
PHYSICAL REVIEW B VOLUME 26, NUMBER 8 15 OCTOBER 1982

Photoluminescence in a disordered insulator: The trapped-exciton model
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A simple phenomenological model of the electronic structure of the pseudogap of an
amorphous semiconductor is considered, and used as the starting point for a systematic
investigation of the processes that determine the nature of the photoluminescence. Many
of the most striking features of these materials are shown to derive in a straightforward
manner from the nature of the primary luminescing entity, a "trapped exciton" in which
the hole 'is trapped in a localized gap state and the electron is bound to the hole by their
mutual Coulomb attraction. Other important properties of the photoluminescence reflect
the dynamics of the hopping motion of a charged carrier through a band of localized
states.

I. INTRODUCTION

Photoluminescence experiments, which have al-

ready proved their power as probes of the electron-
ic structure of crystalline semiconductors, ' have
been used extensively in recent years to study the
nature of the electronic states in the pseudogap of
amorphous semiconductors. ' Often, however,
these experiments have been interpreted in an
ad hoc manner using models that were developed
to understand photoluminescence in crystals, with
the effects of the noncrystalline nature of the sys-
tem invoked as needed to obtain agreement be-
tween theory and experiment. While many of the
concepts introduced in these models are applicable
to amorphous systems, there are many important
differences between the gap-state structure of
amorphous and 'crystalline semiconductors. Thus,
it is useful to study a model that incorporates the
disordered character of the amorphous semicon-
ductor from the start, and to consider a broad
spectrum of experimental results from the unified
perspective of this model. In this paper we derive
expressions for the results of various photolumines-
cence experiments in terms of such a model of a
disordered semiconductor.

The conceptual core of a theory of photolumin-
escence consists of a picture of the process in
which the photoexcited electron-hole pair recom-
bines via the emission of light, and a description of
the most important nonradiative processes that
compete with or quench this luminescence. In the
class of models studied here, the luminescing entity
is a trapped "exciton" in which one of the charge
carriers is trapped in a highly localized state in the
pseudogap, and the other carrier is bound to the

first by their mutual Coulomb attraction in a large
"hydrogenic" state. This hydrogenic state is a
photoinduced state in the sense that it owes its ex-
istence to the presence of the trapped charge car-
rier. The radiative recombination rate of the exci-
ton can be quite small because of the large
discrepancy in the sizes of the two states produces
a small overlap factor. ' The most important non-
radiative process at low temperatures in this class
of models is phonon-assisted hopping. Here, the
carrier in the large photoinduced state escapes
from the vicinity of the trapped carrier by hopping
to other localized states elsewhere in the solid. At
high temperatures, an additional nonradiative pro-
cess becomes important in which the carrier in the
induced state is thermally activated to the mobility
edge and then escapes from the vicinity of the
trapped carrier.

The model presupposes a simple picture of the
density of one-electron states in the pseudogap,
such as the one shown schematically in Fig. 1.
The intrinsic density of tailing states (that is,
disorder-induced localized states that "tail" into
the pseudogap) is taken to be asymmetric, with one
band, which we have chosen arbitrarily to be the
conduction band, characterized by a relatively
sharp band edge and a low density of tailing states
while the other (valence) band has a markedly
higher density of tailing states. We will consider
only the case in which the intensity of the light
used to excite the luminescence is sufficiently low
that each geminant electron-hole pair (that is, a
pair created by the absorption of a single photon)
is sufficiently isolated from all others that the ef-
fects of other photoexcited electrons and holes can
be ignored. Under these conditions, if the gem-
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FIG. 1. Schematic density of states of an amorphous

semiconductor. Shown here are Gaussian band tails,
with a higher density of valence-band than of
conduction-band tail states. Also shown, near the center
of the pseudogap, are positively charged valence-band-

related states above the Fermi level EF, and negatively

charged conduction-band-related states below EF.

inant electron and hole separate, the luminescence
is quenched. The salient features of the model fol-
low directly. The high density of valence-band-
related tailing states implies that a hole will be-

come trapped in a localized state almost immedi-

ately after excitation. As these states tend to be
deep in the pseudogap, the radius of the hole orbi-
tal will be rather small. In contrast, the density of
conduction-band-related tailing states is low, so the
electron remains free much longer and would prob-

ably escape from the vicinity of the hole were it
not bound to the hole by their mutual Coulomb at-
traction. Kivelson and Gelatt' ' have shown pre-
viously that the notion of effective mass can be ex-
tended to disordered systems. Thus, if the density
of tailing states is not too large, the bound states
associated with a charged impurity in a disordered
semiconductor are large hydrogenic states with a
radius

o~ =Pi a./m'e

where, as in the crystal, ~ is the static dielectric
constant, and m* is an appropriate average effec-
tive mass. For instance, az is estimated to be ap-

0
proximately 24 A in a-Si. As the radius of the
hole state, in general, is small compared to a~, the
bound state of the electron in the field of the hole
is similar to that of an electron bound to a charged
impurity or defect. Moreover, if the electron orbi-
tal is large compared to the correlation length of

the disorder, its nature is rather insensitive to the
local variations of environment characteristic of
disordered systems. Thus, the electron-hole pair
forms a trapped "exciton" consisting of a tightly
bound hole surrounded by a large hydrogenic elec-
tron orbital, and the luminescence results from the
radiative recombination of the electron with the
hole to which it is bound. This picture of the
luminescing entity is the central new concept of
this paper and is responsible for many of the most
striking predictions of the model. Since there is a
wide spread in the properties of the hole states,
there will be a wide spread in those properties of
the luminescing pairs that depend jointly on the
characteristics of the electron and hole orbitals,
such as the luminescence energy. Other properties,
such as the high-temperature activation energy for
ionizing the exciton, which, as we will demon-
strate, depend only on the nature of the electron
state, will have well-defined values.

