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Electronic structure of carbon intercalated atoms in graphite. A single-layer approach
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In the tight-binding approximation we calculate the electronic structure of carbon
atoms intercalated between graphite layers. These interstitial carbons induce variation of
the density of states which agree quite well with the few experimental data available.
The energy and the equilibrium position of the interstitial atom are also compared with
the measured values. We also show that the interstitial energy rapidly decreases when
one adds a small amount of boron substitutional impurities. The interstitial carbons also
considerably increase the density of states at the Fermi level as in other intercalated com-

pounds.

I. INTRODUCTION

Perfect graphite has very small density of states
at the Fermi level.! That provides a moderately
good conductivity parallel to the atomic layers.
Owing to its lamellar structure, it presents many
intercalation compounds. These consist of stacks
of one or more hexagonal carbon atom layers alter-
nating with monolayers of guest atoms or mole-
cules (Li, I, K, AsF5, HNO;, etc.). These com-
pounds are extensively investigated owing to their
mechanical and electrical properties and their tech-
nological applications.>~7 We have studied the
electronic structure of interstitial carbons between
the graphitic layers. In fact, when one makes gra-
phite, carbon point defects frequently occur. A
few years ago, x-ray diffusion experiments® have
shown the existence of these defects and measured
the position of these interstitials. We will show
later that the interaction between the interstitials is
very weak. This explains why we have only point
defects, and not a well-defined intercalation com-
pound such as LiCq or KCs;.

In the next section, we calculate the perfect gra-
phite electronic structure in the tight-binding ap-
proximation limited to nearest neighbors. This al-
lows us to fit the tight-binding parameters to exist-
ing band structures.’~'> As it has been establish-
ed'? that for a first approach, the two-dimensional
graphite structure model gives results in good
agreement with the experimental interband transi-
tions we will use the two-dimensional and nearest-
neighbor approximation. So we have then a very
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simple model that allows us to study the influence
of the interstitials. We also show that the interac-
tion between atoms belonging to different layers is
small and that the interstitial carbons at their
equilibrium position mainly interact with only one
graphite layer. For a very small concentration of
interstitials, we calculate the influence of intersti-
tial carbons upon the density of states by the
Green’s-function formalism.!* Some of our results
well agree with the secondary electron spectra.'*
Then we deduce the interstitial energy and its
equilibrium position. These values also are close to
the experimental ones. Moreover, we show that
the energy greatly depends on the graphite Fermi
level. For example, it rapidly decreases with a
very small amount of acceptor such as boron sub-
stitutional impurities.

At larger interstitial concentrations the interac-
tion between the nearest-neighbor intercalated car-
bon atoms remains small. Nevertheless, the densi-
ty of states at the Fermi level is considerably larger
than in pure graphite. Then the conductivity
parallel to the graphite layers is certainly modi-
fied."> Neverthelsss, as the interaction between
layers remains small, it certainly will not be equal
to the expected values for other intercalated com-
pounds like LiCq or KCs.

II. GRAPHITE ELECTRONIC STRUCTURE

The tight-binding approximation seems well suit-
ed to study the graphite electronic structure. At
least it gives a good description of the valence
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bands of diamond or of other covalent semicon-
ductors such as silicon or germanium. The simpli-
city of the calculations allows us to calculate defect
properties like vacancies, surfaces, or interstitials.
Let us briefly recall here the used approximations.

Using the periodicity of the crystal, the nth
eigenfunction W% of the one-electron perfect-lattice
Hamiltonian H is expressed as linear combination
of Bloch waves ¢'(7):

HY%=E,(K)¥% (1)

Vi(F)=3C,(K)gh(T)
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FIG. 1. Two-center integrals between hybridized sp,
orbitals for atoms belonging to the same graphite layer.

where K is the wave vector and E, (k) the energy.
The summation in the expression (2) is extended to
all the Bloch waves which are defined as
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FIG. 2. Graphite energy dispersion curves (zero energy is given by the fit on Painter and Ellis results).
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FIG. 3. Graphite density of states. (Fermi level E Fy is at E,.)

where Qi(?—ﬁj) is an atomic orbital centered on
the lattice site R; and N is the crystal atom num-
ber. The atomic orbitals are also assumed to be
orthogonal for orbitals on different sites. We here
consider four orbitals per atom (one s and three p
states). If we consider only interactions between
atoms in the same layer, the Hamiltonian for a
given wave vector k is easily obtained as a func-
tion of the s and p atomic levels E, and E, and of
the usual two-center integrals B, Bog, Bos, and
Bar- In an sp, hybridized basis of orbitals cen-
tered on one atom and pointing along the nearest-
neighbor directions, we define four two-center in-
tegrals between hybridized orbitals 3, B’, B;, and
B. (Fig. 1). The parameters, fitted on the Painter

and Ellis band structure,' are given in the Table I.

