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Electron localization in a model polymer

S. Stafstrom, R. Riklund, and K. A. Chao
Department of Physics and Measurement Technology, Uniuersity of Linkoping, Linkoping, Sweden

(Received 9 December 1981)

An unrestricted Hartree-Fock self-consistent numerical investigation on a model poly-

mer represented by a stereo-irregular chain shows that the physical-disorder effect is

weak even though the geometrical disorder is very strong. The regional and the global

electron-localization lengths are studied via the inverse participation ratio and the mo-

ment analysis. In this system profound disorder effect appears when the system is anti-

ferromagnetic.

Theoretical investigations on one-dimensional

systems have followed several approaches with em-

phases on different aspects. The single-particle lo-
calization in a random potential of whatever origin
is usually handled with simplified model Hamil-
tonians. The most extensively used Hamiltonian is
the Anderson-type Hamiltonian. With certain ap-
proximations, the density of states and the main
features of single-particle localization can be de-

rived qualitatively. ' " Accurate quantitative re-
sults for physical properties mn only be obtained

by either the numerical calculation or the Monte
Carlo method. On the other hand, the ground-
state properties such as the cohesive energy and the
equilibrium distance of realistic chain systems have
been studied with the Hartree-Fock, " the SCF-
LCAO, ' ' the extended-Huckel, ' ' the crystal
orbital, the coherent-potential approximation, '

and the band-structure mlculation methods.
These calculations have recently been reviewed by
Andre. 23

A simple one-dimensional model which is suffi-

ciently complex to reflect to certain extent the gen-

eral properties of realistic systems and yet
mathematically tractable is a periodic straight
chain of hydrogen atoms. This model has earlier
been investigated by many authors. However,

a stereo-irregular chain of hydrogen atoms
(SICHA) has not been much studied, although it is

a suitable model for studying the disorder effect.
Moreover, the SICHA simulates the geometric
structure of many polymers. Consequently,
characteristic features associated particularly to the
stereo-irregular geometry are expected to be
relevant to the general properties of polymers. The
sophisticated theory of soliton has provided much
insight of the conducting polymers. We will not
refer to such work since the present numerical

study on the SICHA falls into another branch of
interest.

A SICHA can be easily generated by a comput-
er. Let us assume a Cartesian coordinate system

x& —
y&

—z& and consider only the upper-half space
with z& &0. Taking the z& axis as the symmetry
axis, we construct a right circular cone of angle 8
with its tip at the origin. A vector R~ (drawn
from the origin) within this cone can be represent-
ed by the polar coordinates (RO, 8&,P &), where Ro,
8&, and P, are measured with respect to the

x& —
y&

—z& system. Next, we consider a new
Cartesian coordinate system xz —yz —z2 with its
origin at R& and its positive z2 axis in the direction
of R&. In the upper-half space of this new coordi-
nate system an exact copy of the cone is construct-
ed. Within this new cone, the second vector
R2 —R& (Rz is also drawn from the origin of the
x

&

—
y&

—z, system) can be similarly represented by
the polar coordinates (Ro, 8z, P2), where Ro, 82,
and Pz are measured with respect to the

2
—72 —

2 system. Again we consider a new
Cartesian coordinate system x3 —y3 —z3 with its
origin at Rz and its positive z3 axis in the direction
of R2 —R). In the upper-half space of this new
coordinate system an third same cone is construct-
ed. Within this third cone, the third vector
R3 R2 ( R3 is also drawn from the origin of the
x t

—y &

—zt system) can be again represented by the
polar coordinates (R0,83,$3), where Ro, 83, and

f3 are measured with respect to the x3 —y3 z3
system. We continue this procedure repeatedly un-

til N vectors I R;;i =1,N I are generated. The po-
sitions of these N vectors are represented by Ro
and two sets of angles I 8;;i =1,N I and