In Sec. II the model is described in detail, and
the consequences of its structure are explored. It is
our purpose in this section to present all the major
results of our analysis in general physical terms
without recourse to detai1ed calculations. The
dependence of the quantum efficiency on tempera-
ture, the strength of an applied external electric
field, the intrinsic density of tailing states, and the
concentration of charged and neutral impurities is
discussed. The time and spectral dependence of
the photoluminescence signal is also explained. In
particular, the implications of our identification of
a trapped exciton as the primary luminescing enti-

ty are highlighted.
Many of the quantities invoked in the discussion

in Sec. II depend on the statistics of electron or
hole hopping motion through a random distribu-
tion of localized states. In Sec. III, the results of
detailed calculations of these quantities are
described. At nonzero temperature, the statistics
of the hopping motion of the electroris (or holes)
becomes quite complicated. Reliable approximate
analytic solutions have been obtained in the low-
and high-temperature limits. Many of the results
obtained from this analysis are new and should be
widely applicable to hopping processes in disor-
dered systems. A particularly interesting new ef-
fect predicted by these calculations is that, for cer-
tain physically plausible densities of localized
states, the low-temperature quantum efficiency is
an increasing function of temperature. In other
words, we find that under appropriate conditions,
the nonradiative process becomes less effective
with increasing temperature. In order to obtain re-
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liable results at intermediate temperatures and to
verify the accuracy of our approximate solutions at
low temperatures, a series of computer simulation
experiments have been carried out for various
choices of the parameters that define the model.
The results of these experiments are also discussed.

Finally, in Sec. IV we briefly discuss the impli-
cations of the model for interpreting experiment in
real amorphous semiconductors. We have previ-
ously used the model to make a detailed compar-
ison between theory and experiment in hydrogenat-
ed a-Si. ' However, since there is considerable ex-
perimental uncertainty in determining the micro-
scopic parameters which govern the photolumines-
cence in a-Si, the model must be embellished with
a large number of free parameters. Thus, since
there is no qualitative result which unambiguously
implicates the present excitonic mechanism in the
photoluminescence, such a detailed fit to experi-
ment is not useful at this time.

II. THE MODEL

In our model, the nature of the photolumines-
cence signal derives directly from a simple picture
of the intrinsic electronic structure of the pseudo-

gap of the amorphous semiconductor. The density
of states is assumed to be of the general form
shown schematically in Fig. 1. It is characterized
by a valence band and its associated valence-band
tail separated from a conduction band and its asso-
ciated conduction-band tail by a region with a very
low density of states. As the Fermi level lies
somewhere in midgap, the valence-band-related
states are normally full and are charged when emp-

ty (when occupied by a hole) while the conduction-
band states are normally empty and are charged
when occupied. For energies below E„or above E,
the density of states and carrier mobilities are high
(E„and E, are often associated with a "mobility
edge"). The states between E„and E, are said to
lie in the pseudogap. In this regime the density of
states is small and the carrier mobilities are low
since the electronic states are localized and the car-
riers move via phonon-assisted hopping. On the
whole, the further into the pseudogap a state lies,
the more localized it becomes. The distribution of
tail states is highly asymmetric with a higher den-

sity of valence-band tailing states than of
conduction-band tailing states. By virtue of their
large size, states near the band edges, which in-
cludes the greater part of the conduction-band-
related states, will tend to be coupled only weakly

3
~Ecore Ecore(~+ ~us ) (2)

where E„„is an energy characteristic of the core
potential and is typically of the order of a rydberg.
Note that the actual value of ED relative to the
mobility edge E„is difficult to estimate theoreti-
cally. An effective Rydberg for the hydrogenic
state, 9P =iii /2m (as), can be defined which
measures the binding energy of the hydrogenic
ground state relative to an effective band edge. ' '
This energy should not be confused with E,-ED,
the ionization activation energy, which depends on
the location of the mobility edge and is generally
expected to be larger than A*.

In addition to photoexcited holes in traps, local-
ized charges may occur in several ways. There is
evidence that a fraction of impurities with valence
charge one greater than that of the host element
(such as P in a-Si) are incorporated into the amor-
phous matrix in a singly charged configuration. ' '
Alternatively, if the valence-band tail overlaps the
Fermi level, or if a defect produces a valence-
band-derived state above the Fermi level, there will
be an intrinsic density of positive charges associat-
ed with these empty, highly localized midgap
states. A similar hydrogenic bound-hole state is
associated with each negative charge in the system,
but due to the high density of valence-band tail
states, this state is too short lived to be important.