The E(K) dispersion curves are plotted in Fig. 2.
The energies at high-symmetry points are analyti-
cal and we have reported them in the Appendix.
Using a linear interpolation for the energies, we
can calculate the density of states n (E) by an ex-
tension of the tetrahedron method developed for
the three-dimensional problem.!® The calculated
density of states is plotted in Fig. 3 for the param-
eters given in the Table I. But the two-center in-
tegrals vary with the interatomic distance. Owing

to the exponential tail of atomic functions, one
may use an exponential variation of the two-center
integrals:

B=PBoexp(—qR) , (@)

where R is the interatomic distance. Using the
density of states we can calculate the electron con-
tribution E, to the cohesive energy:

E
Ey= [ "En(E)dE —2E,—2E, . (5)

It is the difference between the one-electron en-
ergy of the graphite crystal and of the free atom.
This energy is attractive and increases when the in-
teratomic distance R decreases. To stabilize the
crystal, one generally adds a repulsive term Ex at
short distances owing to the interaction between
the ions and to the atomic functions overlap that
we have neglected in the tight-binding approxima-
tion. We set

Egr =N,Cyexp(—pR) , (6)

where N, is the coordination number (in graphite
equal to 3). The parameters Cy, p, and g can be
fitted to the experimental values of the cohesive
energy E. and of the stretching force constant,!?

TABLE I. Values of the two-center integrals fitted to the Painter and Ellis band structure

(Ref. 10) (in eV).

Es Ep B

B B. B:

—11.655 —7.711

—12.939

—1.165 —1.462 1.866
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and also to the equilibrium condition

dE,
dR

=0, @]
R=R,

where R, is the equilibrium interatomic distance
(1.42 A). Then

E.,=E,+Eyg . ®)

Using such a model one generally finds, for the co-
valent elements, gR, close to 2, and pR, to 4.!”
This shows that the two-center integrals for non-
near-neighbor atoms are small, and that the in-
teraction between layers is very small.

As the valence bands of covalent systems is close
to a nearly free-electron band scheme, an R ~2
variation of the two-center integrals has also been
used.!® For small variations of the interatomic dis-
tance, both approximations are not very different
provided gRj is close to 2.

The advantage of an R ~2 law is that it only uses
the bulk equilibrium condition and the stretching
force constant to fit the parameters pR, and C,,.
The cohesive energy is more difficult to calculate
as it involves orthogonalization terms, or shifts of
the atomic levels E; and E, between the free atom
and the bulk graphite that we neglect in our band
calculation, which, in fact, only uses the net differ-
ence E; —E, and assumes that the atomic func-
tions are orthogonal. Nevertheless, such a varia-
tion also gives small values of the two-center in-
tegrals for atomic orbitals centered on different
graphite layers. We shall below use this approxi-
mation to minimize the interstitial energy.

III. THE INTERSTITIAL CARBON
ELECTRONIC STRUCTURE

A. Influence of the interstitial
on the density of states

At very low interstitial concentration we can as-
sume that there is no interaction between the inter-
stitial atoms. Then we can study the electronic
structure of only one carbon atom intercalated be-
tween the graphitic layers. The Green’s-function
formalism is well suited to study such localized
problems.'® Let us call H, the Hamiltonian of the
graphite crystal plus the free carbon atom one.
The intercalation of the carbon atom between the
graphitic layers adds to this Hamiltonian a poten-
tial ¥ that connects the interstitial states to the
graphite ones. If we define the Green’s operator
GO as

1

e > 9

Go
where 7 is a positive infinitesimal, the variation
An (E) of the graphite density of states owing to
the perturbation V is simply

An(E)=—2 % [argdetI —Gy»)],  (10)
7 dE

or if we use the variation AN (E) of the number of
states below the energy E,

AN(E)= [ “An(E"\dE’ (1
=~ Zargldet1 —Go)] (12)