I gt;i =1,N I, when measured with respect to the

proper coordinate systems. By generating a set of
random numbers for these angles under the condi-
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tions 0&8; &8~ and 0&/; &2', and then attach-
ing a hydrogen atom at each R;, a SICHA of bond
length Ro and maximum tilt angle 8 (correspond-
ing to a miniinum bond angle m —8 ) is then ob-
tained. To avoid ambiguity, we use the terminolo-

gy "a SICHA of zero degree" for a straight period-
ic chain (8 =0). It will be helpful to mention
that the probability for a SICHA to doubling back
on itself is negligibly small even for 8~ =m. /6 and
N =62. %e have generated numerous SICHA
with N =62 and 8~ =ir /6, and found that the
projected lengths of all these SICHA along the z~

axis (from now on we will drop the subscript and
name it as z axis) are about 80% to 90% of the to-
tal length NRp.

The Hamiltonian of a single SICHA is simply

H= gp;/2m+ g V""(r;)

+ —, g V' '(r; —rj ),

where V""(r;) is the total ionic potential for the
ith electron. The Coulomb interaction between the
ith and jth electrons is V' '(r; —rj ), and the sum-
mations are over all the N electrons in a single
SICHA. The Hamiltonian will be solved with the
unrestricted Hartree-Fock approximation with a
modification of the spin-polarized potential. This
method has been formulated and discussed in de-
tails for the randomly distributed shallow impuri-

ties in semiconductors. ' Here we will only briefly
outline the key points. Let P;(r)—:P(r —R;) be the
hydrogen 1s wave function centered at the ith
atom, and the single-particle eigenfunction of the
unrestricted Hartree-Fock equation be constructed
as

(2)

Then the unrestricted Hartree-Fock approximation
leads to two coupled equations for both spin o = t
and $

B~Hp~B~ =E~, (3)

+ g g [B V(crs:ij)B ]ii,
s IEI(s)

where the electron-electron interaction matrix is
defined as

(4)

where B is the matrix of the coefficients B,-. and
E is the diagonal Hartree-Fock eigenenergy ma-
trix for the spin 0. We define N(o ) as the number
of 0-spin electrons in the SICHA and I (0) as the
set of indices which specifies the N(~) single-
particle eigenfunctions occupied by the cr-spin elec-
trons. The matrix elements of Hp can now be ex-
pressed as

Ho;J JP';~——(r)[p /2m+ V'"(r)]P& (r)dr

V(os:ij)~q ——'I I P*; (r)P„(r ')V''(r ' —r)[Pz, (r '}PJ (r) P&, (r)P—J (r ')5, ]dr dr '.

In the limit of very large Rp the energy spec-
trum of (3) consists of only two delta functions
5(E E) and —5(E E). E is th—e ionization en-

ergy of a neutral hydrogen and E is the ioniza-
tion energy of a negatively charged hydrogen H
However, if we use the form (5) and solve (3) self-
consistently by iteration, we find that H is not
stable in contradiction to the experimental finding.
This is due to the neglect of the electron correla-
tion effect when two electrons of opposite spins oc-
cupy the same atom. Therefore, for H one
should replace the product-function P;,( r i )P;,( r2)
by a two-particle wave function 4;(r „r2). Chan-
drasekhar obtained such a two-particle wave func-
tion a long time ago which yields a very accurate
ionization energy of H . %e will use the
Chandrasekhar wave function in the present calcu-
lation, and the calculation details are the same as
in the previous work on doped semiconductors. '

Since the ferromagnetic phase is very unlikely to
be stable in a SICHA, we have set N( t) =N(l)
=N/2 in our calculation to investigate two cases:
0-SICHA for 0 =0 and 30-SICHA for 8 =n./6.
For both cases the number of atoms N in the
SICHA is 62. For convenience, we use the atomic
unit with energy in Hartree. The disorder effect
on the density of states has already been reported
elsewhere.