Finally, we need to know enough about the pho-
non spectrum and the electron-phonon interaction

to the phonon field while the deeper, hence more
localized valence-band-related states, may be quite
strongly coupled. (Note: The choice of the con-
duction band as the band with the small density of
tailing states is arbitrary. If a system had a densi-

ty of states with the asymmetric reversed, the
physics of the model would remain unchanged
with the roles of holes and electrons reversed.
However, there is evidence that the density of
states pictured in Fig. 1 is qualitatively correct for
hydrogenated a-Si. ' )

The presence of a localized positive charge in
the solid introduces an associated electron bound
state into the system. If the radius of the positive
charge density a+ is small compared to the effec-
tive electron Bohr radius [see Eq. (1)], then, regard-
less of the origin of the charge, the electron bound
state will resemble the state of an electron bound
to a point charge. In particular if ED denotes the
mean energy of an electron bound to a charged im-

purity, then the energy of the bound state associat-
ed with any other charge will be equal to ED
within core-correction terms of order,
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to permit us to calculate phonon-assisted transition
rates between electronic states. The problem is ad-
dressed more fully in Appendix A, For now, we
will only summarize the most important results of
that analysis. Consider two localized states with
radius g and energies E& and E2, respectively,

separated by a distance R. The transition rate y2&

is the probability per unit time that an electron (or
hole, depending on the nature of the states in-
volved) in state l will "hop" to state 2, assuming
state 2 is unoccupied. It is convenient to express

y2& in the form

y2) y(E——),E2,R )S(R)X

—( E~ —E ) ) /k' T
e ol 2)
l for E, (E, , (3)

where the first term is a frequency that depends on
the nature of the phonon field, S(R) is an overlap
factor that falls off exponentially at large dis-

tances,

S(R)-e-"«
and the final factor, required by detailed balance,
expresses the fact that processes that involve the
absorption of phonons (hops up in energy) are less
probable than processes involving the emission of
phonons. At low temperatures and for small ener-

gy differences,
~
E~ E2 ~, y is—well approximated

by a constant, yp. If we are to treat sites with
large energy differences, it is important to include
a term that reflects the fact that processes which
involve the absorption or emission of many pho-
nons are less probable than processes which involve
few phonons. Although y is in general a rather
complicated function, in the case of weak
electron-phonon coupling the leading term is of the
form

I

than that contained in Eqs. (3) and (4), making
quantitative comparisons with theory difficult.
Nonetheless, even in these cases, the simple form
in Eqs. (3) and (4) contains the essential physics
necessary for a qualitatively correct picture. In
particular, it will always be true that small differ-
ences in site energies and intersite distances cause
enormous changes in the hopping rates. Thus, in a
disordered system with a low concentration of lo-
calized states (in units of g '), the distribution of
hopping rates will be extremely broad and it will

be characteristic of the system's statistics that any
rate that is larger than some value will tend to be
much larger and vice versa. (The distribution of
hopping rates at zero temperature for several
representative densities of states is illustrated in
Fig. 2.)

In terms of the class of models we have just
described, we will now discuss the various process-
es that contribute to the observed luminescence in
amorphous semiconductors. We will consider both

)'«i E2 R-))oe"
where n is the appropriate average of the number
of phonons involved in the transition. As large
states are coupled most strongly to long-wave-
length phonons, the average energy of the relevant
phonons is reduced from the Debye energy AcoD,

by a factor of a/g, where a is the interatomic
spacing, so

n —
~
E& E2

~

/(ficoDalg) . — (4b)

Although formally yp is expressed as a product of
a number of unknown factors, since it is an at-
tempt frequency it will often be of order coD,

Pp COD (4c)

In solids with strong electron-phonon coupling,
or at high temperature, the detailed functional
form of the hopping rate will be more complicated
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FIG. 2. Distribution of hopping rates about the
median rate. y ~, the median hopping rate, is defined
in Eq. (19). H' '(y), the fraction of sites from which
the leaving rate is less than y, is discussed in Eq. (36).
It depends parameterically on the density of available
states q, defined in Eq. (37). Notice that even for
q=—10 the distribution spans over two decades of
rates.
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while in transient experiments it decays monotoni-

cally from the time of the pulse (defined as t =0).
As a number of distinct processes contribute to the
observed luminescence signal, we have broken our
discussion into several parts, each dealing with one
class of processes. The different classes of process-
es are illustrated schematically in Fig. 3.

Consider the total steady-state quantum efficien-
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FICj. 3. Schematic representation of the processes
that contribute to the luminescence. (a) Initial relaxa-
tion: The photogenerated electron and hole relax to the
band edge by emitting phonons. The hole is then
trapped in a localized valence-band tail state and the
electron is bound to it in an induced excitonic state.
The dynamics of these initial relaxation processes deter-
mines the initial exciton-formation probability F;„. Hole
thermalization: The hole hops through the valence-band

tail toward the Fermi level until it becomes trapped in a
state sufficiently isolated that no more hopping occurs
on the time scale of the problem. The dynamics of the
hole thermalization determines the luminescence spec-
trum. (b) Radiative recombination: The electron and
hole which form the exciton can recombine accompanied

by the emission of a photon with energy %co. Nonradia-
tive exciton ionization: The luminescence is quenched
when the electron escapes from the bound state induced

by the hole. At zero temperature the electron can es-

cape by hopping to a neighboring conduction-band tail
state with energy less than E~. At low temperatures it
becomes possible for the electron to hop away and then
back. At still higher temperatures the electron can es-

cape via direct thermal activation to the mobility edge
E.

steady-state experiments, in which the lumines-
cence is excited by continuous illumination, and
transient experiments, in which the luminescence is
excited by a brief pulse of light. The fundamental

quantity that is measured experimentally is
dI(fm, t), the intensity of the luminescence radia-
tion with energy Aco at time t per unit energy, per
unit time. In steady-state experiments dI is in-

dependent of time,

dI(fico, i )=dI„(fico),

cy Y„, (the number of photons emitted per photon
absorbed). It can be expressed as a product of two
factors,

