann, Surf. Sci. 106,

308 (1981).
~R. Fuchs, in Ref. 1, p. 276.
BJ. Stratton, Electromagnetic Theory (McGraw-Hill, New

York, 1953).

9B. Jeffreys, Geophys. J. A. Astron. Soc. 10, 141 (1965).
' M. Lax, Rev. Mod. Phys. 23, 287 (1951).
"M. G. Kendall and A. Stuart, The Advanced Theory of

Statistics (Griffin, London, 1968).
' See also, D. Bergman in Ref. 1, p. 46.
' The filling factor is entering Eq. (13) through the defini-

tion f=
3 Jr~~, where r~ (as in Ref. 7) is a "cutoff ra-

dius" measuring a mean spherical sphere, and depends
here on the radius distribution function f (R). Notice
that o' and 0-" are also functions of f.

' C. G, Granqvist and R. A. Buhrman, J. Appl. Phys. 47,
2200 {1976}.

' W. Lamb, D. M. Wood, and N. %. Ashcroft in Ref. 1, p.
240.