Let S be a path starting from the origin, passing
through the hydrogen sites at the positions R~, R2,
R3 ~, and then ending at R62. Between R; and

R;+& the path follows a straight line. Hence the
total length of S is just XRp. Along this path we
define two spin-density functions p (r) as

(6)

where r is measured along S with r =0 at the ori-
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gin. We should notice that in (6) the summation
runs over only the occupied eigenstates which form
the lower half of the eigenenergy spectrum. In our
notation the 62 eigenstates for each spin are labeled

by i from 1 to 62 with increasing eigenenergy. For
the case of O-SICHA, S is along the positive z axis
and the spatial density of electrons is cylindrically
symmetric with respect to S. Therefore, the varia-
tion of the spin density along the 0-SICHA can be
demonstrated better by the total spin density

31

p'(r)= I Q IP; (r)
~

da, ('7)

i=1

where the domain A (r) of the surface integration is
an infinite plane intersecting the path S at r per-

pendicularly. However, p*(r) is not a good mea-

sure of the spin density along the 30-SICHA be-

cause two planes A (r) and A (r') are not necessarily
parallel. Consequently, we will calculate p~(r) for
both the 0-SICHA and the 30-SICHA in order to
investigate the effect of disorder on magnetic or-

denng.
The p (r) for the 0-SICHA with Ro ——2 —8 (in

units of Bohr radius) are shown in Fig. 1. The
values of Ro are marked by the numbers at the
right-hand side. The horizontal axis r/Ro labels
the position along the path S such that integer
values of r/Rp represent the hydrogen sites. For
each value of Rp the vertical scale at the left-hand
side consists of two parts: The upper scale is for

p, (r) and the lower one is for p, (r). We would like
to remind the reader that p~(r) is non-negative.
Hence, for each Ro the curves p, (r) and p, (r) do
no intersect each other. %hen Rp is large, Fig. I
indicates that the 0-SICHA is antiferromagnetic.
The antiferromagnetic structure gradually disap-
pears when Rp —+2. It will be helpful to elaborate
the eases of R p & 5 which exhibit almost complete
antiferromagnetic order along the path S. For
Rp ) 5, p (r) can be well approximated as

62 31

p-(r)= 2 2 I ~-; I' 0,'(r)
j=1 i =1

If we take Ro ——6 and let r, be the position of an

up-spin site, then we have

p„(r„+Ro)/p, (r, )=exp( —Ro) =0.00247 .

Before we present the result of p (r) for the 30-
SICHA, it is necessary to analyze the electronic en-
ergies first. The electronic energies in a SICHA
can be separated into three classes. The first class
is the intra-atomic Coulomb energy between two
electrons occupying the same atomic orbital. The
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nearest-neighbor electron hopping energy and the
nearest-neighbor Coulomb and exchange energies
between electrons form the second class. The third
class consists of the far-neighbor hopping and the
far-neighbor electronic Coulomb and exchange en-
ergies. Let e&, e2, and e3 represent the first,
second, and third classes of energies, respectively.
For large value of Ro, the ratios e2/e& and e3/e2
decrease exponentially with Rp. The magnetic
coupling strength J which stabilizes the antifer-
romagnetic phase for large value of Rp is of order
e2/e1.

2

Because of the constant nearest-neighbor dis-
tance R p in a SICHA, the disorder effect in a 30-
SICHA is due to the fluctuation 5@3 of the energy
E3 Such fluctuation is very small compared to e2
and extremely small compared to e1. However, 5e3
and J are of the same order of magnitude. There-
fore, when the antiferromagnetic phase in a 0-
SICHA is stable, the characteristic feature of the
single-particle eigenstate III; (r) will be altered
drastically by the disorder effect. On the other