Ytot = Yln Yex

where Y;„ is the initial probability that an exciton
will form following the absorption of a photon,
and Y,„ is the average probability that the exciton
will recombine radiatively once it has formed. Y;„
is determined by the relaxation processes, discussed
in Sec. II A of this section, which take place much
faster than any of the other processes discussed
here. Y,„ is an average over the luminescence
spectrum of Y,„(fico), the probability that an exci-
ton with total energy Ae will recombine radiative-
ly. The luminescence spectrum is determined by
the distribution of hole energies. As described in
Sec. II 8, this distribution depends upon the
dynamics of the hole thermalization process in
which a trapped hole loses excess energy via
phonon-assisted hopping between valence-band-tail
states. The competition between the radiative and
nonradiative processes which can destroy an exci-
ton determines Y,„(fico). In Sec. II C, the rate of
radiative decay of an exciton is calculated as a
function of the radius of the hole wave function.
As several workers in the field have analyzed their
data in terms of donor-acceptor-type recombina-
tion, we also calculate the rate at which this pro-
cess occurs, and conclude that exciton recombina-
tion is the more important radiative mechanism for
the class of models considered here. Since, by as-
sumption, all radiative recombination is geminant,
the most important nonradiative processes are
those that allow the electron to escape from the vi-

cinity of the hole. Section IID is devoted to these
processes. At low temperatures phonon-assisted
hopping through conduction-band-tail states is the
most important of these, while at higher tempera-
tures it becomes possible for the electron to escape
via activation to the "mobility edge" E,. The
overall behavior of the luminescence signal
dI(hen, t), encompassing the combined effects of all
the individual processes explored in Secs.
II A —II D, is also discussed at this point. Section
II D concludes with a brief study of the limits the
condition that all radiative recombination be gem-
inant places on the intensity of the radiation used
to excite the luminescence. Finally, in Sec. II E the
consequences of additional perturbations of the
system are considered. Some of the effect on the
luminescence signal of an applied electric field is
discussed, as well as the effect of a given concen-
tration of charged or neutra1 impurities.



PHOTOLUMINESCENCE IN A DISORDERED INSULATOR: 4651

A. Relaxation to the band edges —e;„/k~ T
7escape D~ (6b)

The total quantum efficiency is proportional to
an initial exciton formation probability 1';„,which
is determined by the dynamics of the initial relaxa-
tion processes. 7;„ is the product of two factors:
(i) the probability that, while relaxing to the mobil-

ity edges, the electron and hole will not become too
widely separated to permit exciton formation, and
(ii) the probability that an exciton will form once
the electron and hole have relaxed to the mobility
edges. The photoluminescence is usually excited

by the absorption of a photon with energy E, well

in excess of Eg p
—E E so the electron and hole

initially have considerable kinetic energy. As they
relax to the mobility edges by emitting phonons,
they diffuse apart a characteristic distance

1„„,„(E Es,~) w—hich depends on the excess kinetic
energy [shown schematically in Fig. 3(a)]. If the
electron-hole pair separate by a distance greater
than about az, then the exciton will not form and
there will be no luminescence. If we assume that
the electron travels an average distance I with each
phonon emission event, then a crude estimate of
I„l,x can be obtained':

]/2

lre
l n(E)

2

where n —(E, ED)/(ficoDa/as) —is the average
number of phonons involved in the transition.
Note that v„, is related to the rate of exciton ioni-
zation v„[see Eq. (21)] by the condition of de-
tailed balance. It is also possible for the electron
and hole to escape from each other via the absorp-
tion of a phonon. If, as before, l„l„ is the typical
separation between the electron and hole, then their
binding energy is determined by their mutual
Coulomb attraction, so according to Eqs. (3) and
(4) the escape process is characterized by a rate 0

where n (E)-(E E, )/ficoD is t—he mean number of
phonons emitted, and I is expected to be of order
an interatomic spacing.

An electron and hole that have relaxed to the
mobility edge within about az of one another can
form an exciton. In order to conserve energy, exci-
ton formation must be accompanied by the emis-
sion of phonons. The rate v,x at which this pro-
cess occurs may depend, to some extent, on the na-
ture of the states at the mobility edge but a fairly
reliable estimate of v,„, can be obtained on the
basis of Eq. (4),

(6a)

where

2
~in ~ ~ 1relax (6c)

In most cases of interest, the excitation energy will

be chosen sufficiently low such that t„],„~a&, so
e;„will be somewhat greater than the effective
Rydberg N*.

Combining these results, an approximate expres-
sion for F;„as a function of excitation energy is
obtained:

Y;„(E)- 1

1+(t„,),„/as )'
Vex

Vexc+ escape

Once the exciton has formed, all memory of the
excitation process is lost. 7;„ is the only quantity
that depends on excitation energy. Furthermore,
the initial relaxation processes are all much faster
than the processes discussed subsequently. (The
slowest rate discussed above is v,x„which typically
is 2 or 3 orders of magnitude less than coD, hence

v,„—10' —10" sec '.) Thus, for the purposes of
the following discussions, the initial relaxation pro-
cesses are viewed as instantaneous, and the origin
of time is taken to be the moment of exciton for-
mation.

B. Hole thermalization

After the initial relaxation is completed, the
electron and hole have energies approximately
equal to E,' and E„respectively, and are bound to
each other by their mutual Coulomb attraction in a
state of radius az. Owing to the presence of tail-
ing states, they are each subject to trapping in in-
trinsic localized states. This occurs much more
rapidly for the hole due to the asymmetry of the
density of localized states. Since the density of lo-
calized states decreases rapidly as a function of en-

ergy above the band edge, most of the holes initial-

ly fall into localized states with energy near E, .
The holes then gradually thermalize toward
midgap via phonon-assisted hops between tail
states as shown schematically in Fig. 3(a), so the
time-dependent spectral distribution of the holes,
p„(E,t), gradually broadens and shifts toward
midgap. As this process proceeds, the holes find
their way to more and more isolated sites, and the
hopping rates become progressively slower until no
more motion occurs on the time scale of interest.



