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Results of a numerical calculation of the velocities of surface waves in layered isotropic ma-

terials are presented. They do not explain the behavior of previous experimental results on
Nb-Cu heterostructures. Mode crossings are found in certain cases between the Rayleigh wave

and higher-order surface modes.

I. INTRODUCTION or it can be approximated by the explicit equation4

In a recent publication' it was shown that a plot of
Rayleigh wave velocity as a function of layer thick-
ness in Nb-Cu heterostructures shows a distinct dip.
The dip occurs in a region where the layer thickness
d is much smaller than the wavelength A, of the pho-
nons being probed and hence is unexpected. When
treating the problem of long wavelength elastic waves
in layered media (d « A. ), one expects to be able to
use an effective-modulus picture, in which the medi-
um is treated as a homogeneous solid whose elastic
properties are derived from those of the constituent
media. In this limit, the elastic moduli are found to
be independent of layer thickness. It is to the validi-

ty of the effective-modulus model that we address
ourselves here. We have calculated surface wave
velocities in systems of up to 1000 layers and found
that the effective-modulus model is indeed a good
approximation in the region of d && A. . Further-
more, we have also solved for the velocity of higher-
order surface waves (Sezawa waves) and found in-
teresting mode-crossing behavior in certain cases.
This behavior does not, however, explain the results
of Ref. 1

II. BACKGROUND AND OUTLINE OF CALCULATION

Rayleigh waves in an isotropic medium propagate
with a velocity v which can be calculated analytically
from the implicit equation due to Stoneley':
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u = u, (0.87c ~t + 2c ~2)/(c ~~ + 2c ~2) (2)

where v, and vl are the velocities of the transverse
and longitudinal bulk waves and c& are the elastic
stiffness constants. When the medium is not isotro-
pic there is no analytic expression for the velocity of
the Rayleigh wave; instead it must be calculated nu-
merically. '

The problem of calculating the speed of a Rayleigh
wave propagating on the surface of a system of alter-
nating layers with different elastic properties has ap-
plications to seismology, and much of the literature
on the problem is in that field, The simplest treat-
ment involves replacing the layered medium by a
homogeneous one with elastic moduli given by an ap-
propriate average of those of the constituent layers.
This would seem a reasonable approximation to make
in the case where the acoustic wavelength is long
compared to the layer thickness.

The effective bulk elastic moduli for a thinly lam-
inated medium have previoulsy been calculated, and
a comparison of the calcuiated surface wave velocity
in such a system with that calculated for a six-layer
system is given in Ref. 6. A comparison is also made
in Ref. 7 in what appear to be relatively thick layers
in the limit of an infinite number of layers —good
agreement is claimed.

It is well known that for a single layer on a sub-
strate in addition to the ordinary Rayleigh wave,
higher-order (Sezawa) modes exist under certain con-
ditions. ' The number of these modes increases with
the layer thickness. In our calculation we have also
obtained the velocity of a few of these higher modes
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TABLE I. Elastic moduli (10' dyn/cm ) and densities
(g/cm3) of copper and niobium compared with those chosen
for media I and II.
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where c,~ are the moduli of Cu or Nb. The stiffness
constants and densities of the two media are given in
Table I.

in systems of varying numbers of layers.
Our calculations were done for a system of n layers

of two alternating isotropic solids (the complications
arising from a generalization to nonisotropic media
are considerable) on a substrate of the material with

the larger transverse bulk wave velocity. This latter
choice has as its object the separation of the modes
originating in the layers from the continuum of
modes that exist in the substrate with velocities
greater than that of the bulk transverse wave.

The formulation of the problem is the same as that
used in Refs. 6 and 7, i.e., a general solution for a
wave propagating with a velocity v parallel to the free
surface is written for each layer, the boundary condi-
tions at each interface (viz. , continuity of the dis-
placement and equality of the appropriate stress ten-
sor elements) and at the free surface are imposed,
and the condition of a nondivergent solution in the
substrate is demanded. This leads to 4(n +1) equa-
tions with 4(n +1) variables which only have a non-
trivial solution for certain values of v. These values
of v are the velocities of the Rayleigh wave and
higher-order surface waves. Once the velocity has
been determined, the system of equations can be
solved to yield the amplitude of the wave as a func-
tion of distance from the surface.

Because in the Nb-Cu system which we wish to in-

vestigate neither Nb nor Cu is isotropic, we were
obliged to invent fictitious isotropic materials in order
to approximate them. Hence we chose c~& and c~2 for
each material so as to minimize

FIG. 1. Velocity of the lowest-order surface wave vs kd in
laminated systems of odd numbers of layers on a substrate.
Curves are: a-1 layer, b-5 layers, c-11 layers, d-21 layers,
e-51 layers, f-101 layers, and g-151 layers.
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surface waves as a function of the dimensionless
quantity kd where k is the magnitude of the phonon
wave vector and d is the thickness of one layer. In
order to compare with the results of Ref. 1 we have
chosen a typical wave vector encountered in Brillouin
scattering experiments (k =1.79 x10 2 A ') and
evaluated the scale A =2d =(2kd/1 79 x 10 3.)
which is also shown in the figures.