FIG. 1. Spin-density distribution along the center line
of a 0-SICHA for various values of Rp marked at the
right-hand side. For each Rp at the left-hand side the
upper scale is for p, (r) and the lower scale is for p,(r).
R p is in units of Bohr radius.
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hand, the fact e& g&5@3 prevents the transfer of
spins from one sublattice to the other when the 0-
SICHA is changed to the 30-SICHA. Hence, as
the very weak disorder effect is introduced into the
antiferromagnetic phase of the O-SICHA, there is

only a charge redistribution within the same sub-
lattice but without spin flip. At the other limit of
small Ro the properties of the single-particle eigen-
states are dominated by e& and e2 which are much
greater than 5e,. In this case the change of the
eigensolutions of (3) due to 5@3 is then negligibly
small. Let us recall that p (r) is the total spin

density over all the occupied eigenstates. Conse-
quently, for any value of Ro we expect an extreme-

ly small difference in p (r) between the case 0-
SICHA and the case 30-SICHA. This is indeed
correct since there is no difference (within the ac-
curacy of the drawing) between Fig. 1 and the
similar plot for the 30-SICHA.

In order to demonstrate the effect of 6e3 on the
single-particle eigenstates, let us define the inverse

participation ratio (%) of the ith eigenstate with cr

spin as

0 F

5

2

~g~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~f ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~
~to ~ ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ got

f.5

r

2 IR gi I

J
g I Rnji I

2

If the atomic orbitals P;(r ) are orthogonal to each
other and the system is infinite, then the value of
A; varies from zero for extremely extended states
to one for extremely localized states. Although in
our case these two conditions are not satisfied, we
can still use the A to estimate the degree of locali-
zation. For given values of Ro ——1.5 and 2 —5, the
R; of both o = t and o =l are given in Fig. 2(a)
(for 0-SICHA) and Fig. 2(b) (for 30-SICHA). For
each value of Ro there is a particular coordinate
system attached to the associated A' data. The
values of Ro are marked by the numbers above the
vertical axes. The horizontal axes in these figures
label the eigenenergies of the single-particle eigen-
states l(t; (r). The 8'; of each eigenstate is
represented by a dot. The scales for both the verti-
cal and the horizontal axes are given at the lower-
left corner with E in unit of Hartree. The eigenen-
ergy spectrum for a fixed value of Ro can be clear-
ly divided into two parts, as a result of the intra-
atomic Coulomb interaction (ei) between electrons.
To avoid ambiguity, we call them the lower
Coulomb-split spectrum (LCSS) and the upper
Coulomb-split spectrum (UCSS). For small value
of Ro, for example, Ro ——1.5 and 2, some eigen-
states in the UCSS have very large %. This is due
to the intrinsic drawback of the Hartree-Fock ap-

4 (b)
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FIG. 2. Inverse participation ratio (for both & and g

spins) as a function of eigenenergy for various values of
Rp marked at the top of the corresponding vertical axis.
The scales for the axes are given at the lower-left
corner. (a) for 0-SICHA and (b) for 30-SICHA.
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proximation which has been discussed earlier in
connection to the density of states. Since for the
ground state the UCSS is always empty, we can ig-
nore it for the moment. The slight increase of 9P

at both ends of the LCSS is associated to the boun-

dary condition for a finite chain. In general, the
values of 9F in Fig. 2(a) are very small, indicating
the bandtype eigenstates.

We notice that in Fig. 2(a), as Ro increases the
shape of the 9F associated to the LCSS changes
from very flat (for example, Ro ——1.5) to more
curved (for example, Ro ——4) and to flat again (for
example, Ro ——5). This is caused by the gradual in-

crease of the antiferromagnetic ordering. To illus-

trate this point, in Fig. 3 the 9P of the almost com-

plete antiferromagnetic cases Ro =6—8 are shown

at the left, the middle, and the right, respectively.
The result for each Ro consists of two parts: The
group of dots at the upper part is for the 30-
SICHA and the group of dots at the lower part is
for the 0-SICHA. The few star-points mixing with

the dots of the upper group are also for the 0-

SICHA. However, the large 9F values of these few

star points are the results of the boundary condi-
tions for a finite chain and will be ignored. The
scale of energy for the horizontal axes associated to