4652 S. KIVELSON AND C. D. GELATT, JR.

(8)

where p„(E) is the density of valence-band tailing
states and H'„'(E, t ') is the probability that the
leaving rate from a hole state with energy E is less
than t '. [H'U '(E, t ') is calculated explicitly in

Sec. III E.] The broad dispersion in leaving rates
also implies that if a hole is in a given localized
state at time t, it has probably been there for most
of its life. Since the energy of the electron in the
exciton is always approximately ED the energy of
the recombination radiation is

W —ED Ehpfe o (9)

Thus, the luminescence spectrum is determined by
P„(E,t),

On the whole, the deeper lying the localized state,
the longer a hole remains trapped in it, both be-
cause deeper lying states are more strongly local-
ized than band-edge states, and because there is a
smaller density of tail states with comparable or
lower energy to which the hole can hop readily.
Thus, the spectral distribution of holes is deter-
mined by a competition between the falling density
of tail states and the increasing median lifetime of
those states as a function of energy above E,.

Consider the fate of the holes that are excited by
a burst of light at time zero (transient photo-
luminescence). Since there is such a broad distri-
bution of hopping rates, at any time t &&yo

' essen-

tially all the holes will be trapped in states from
which the leaving rate is less than t '. Thus, at
times short compared to the radiative lifetime, the
spectral distribution of holes will be approximately
equal to the distribution of such "slow" states,

p„(E)H„' '(E, t ')
P„(E,t) =-

PEP~

ah„, =a„;)(E)-(E E„)— (1 la)

So long as the radius of the tail state is larger than

the correlation length of the disorder, this relation

should hold for the tail states in an amorphous
semiconductor as well.

In the opposite extreme, when the size of the

states is comparable to an interatomic spacing a,
the state radius is determined by the length scale of
the potential fluctuations, and is roughly indepen-

dent of the binding energy of the state. Such
states resemble the deep-impurity or defect-related

states found in crystals, in that they tend to be as-

sociated with a particular atomic scale "defect":

broadening. Equation (9) embodies the assumption
that the energy of the emitted photon is always
equal to the total excess energy of the exciton.
However, as the hole states are small, they tend to
be rather strongly coupled to the phonon field,
hence processes in which the photon emission is
accompanied by the absorption or emission of pho-
nons are possible. This results in a broadening of
the spectrum that is proportional to the deforma-
tion potential. ' Nonetheless, because the valence-
band tail is often quite broad compared to a typi-
cal phonon energy AcuD, the photoluminescence
spectrum can still be derived approximately from
Eqs. (10) in some materials. Evidence that this is
the case for a-Si will be presented in Sec. IV.

The size of the localized-tail states is generally a
decreasing function of their binding energies. It
has been shown ' that for tail states in heavily
doped crystalline semiconductors, the energy
dependence of the radius of a tail state is similar to
that normally expected for shallow states in the
band gap of a nearly perfect crystal,

dI(co, t ) ~ v„,g(co)P, (ED %co, t ), — thol ad f(E) (1 lb)

where dI(co, t) is the luminescence intensity per
unit frequency range per unit time, and v„z(co) is
the mean radiative decay rate of an exciton with
total energy Lo. Similar considerations lead to an
expression for the steady-state luminescence spec-
trum,

The two types of localized states can coexist,
since different types of potential fluctuations can
lead to bound states with the same binding energy

but different radii. Evidence that "true" valence-

band tail states and valence-band defect states
coexist in a-Si will be presented in Sec. IV.

dI„(co)~ v„g(to)P„(Ep —fun, gv) . (lob)
C. Radiative recombination

Since the holes are trapped in such "slow" sites,
the hole distribution does not change very much
over the entire range of radiative lifetimes v,,~, and
the frequency dependence of the argument v,,~, in
Eq. (10b), is relatively unimportant.

The simple argument that led from Eq. (8) to
Eqs. (10) may be somewhat complicated by phonon

The radius of the hole state determines the rate
of radiative recombination. Radiative recombina-
tion is a generic term for processes in which an
electron in an excited state makes a transition to
an unoccupied, lower-lying state (annihilates a
hole) accompanied by the emission of a photon.
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(2rih»e)
i/x /f

(xiii )' (13b)

As the expression is proportional to the fifth power
of the hole radius, this uncertainty can be regarded
as a 50% ambiguity in the proper definition of the
appropriate hole radius. It should be noted that
the approximations that lead to the expressions in

Eqs. (13) are only rigorously justifiable when ai,»,
is not much larger than an interatomic spacing,
since if the hole state is large, the effect of the
underlying structure of the unperturbed valence-
and conduction-band-edge states becomes impor-
tant. This limit is also considered in Appendix B.
Nonetheless, in this paper we will use Eq. (13b)
whenever we need to estimate a dipole-matrix ele-

ment. For large hole states, this may result in a
slight overestimate of the associated radiative de-

cay rate, but the results are still expected to be
qualitatively correct.