Figures 1 and 2 show the variation of surface wave
velocity as a function of kd for the systems listed
above. The arrows on the vertical axes show the
Rayleigh wave velocities in homogeneous half spaces
of media I and II. The results have been separated
into two figures because, since the substrate is always
medium I, the top layer will be either medium I or II
depending on whether the number of layers is even
or odd. As expected, the following behavior is evi-
dent in Figs. 1 and 2: if nkd (& 1, the velocity of
the surface wave is determined almost entirely by the
substrate. Conversely, if kd )) 1, the velocity is
essentially that in the top layer. In the intermediate

III. RESULTS
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Our calculations were carried out on systems of 1,
2, 5, 6, 10, 11, 20, 21, 50, 51, 101, 150, 151, and
1000 layers. The calculations yield the velocity of the

FIG. 2. Velocity of the lowest-order surface wave vs kd in
laminated systems of even numbers of layers on a substrate.
Curves are: a-2 layers, b-6 layers, c-10 layers, d-20 layers,
e-50 layers, f-150 layers, and g-1000 layers.
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region, ho~ever, where kd & 1 but nkd & 1, we see
that a relatively flat region exists. It is in this region
that we expect the effective-modulus theory to be ap-
plicable. The straight lines plotted in Figs. 1 and 2

are the results of such a calculation. Using the c,& of
the isotropic solids in Table I we computed those of
the homogeneous solid as per Ref. 2. They are the
elastic moduli of a hexagonal crystal. We then calcu-
lated the velocity of the surface wave in the basal
plane of such a medium. It can be seen that in the
flat portions of Figs. 1 and 2 the agreement is good.
In particular, for 1000 layers and small kd values the
agreement is excellent. Additionally, we note that
there is no sign of any anomaly in the velocity of the
surface wave at small kd values.

Figure 3 shows the velocity of a Rayleigh wave in a
composite film on a substrate of medium I as a func-
tion of the thickness of the layers constituting the
film. The film thickness is 5, where k4 = 8.95, and
it is made up of n layers so that nd = A. The surface
wave velocity is plotted as a function of d. When the
layers are thick one sees the effect of the top layer
quite clearly, but as they become thin the velocities
converge to a value quite near to that of a surface
wave in the effective-modulus solid. The velocity is
not equal to that in the latter because of the finite
thickness of the film.

From Figs. 1—3 we conclude that for our system, if
kd & 1, the effective-modulus approximation yields
results accurate to better than 1%. Our program does
not allow us to calculate surface modes for a hexago-
nal homogeneous solid (obtained from the effective-
modulus picture) on an isotropic substrate. Howev-

er, replacing the hexagonal homogeneous solid by a
similar isotropic one, we do obtain results that are in

fair agreement with the modes obtained in a multilay-

ered system provided kd « 1.
Some interesting properties of high-order modes in

multilayer systems arise at large values of kd. These
are most easily exemplified in the case of a two-layer
system in which a softer material is sandwiched
between the substrate and an outer layer. Figure 4
shows the velocity of the first few surface waves in

such a system where the mode repulsion of the first
two modes is clearly visible. We have calculated the
amplitude profiles of these waves at various points
along the dispersion curve. The amplitudes of the
lowest mode in our two-layer system are shown in

Fig. 5 and those of the next mode in Fig. 6. We see
that the amplitudes of the lo~er mode resemble
those of a Rayleigh wave even in the region where
the velocity is depressed by the effect of the inter-
mediate layer, but that as the velocity begins to rise
again, the wave begins to become more localized in

the second layer. In this region, the velocity of the
second mode decreases with increasing kd, and when
kd = 10, the modes are nearly degenerate. Here nei-
ther mode is a true Rayleigh wave. Beyond that
point it is the higher mode which has the characteris-
tic velocity of a Rayleigh wave in the outermost
medium, and a look at the amplitude profiles shows
that at this point the top mode has indeed become
transformed into a true Rayleigh wave. The lower
mode, on the other hand, is almost entirely confined
to the second layer. For kd ) 15 the velocity of the
Rayleigh-type wave remains constant. Even at
kd =23, where the next higher mode crosses it,
there is no sign of a mode repulsion within the accu-
racy of our calculations.

In conclusion, we have presented the results of nu-

merical calculations of the velocities of Rayleigh
waves in a layered system modeling Nb-Cu hetero-
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FIG. 3. Velocities of the lowest-order surface wave in a
multilayered film of fixed thickness vs thickness of the con-
stituent layers.

FIG. 4. Velocities of the five lowest surface waves vs kd
in a two-layer system.
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FIG. 6. Transverse (i) and longitudinal (i) amplitudes

of second-order surface waves vs depth in a two-layer sys-

tem at selected values of kd (arrows, Figs. 4).

FIG. 5. Transverse (i) and longitudinal (~) amplitudes

of lowest-order surface waves in a two-layer system vs depth
at selected values of kd (arrows, Fig. 4).

some interesting features of surface waves in a sim-

ple layered system.

structures. We have compared these velocities with

those in an effective-modulus model and found the
agreement to be good where kd &( 1. We found no
evidence that the anomalous surface wave velocity
reported earlier can be explained within a purely clas-
sical elasticity theory. In addition, we have presented
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