a particular value of Ro is plotted above the corre-
sponding dot data. For each value of Ro, the vert-
ical axis at the left is for the 30-SICHA and that
at the right is for the 0-SICHA. For such large
Ro the eigenstates of the 0-SICHA are the sublat-
tice Bloch states and the energy spectrum is of the

type of an antiferromagnetic split band. Hence the
9F values are very small. Because of the antifer-
romagnetic structure, both the UCSS and the
LCSS are again split into two magnetic subspectra.
In Fig. 3 a gap between the magnetic subspectra of
the UCSS can be clearly detected, but the gap in
the LCSS is too small to be seen. When Rp is very
small, the eigenstates of the 0-SICHA are the pure
Bloch states without sublattice structure. Conse-

quently, as Rp increases the single-particle eigen-
functions of the 0-SICHA change from the pure
Bloch type through the non-Bloch type to the sub-
lattice Bloch type. This explains the variation of
the shape of A' for the 0-SICHA when Rp in-
creases from 1.5 to 5 [Fig. 2(a)] and to 8 (Fig. 3).

When the disorder effect is introduced, by com-
paring the data for the 0-SICHA and the 30-
SICHA in Figs. 2(a), 2(b), and 3, we see that band
tails appear at both sides of the LCSS and the
UCSS. The extent of band-tailing grows with the
extent of antiferromagnetic ordering. The states in
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FIG. 3. Inverse participation ratio (for both f and l spins) as a function of eigenenergy for Ro——6 (left plot), 7 (mid-
dle plot), and 8 (right plot). The upper group of dots is for 30-SICHA, and the lower group of dots plus the star points
are for the 0-SICHA. The left vertical axis is for the 30-SICHA and the right vertical axis is for the 0-SICHA. For
each Ro the scale of energy for the horizontal axis is given at the top of the figure.
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the tails are more localized, as indicated by the
larger R values. With decreasing Ro the antifer-
romagnetic structure gradually disappears, and so
the disorder effect gets weaker as we pointed out
earlier. Therefore, in Figs. 2(a), 2(b), and 3 we see
that the difference between the 9F of the 0-SICHA
and the 30-SICHA becomes less as the nonmagnet-
ic phase is approached.

Let us consider a localized state

0.25-

0
0.25-3.

0

0.25-

I ~ ~ I ~ ~ I I ~ \ ~ I ~ ~ I \ I I ~ ~ ~ I I I I I I ~ I I I I I I ~ I I ~ I I I I ~ ~ I I I \ I I ~ ~ I I I ~ ~ I I

5'

+,(r)= g pj(r)B J,
.

j=l

such that v of the coefficients, for example,
j=g&,g&, . . . , g„are much larger than the rest of
the coefficients. Hence the state 4;(r) is local-
ized on a set of atoms at t R&,j= l,v J. However,

J
the spatial distribution of the atomic positions
IRg.,'j = i,vl does not change the value of ~, If

J
all these v atomic positions are very close to each
other, then the envelope function of B~J,, denoted
as F«(r r), has o—nly one maximum around r
In terms of the envelope function we can define a
regional localization length g;. However, it is pos-
sible that these v atomic positions IR~.,j= l, v IJ
form p spatially separated regions such that only
the atomic positions within the same region are
close to each other. Then the envelope function
has the form

0.25-

0
(U5-

0
l 21 I 41

{b)

I ~ I

61
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0—
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— V

0
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5

F;k(r 'Tk)—
with p local maxima around t Pk, k =1,p). Al-
though around each local maximum a regional lo-
calization length gtk can be still defined, we need a
global localization length:-; which measures the
largest distance between two regions. To avoid
ambiguity, we call the localization of 'P«( r ) a pure
regional localization if p =1, but a global localiza-
tion if)M &1.