Despite the uncertainty, considerable useful in-
formation can be obtained from Eq. (12). First, in-

formation about the size of the hole states can be
used to make an estimate of the radiative rate and,
in particular, to predict the frequency dependence
of the radiative rate. This frequency dependence
consists of the explicit co part and an implicit part
due to the dependence of ah, ~, on the hole binding

So long as the electron-phonon coupling is not too
great, the radiative transition rate is derived simply
from Fermi's golden rule,

i/2(~)'e'I (i Ix If & I'
3A c

where fm [fico= (initial energy) —(final energy)] is
the energy of the photon, ~ is the static dielectric
constant of the medium, c is the speed of light,
and (i

~

x
~ f & is the dipole-matrix element between

the initial state and final states. For the present
model of the exciton, the initial state is a large hy-
drogenic bound state with radius az and the final
state is a trapped-hole state with a much smaller
radius cii„i, [see Fig. 3(b)]. Although the precise
value of the dipole-matrix element depends on the
details of the disorder potential in the vicinity of
the hole, the square of the matrix element will in
general consist of an overlap term 5, which is ap-
proximately proportional to (2ah, i,lai'i) times the
squared dipole moment of the smaller state,

((iix~f&( -Sr(f~x ~f&. (13a)

If the hole wave function is roughly the size of
an atomic scale defect, then within an order of
magnitude uncertainty,

—2R /ag
[~fi ]RT e [~fi]exc .

Thus, if Ro is the median separation between
nearest-neighbor electron-tail states, the rate of
donor-acceptor recombination will be smaller than
the rate for exciton recombination by a factor of

—280/a~
order e

—2~0/~&
(Urad )RT [Vrad]exc (15)

Donor-acceptor recombination is observed in doped
crystals because the localized donor and acceptor
states are neutral when occupied by an electron or
hole, respectively, so that trapped excitons of the
sort considered here do not form. However, if the
localized tail states are charged when occupied, as
they generally are believed to be in amorphous
semiconductors, excitons can form. Since radiative
tunneling is far slower than "exciton" recombina-
tion, the latter process dominates.

D. Nonradiative electron processes
including phonon-assisted hopping

At any time t the intensity of the luminescence
radiation per unit time per unit energy is propor-
tional to the number of excitons with energy
gyes, dN(co, t ):

dI(co, t ) =fmvrad(co)dN(co&t ) . (16)

energy,

v„,d(co) cc (fico) cih, i, (Ed E—„fic—o),

where Ed —E, —Ace is the hole binding energy.
Conversely, it is often possible to measure the radi-
ative decay rate as a function of energy and, by
reasoning backward from Eq. (13), to estimate the
size of the relevant hole states.

In doped crystalline semiconductors, the donor-
acceptor model of radiative recombination has had
notable success in explaining the results of photo-
luminescence experiments, ' and it has been sug-
gested that a similar mechanism might be respon-
sible for the luminescence in amorphous semicon-
ductors as well. In this model, the electron and
hole occupy separate localized states and recom-
bine via radiative tunneling (RT). The rate at
which this process occurs can be estimated on the
basis of the same considerations that led to Eqs.
(12) and (13). In the case of radiative tunneling
there is an extra overlap factor which depends ex-
ponentially on the separation R between the elec-
tron and hole
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Following the creation of an ensemble of excitons„
three processes tend to affect the number of exci-
tons with energy %co: (i) The hole thermalization
processes described in Sec. II 8 change excitons of
energy fico into excitons of energy fico'. (ii) Each
radiative transition of the sort described in the last
section annihilates an exciton. (iii) The nonradia-
tive processes in which an electron is separated
from the hole to which it was bound (exciton ioni-
zation) are competitive with the radiative process
since, by assumption, all radiative recombination is
geminant [see Fig. 3(d)]. The first two processes
depend on the nature of the hole state and on the
structure of the valence-band tailing states, but are
insensitive to the nature of the conduction-band
tail states. On the other hand, the nonradiative
electron processes are insensitive to the nature of
the hole orbital (so long as ah, i, «aii), but often
depend critically on the local configuration of the
conduction-band tail states. As the hole thermal-
izes, it diffuses a distance of order a few times the
median separation between nearest-neighbor
valence-band tail states. This distance is small
compared to the typical separation between
conduction-band tail states in the case of a "highly
asymmetric" density of states. In this case, the
electron follows the hole motion adiabatically, and
the local configuration of conduction-band tail
states accessible to the electron does not change ap-
preciably as the hole hops. The electron- and
hole-hopping processes are thus independent of
each other. If the asymmetry in the density of
states is less pronounced, the local configuration of
conduction-band tail states does change; the
electron- and hole-hopping processes are coupled
and must be treated on an equal footing. For the
sake of simplicity of development, in this section
we will treat only the first case.

If Xo photons per unit area with energy E were
absorbed at time zero, then

dI(co, t ) /Ep Y;„v„,o(co )ftco——

Y,P„(ED E„fico,t )G, (fico—, t ),—

where Y;„ is the initial probability that an exciton
will form, as in Eq. (6), P„ is the hole spectral dis-
tribution at time t given by Eq. (8), and G, (duo, t) is
the probability that an electron that is bound to a
hole at time zero is also there at time t. 6, de-
pends on the total energy of the exciton Ace only
through radiative decay rate v„q(co). Similarly, the
steady-state quantum efficiency is determined by

the average over the steady-state spectrum of the
probability Y,„(fico), that an exciton with total en-

ergy Ace will recombine radiatively. This is ex-
pressed in Eq. (5) where

Y,„=JdeP„(ED E„——e, v,,z)Y,„(e), (18a)

P„ is given by Eq. (10b), and

Y,„(fico)=I dt G, (fico, t) . (18b)

) d Ype 2RplaB,—(ln2)

where R p ——(4iri) l3)'~ . The quantum efficiency is
1

about —, when ym, q ——v„~. The temperature depen-

dence of the hopping process is quite complicated
and depends sensitively on the density of tailing
states. In general, variations will take place over a
temperature range To, characteristic of variations
in the integrated density of conduction-band tail
states