In the tight-binding basis we use, the potential V'
has nonzero elements only between the interstitial s
and p states and the atomic orbitals centered on its
nearest neighbors. Figure 4 shows the different
values of the two-center integrals that connect the
interstitial to its neighbors. Let us recall that here
we use the R ~2 variation. The interstitial has been
taken at its experimental® position 1.2 A above an
hexagonal ring and about 2.2 A below one atom in
the other neighboring layer. This position above
the center of a carbon ring has also been shown to
be the most stable.””!° As the two-center integrals
decrease with the distance, and as the interstitial
only has one nearest neighbor in this more distant
layer, we have considered only the interactions be-
tween the interstitial and the closest-layer neigh-
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FIG. 4. Two-center integrals between the interstitial s
and p states and its neighbors. An R ~2 variation of the
two-center integrals has been used to calculate their
values from the graphite values.
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FIG. 5. Variation AN,(E) of the graphite integrated density of states owing to the s and p, interstitial orbitals.

bors. We shall also justify this approximation
below considering the effect of these interactions.

Then V has nonzero elements between the s and
p states on the interstitial and on its six neighbors.
Vis a 28 X 28 matrix that may be simplified using
the symmetries of the problem. It is possible to
separate the coupling of the graphite states with
the interstitials s and p, (normal to the graphite
layers) orbitals and the one of the p, (or p,) states.
The matrix ¥V is then block-diagonalized into a
99 matrix V7 for the states of P, symmetry, an
8 X 8 one V* for the symmetry P, and a 6 X6 one
V? for the symmetry P,. There are also five states
that do not couple with the interstitial states.
Then one can easily show that

AN (E)=AN,(E)+AN,(E)+AN,(E), (13)

where

AN;(E)=— %arg dett —GiVY), i=xpz. (14)

graphite

-<-=.-. COronene

Let us also note that, owing to the symmetry of
the system, we have

AN, (E)=AN,(E) . (15)

These variations of the integrated densities of
states are plotted in Figs. 5 and 6.

In Fig. 5, we see that a localized state appears
below the graphite bands. Let us note that this
state is made of a symmetric combination of s gra-
phite states on the interstitial neighbors, which
were near the bottom of the band T’ 1§ in the ab-
sence of the interstitial. The same phenomenon ar-
ises at the bottom of the 7 band (level I'p,). A
symmetric combination of 7 states is shifted below
the band, owing to coupling with the s and p, in-
terstitial states. If one uses a second-order pertur-
bation theory, it is then obvious that these intersti-
tial states are repelled to higher energies. The ef-
fect is less important for the p, state than for the s
state of the interstitial atom, as the coupling of

-40
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FIG. 6. Variation AN(E) of the graphite integrated density of states owing to the p, (or p,) interstitial orbitals.
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FIG. 7. Representation of a coronene molecule.

this last one is more important (Fig. 4).

Figure 6 shows that the coupling of the p, or p,
interstitial states with the graphite ones is not very
important. The p levels are slightly shifted up-
wards, owing to interactions with lower states in
the graphite bands. These figures show that the
coupling of the interstitial states is not very impor-
tant. So this completely justifies the neglect of the

AN(E)

84

graphite

----- coronene

two-center integrals between the interstitial and its
single neighbor distant of 2.2 A.

In the same figures we have also plotted the
variation of the integrated density of states due to
adsorption of a carbon atom at the middle of a
coronene or hexabenzobenzene molecule (shown in
Fig. 7). These results have been used as a test of
our calculations. They are not very different from
the graphite results, showing that there is no long-
range effects and that the perturbations are strong-
ly localized near the interstitial. Note that we have
slightly broadened all the levels of the coronene
molecule by Gaussians to get a continuous spec-
trum that we can compare with our preceding re-
sults.