Certainly, the A can not tell the difference be-
tween the global localization and the pure regional
localization. On the other hand, the moments de-
fined as

m)2 (9)

gives valuable information about the characteristic
feature of the localization properties, where
Z =

~
(Rs2 —R, ).z

~

is the projected length of the
SICHA along the z axis. For Ro ——1.5, 4, and 7,
the five moments L' (i) with m =2—6 are shown
in Figs. 4(a) —4(c). Each moment is plotted in one
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~ 'I I I I ~ ~ ~ ~ ~ I I I ~ ~ ~ ~ I \ I ~ ~ ~ ~ ~ I ~ ~ I I ~ ~ ~ I ~ ~ I I I I ~ ~ I I I I ~ ~
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FIG. 4. Moments for down-spin eigenstates [L ' (i)
for even moments m =2, 4, and 6 hut

~
I, ' (i)

~
for odd

moments m =3 and 5] with the solid curves for the 0-
SICHA and the dots for the 30-SICHA. Each panel is
for one moment with the number m marked at the
upper-left corner. Horizontal axis labels the eigenstates
with increasing eigenenergy. {a) for R0——1.5, {b) for
R0 ——4, and {c)for R0 ——7.
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panel with the value of m marked at the upper-left
corner. Since the odd moments fluctuate randomly
between the positive and the negative values, we
found it better to plot the absolute values of the
odd moments (L3(i)

(
and (L5(i) (. The horizon-

tal axis labels the eigenstate quantum number with
increasing eigenenergy. In these figures, the solid
curves are for the 0-SICHA and the dots are for
the 30-SICHA. The moments for the up-spin
eigenstates are not shown here because they are
very similar to those for the down spin.

Since the disorder effect is weak for small Ro,
the even moments of the 0-SICHA and the 30-
SICHA, which measure the degree of localization,
in Figs. 4(a) and 4(b) are almost the same. Here
again we ignore the unusual feature of the mo-
ments assoicated to the UCSS of Ro ——1.5 for the
same reason mentioned earlier. When the disorder
effect is introduced, we see a general increase of
the absolute values of the odd moments. The
eigenstates of the 30-SICHA are thus more asym-
metric than those of the 0-SICHA. Nevertheless,
as far as the electron localization is concerned, the
moment analysis and the A calculation provide the
same information.

However, it is not so for Ro ——7 where the disor-
der effect is very strong. The 9P data in Fig. 3

suggest the existence of a few localized states only
in the band tails, while all the states in the bulk

part of the spectrum are delocalized. In Fig. 4(c)
the even moments for the 30-SICHA have broad
peaks at the centers of both the LCSS and the

UCSS. Around the peaks the moments of both the

0-SICHA and the 30-SICHA have roughly the
same value. Hence, these eigenstates of the 30-
SICHA are localized in the sense of the global lo-
calization (if the global localization length is suffi-
ciently long we can also say that the state is delo-
calized in non-Bloch type). Moving away from
these peak areas, the global localization gradually
changes into the pure regional localization as indi-
cated by the decreases of the even moments. Since
we know the numerical values of B~J; for all the
eigenstates we can check the characteristic feature
of the localization properties of the eigenstate. We
found that almost all the eigenstates in the bulk
parts of both the UCSS and the LCSS have a sub-
stantial number of large coefficients 8 J;. But the
spatial distribution of these Bej; varies from the
global localization type for some states to the pure
regional localization type for some other states. Of
course, such change of spatial distribution can not
be detected by the 9P calculation. In the tails of
the spectra, the localization is indeed pure regional.

To close up, we should stress that the finding in
this paper is characteristic to the geometric proper-
ty of a stereo-irregular chain, independent of the
use of hydrogen wave function. Namely, as long
as the bond length Ro is constant and the disorder
is due to the random variation of the bond angle,
the physical disorder effect is weak (except for the
antiferromagnetic phase), even though the topologi-
cal disorder may be rather large. For the antifer-
romagnetic phase, the disorder energy is not strong
enough to localize all the electrons in pure regional
type.
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