—1EI
4?'p —— ln f dE p(E)

dED
(20)

To determine whether the quantum efficiency
increases or decreases as the temperature is raised
from zero is a subtle problem. As the temperature
increases, more localized states become accessible
since the electron can hop to states with energy
greater than ED. This tends to increase the typical
ionization rate, or decrease the quantum efficiency.
At finite temperatures it also becomes possible for
an electron that has hopped away from the hole to
hop back again. This effect tends to increase the
quantum efficiency. The balance between the two

At low temperatures the dominant ionization
mechanism is phonon-assisted hopping of the elec-
tron from the hole-induced state to a nearby con-
duction-band-tail state. The details of this hopping
problem are studied in Sec. III and Appendix C.
For now, we will just make some general observa-
tions. This process is characterized by a broad dis-
tribution of rates. Some excitons have near-
neighbor conduction-band tail states and are
characterized by a fast ionization rate while others
have only relatively far neighbors and have a corre-
spondingly slow ionization rate. The ionization
rate is very sensitive to the density of electron tail-
ing states. For instance, at zero temperature, the
median hopping rate y, q is determined by the
mean density q of conduction-band tail states with

energy less than ED,
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FIG. 4. Schematic representation of the conduction-
band tail density of states, (a) when the concentration of
charged defects is small, and (b) when it is large.

effects depends on the magnitude and shape of the
density of states in the vicinity of Ez. Two impor-
tant cases are explored in detail in Sec. III. If the
concentration of charged defects in the material is
small, the density of states will be smooth in the
neighborhood of ED as in Fig. 4(a). In this case,
the quantum efficiency is an increasing function of
temperature for samples with a relatively low den-

sity of tail states (zero-temperature quantum effi-
ciency &0.4) and a constant or decreasing function
of temperature for samples with a higher density
of tail states. If the concentration c+ of charged
defects in the material is large, there will be a peak
in the density of states centered on ED as in Fig.
4(b). If we denote the spread in energies of the
bound states associated with these defects by bE~,
the height of the peak will be approximately
c+IbED. The narrowness of this peak in the
density of states means that the electron never

hops to a state with energy much less than ED, so
the effect of hop back is more pronounced in this
case. Thus, even in samples in which, due to the
presence of charged defects, the zero-temperature
quantum efficiency is much less than 0.4, the
quantum efficiency will tend to increase as a func-
tion of temperature. A detailed discussion of the
low-temperature quantum efficiency is contained in
Sec. III C.

At higher temperatures it is possible for the elec-
tron to be thermally activated to the mobility edge

E„where it can escape from the vicinity of the
hole. The rate of ionization v« is given approxi-
mately by the semiclassical expression

—(Ee ED )/kg T
+ac +exce (21)

where v,„, is a temperature-independent attempt
frequency and the temperature-dependent factor re-
flects the probability of a thermal fluctuation of
sufficient magnitude to elevate the electron to E, .
As mentioned previously, v,„, is the rate of exciton
formation and is given by the expression in Eq.
(6a).

Throughout this discussion, we have tacitly as-
sumed that so long as the electron remains bound
to the hole, it can only recombine radiatively. Of
course, there always exists the possibility that the
electron and hole will recombine nonradiatively
even if the exciton is not ionized. Because this
process involves the emission of many phonons, it
is generally quite slow, due to the exponentially
small probability of multiphonon processes. The
same analysis that led from Eqs. (3) and (4) to Eqs.
(16), yields the nonradiative recombination rate of
an exciton with total energy fuu,

v onrad(~) 1 0(2ah, ~, laa) e (22a)

where n is the number of phonons emitted in the
process,

n )Eg,p/fuuD, (22b)

and the term in parentheses is the same overlap
factor that appears in Eqs. (12) and (13) for the ra-
diative recombination rate. Since the pseudo-
band-gap is usually much greater than the Debye
energy, this rate is generally much smaller than the
radiative rate. (The effect of high-energy optical-
phonon modes is discussed in Appendix A.)

Finally, to complete our understanding of the
nonradiative processes, we must examine the fate
of the electron and hole once they have been
separated. Nonradiative recombination, even in
crystalline semiconductors, is a poorly character-
ized phenomenon; thus it is not surprising that we
can do little more than make some general obser-
vations. We must answer one simple question:
Given that an electron has escaped from a hole,
will it somehow trickle down to the Fermi level via
nonradiative processes before it encounters another
hole with which it can recombine radiatively? Be-
cause of the low probability of transitions involv-

ing the emission of many phonons, nonradiative
recombination is expected to proceed most effi-
ciently at recombination centers, defect sites with
associated midgap states. That this is usually the
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case in crystals. even with relatively low defect
concentrations, strongly supports this contention.
So long as the density of these recombination
centers is greater than the density of excitons, an
electron will on the average encounter a recom-
bination center before it encounters a nongeminant
hole with which it can recombine radiatively.
Thus, whenever the intensity of the exciting light
is low enough that the density of excitons is less
than that of recombination centers, most of the ra-
diative recombination is geminant.

E. Other effects

Additional insight into the photoluminescence
mechanisms can be gleaned from experiment by in-

troducing additional perturbations into the system.
In particular, the luminescence can be studied as a
function of applied-electric-field strength, doping
level, and the content of other impurities (such as
H in a-Si). All of these can be introduced into the
model quite simply.