In Fig. 8, we have plotted the total variation
AN (E). One sees that the s and p states of the in-
terstitial atom are now close to the graphite Fermi
level. At this time, there is no observation of these
states by photoemission spectroscopy or by energy-
loss spectroscopy. But the variation of the density
of states at about 4.3 eV (or 12 eV above the Fer-
mi level) may be related to the variation of the
secondary emission spectrum when a graphite crys-
tal is bombarded by argon ions that create vacan-
cies and interstitial atoms.'*

-40
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FIG. 8. Total variation AN(E) of the graphite integrated density of states owing to the interstitial.
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B. Interstitial energy

We have already noted above that the graphite
cohesive energy calculated by our model is larger
than the experimental one. We get a value close to
23 eV instead of 7 eV. This is owing to the fact
that we have assumed that the atomic orbitals are
orthogonal. In fact this is not exactly true for free
atom states. Orthogonalization terms would
reduce our calculated value. As the interatomic
distance between the interstitial and its neighbors is
larger than the graphite equilibrium lattice con-
stant, one can expect that the orthogonalization
terms will be less important, as they decrease faster
than the hopping integrals.

The electron contribution to the interstitial ener-
gy is the difference between the one-electron ener-
gies after and before the insertion of the carbon
atom:

EF
E;= [ _E[Nn(E)+5n(E)dE

EF
— [ ’ENn(E)ME —2E,—2E,,  (16)

where Er and Ef, are the corresponding Fermi lev-

els, N the number of graphite atoms, n (E) the per-
fect graphite density of states (Fig. 3), and &n (E)
its variation due to the interstitial which has been
calculated in III A. One can easily calculate the
new position of the Fermi level:

E, Eg,
[ INn(E)+8n(E)JdE= [ Nn(E)dE +4,
(17)

as the insertion brings four electrons. Thus we ob-
tain

Ep E.
NfEFon (EVIE + [~ 8n(E)E =4, (18)

which shows that the difference Er —E F, 18 the or-

der of 1/N. Then the electron contribution to the
interstitial energy is equal to

EF
E=| EFOENn (E)dE

EF
+ [ " ESn(EME —2E,—2E,.  (19)
As E F—EFO is small, one can write
E
E~] E:EFONn (E)dE
0
E

F,
+ [ °Esn(EME —2E,—2E,,  (0)

where the first term is calculated from (18). We
derive

EF
Ey=4E,+ [ _(E —Eg )on(E)IE

—2E,—2E, . @1

After an integration by parts the electron contribu-
tion to the interstitial energy is

E;=2(2Ep,—2E, —2E,)

EF
— [ ‘aNENE, (22)

where AN (E) has been calculated in the preceding
section. Using, as in Sec. II, a R ~? variation of
the hopping integrals, and the repulsive terms fit-
ted to bulk properties but reduced, owing to a
larger distance, we find an interstitial energy and
an equilibrium position close to the experimental
ones (Fig. 9).

This interstitial energy also depends on the gra-
phite Fermi level E Fy- Such a variation may be

obtained in a substitutionally boron-doped gra-
phite. Boron only has three s and p electrons. Its
substitution to a carbon atom empties the graphite
valence bands. Even with a small amount of boron
the variation of the Fermi level is not negligible as
the density of states at the perfect graphite Fermi
level is equal to zero (in our model). One has mea-
sured a 0.2-eV variation for only 0.5 at. % B.2° If
we assume that the substitutional boron atoms do
not modify the repulsion between the carbon
atoms, we see in Fig. 10 that the electron contribu-
tion to the interstitial energy varies rapidly with
the position of the Fermi level.

AN (E) is constant just below Ep and nearly

Ec(eV)
0.5 1.0 1.5 2.0
A ) h ;

FIG. 9. Interstitial energy as a function of its dis-
tance to the graphite layer. The zero energy has been
taken for no coupling between the interstitial and its
neighbors. The experimental equilibrium position is
equal to 1.2 A.
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EF(eV)

-20

FIG. 11. This periodic arrangement gives a —;— atomic
concentration of interstitials.

equal to 2 (Fig. 7). So from Eq. (22) the intersti-
tial energy is decreased by 0.4 eV for a Fermi-level
variation of 0.2 eV. If the interstitial energy is
close to the graphite cohesive energy as observed
previously,?! this can be sufficient to make the in-

FIG. 10. Variation of the electron contribution to the
interstitial energy as a function of the graphite Fermi
level. (Ef is the Fermi level for pure graphite).

|

E{eV}

T
t -30

FIG. 12. Density of states for the interstitial atomic substructure given by Fig. 11. The dashed line gives the local
density of states on the interstitials.
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FIG. 13. Structure used for large interstitial concen-
tration (50%).

terstitial unstable as it is observed experimentally®?
‘when one adds a small amount of boron to gra-
phite. This gives good confidence in our intersti-
tial electron structure and its large induced density
of states near the graphite Fermi level. On the
other hand, a donor substitutional impurity would
stabilize the interstitial carbons.

IV. INTERSTITIAL INTERACTION

In the preceding section, we have studied the
electronic structure of one isolated carbon intersti-
tial in a graphite crystal. - This is the case of a very
small interstitial concentration. However, it seems
that the measured interstitial concentration raises
up to 10%."% Thus it is interesting to see if the in-
teraction between the interstitials modifies the elec-
tronic structure obtained in the preceding section.
This can be simply done if one studies a periodic
arrangement of interstitials. There are several pos-
sibilities to simulate a concentration close to 10%.
Nevertheless, even if the system is periodic, one
cannot increase too much the number N of atoms
in the unit cell, as we must diagonalize a 4N X 4N
Hermitian matrix for each wave vector in the Bril-
louin zone to get the energies E (k). We have tak-
en N equal to 7 and then an interstitial concentra-
tion equal to % (Fig. 11).

The density of states is calculated by integration
over the two-dimensional Brillouin zone, using an
extension of the tetrahedron method previously
developed for a three-dimensional one.'!® The den-
sity of states is plotted on Fig. 12. The localized
state 4 that we obtained for an isolated interstitial
is now slightly broadened in a band below the per-

n(E)

34

E(eV)

FIG. 14. Density of states for very large interstitial concentration. The dashed line gives the local density on states

on the interstitials.
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fect graphite bands. A large part of these states
comes from the graphite. In contrast, the large
densities of states near the Fermi level are made of
interstitial s and p states. This is simply the same
states as in Fig. 8 (B and C) which are also slightly
broadened by the indirect interaction between the
interstitials. So for a 16 at. % interstitial concen-
tration, the interaction between the interstitials
remains small. Then at the 10% experimental con-
centration, the mean distance between the intersti-
tials will be of the same order of magnitude as in
the configuration we have studied (Fig. 11).
Nevertheless, some atoms may be closer. So we
have studied a quite large interstitial concentration
to see the effect of carbon interstitials above two
neighbor carbon rings. This is the case of a 50%
concentration (Fig. 13). The density of states is
given on Fig. 14. The interaction between the in-
terstitials is now sufficient to broaden the localized
state appearing below the graphite bands for an
isolated interstitial. The s and p interstitial states
are also strongly broadened but the density of
states at the Fermi level remains large. However,
such a large local fluctuation of the concentration
is not often expected as the measured concentration
is only 10%.

V. CONCLUSION

In the tight-binding approximation, we have
studied the electronic structure of carbon atoms in-
tercalated between graphite layers. For a small
concentration, the interstitials involve a large in-
crease of the density of states near the graphite
Fermi level. This can improve the electrical prop-
erties of graphite. Owing to this large density of
states, the interstitial energy rapidly varies as one
adds a small amount of boron substitutional im-
purities. On the other hand, a donor impurity
would stabilize the interstitial: The calculated in-
terstitial energy and position are in good agreement
with the experimental values. We have also shown
that the interaction between the interstitials is
small.

APPENDIX

At high-symmetry points of the Brillouin zone,
the tight-binding Hamiltonian may be diagonalized
without the aid of a computer. In terms of the
hopping integrals between sp, hydrized orbitals we
get at the center of the Brillouin zone

E(TH)=E;+B+2B,+2B.+4B ,
E(T3)=E,+B+2B,—B.—2B ,
E(T3)=E,—B—2B,+B:.+2B ,
E(T})=E;,—B—2B,—2B.—4B" .

At the corner P and Q of the Brillouin zone, we
have

E(PY)=75{(E,+E,)

+[(E,—E, )?

+4(B—B,—B. +B)1'} ,

E(P{)=E,+[(B—B,)+2(B.—B],
E(Q;E,):%[(Es—%Ep)—FZBt

—B.+28+V'R,],
E(QZE)=%[(ES+E,,)—2B,

+B.—2B+V'R,],
E(Q)=E,+(B+B.~28),

where
2

3

E,—E,
R\= [~£——+2(ﬁ~ﬁz)—(ﬂc—2ﬂ’)

E,—E,

8
+ 3

2
—Bc] ’

E,—E,
R,= l—p 3 —2(B—PB)+(B. —2B’)

2
E,—E,

8
+ 3

+B.
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