An electric field can facilitate the exciton ioniza-
tion process in which the electron escapes via exci-
tation to the "mobility edge. " The major effect of
an electric field of magnitude I' is to alter the ac-
tivation energy in Eq. (2la), so that

—[E —ED —5(F)]/k~ T
+ac +exc

where 5(F) is the field-induced change in the ac-

tivation energy, frequently approximated by the
Poole-Frankel expression,

system, a localized charge of the opposite sign is
introduced as well. We have, to this point, tacitly
ignored the effect of the negatively charged centers
in the system. However, because of the asymmetry
in the density of intrinsic tail states, the effect of
these negative charges will only become important
at such high densities that any photoluminescence
will already have been quenched by the presence of
so many positive charges.

The possible effects of neutral impurities can be
manifold, and depend on the nature of the impuri-

ty. One possibility is that the presence of impuri-
ties can inAuence the activation energy of the elec-
tron to the mobility edge E„=E,—ED. Consider
the case in which with each impurity atom intro-
duced into the solid, there is an associated state
near the conduction-band edge. An example of
such an impurity might be hydrogen in Q-Si, since
there is evidence that the Si-H antibonding states
normally lie just above the conduction-band edge.
To be concrete, suppose that the impurity potential
H can be written approximately in tight-binding
notation,

where
~
A; ) is the impurity-related state with en-

ergy E; . If there are, on the average, many such
impurities within a volume (a~ ), there will be no
change in the activation energy E„,to first order
in V, since the first-order shifts of E, and ED are
equal. Thus if E,', ' equals the value of E, —ED in
the absence of impurities, then in the presence of
impurities

with

P=2e ~ /Va . where n; is the number of impurities that interact
with the hydrogenic electron state,

The major effect of doping with either donors or
acceptors is to raise the density of localized states
with energies in the vicinity of ED, and hence to
decrease the quantum efficiency. Whenever a posi-
tively charged defect is introduced into the system,
a new localized state with energy -ED appears as-
sociated with it. A donor directly introduces such
a charge into the system but an acceptor does as
well since, by the condition of charge neutrality,
when a negatively charged impurity is placed in
the system, it must be accompanied by a positively
charged hole. This hole appears at the Fermi level

in a midgap highly localized state, and behaves as
a point charge. In other words, whenever a new

localized charge of one sign is introduced into the

4'(ag )
nim ~im

and c; is the mean concentration of impurities.
Therefore, at low concentrations, the shift in the
activation energy is proportional to the concentra-
tion of impurities, while at higher concentrations it
is proportional to the square root of the concentra-
tion.

III. HOPPING IN A DISORDERED SYSTEM

In this section we calculate explicitly the various
quantities discussed in Sec. II that depend on the
statistics of hopping motion in a disordered sys-
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tern. We focus primarily on the motion of the
electron subsequent to its being trapped in the state
induced by a hole. At temperatures sufficiently
low that direct thermal ionization to the mobility
edge is unlikely, the dominant mechanism by
which the electron can escape from the hole is
phonon-assisted hopping. Thus, many characteris-
tics of the photoluminescence, notably the tempera-
ture dependence of the quantum efficiency and the
time dependence of the luminescence signal, are
determined largely by the statistics of the electron's

hopping motion. Hole thermalization also
proceeds via phonon-assisted hopping, so the spec-
tral dependence of the luminescence is determined
in large measure by the hopping statistics of the
holes.

The plan of this section is as follows. In Sec.
III A we develop a general formalism for treating

hopping problems and derive various exact results.
Although certain characteristics of the zero-
temperature hopping problem can be calculated ex-

actly by these techniques, at finite temperature the
problem becomes far more complicated and ap-
proximations must be introduced in order to make
further progress. In Sec. III 8 we introduce the
greatest rate approximation (GRA) which is useful

at low temperatures. In particular, we use the
GRA to compute the quantum efficiency as a
function of temperature at low temperatures.
Then, in Sec. III C, we introduce the typical rate
approximation (TRA) to estimate the quantum ef-

ficiency at higher temperatures. In order to test
the validity of these approximations we have per-
formed a series of numerical simulation experi-
rnents on model hopping systems. In Sec. III D,
these experiments are described and their results
are used to verify the accuracy of results obtained
for the same model using the aforementioned ap-
proximations. Many of the concepts developed in
Secs. III A —III D are common to a broad class of
phenomena in disordered insulators, so we have

adopted a formalism that is applicable to the class
in general. However, it is conceptually simpler to
discuss the underlying physics with a specific ex-

ample in mind. Thus, in Secs. IIIA —IIID we
have considered those aspects of the theory neces-
sary to understand the electron hopping processes.

Finally, in Sec. III E we consider the problem of
hole thermalization. The same basic considerations
that were developed in the context of the electron
hopping problem are applicable to holes as well.
However, the problem of hole thermalization is
somewhat more complicated because we must keep
track of the distribution of hole energies, not just

the site occupation statistics. We are thus forced
to use a somewhat less systematic approach.

Since the actual calculations of the quantities
discussed here are rather lengthy, they have been

relegated to Appendix C. In the present section we
discuss the results of those calculations and the im-

portant physical concepts they illustrate.

A. Formal considerations and
exact results

In order to facilitate the discussion, we label

each localized state by its location R, so that we

can think of the hopping entity as executing a
complicated time-dependent random walk by hop-

ping from site to site. This motion is described

quite generally by the set of time-dependent site
occupation probabilities Ã a (r), which obey the

equation of motion

dSR (~~+i"~)g~+ gy~~

and v R is the rate at which electrons are lost from

site R by processes other than hopping. Thus
v R + I R is the total loss rate from site R. In a

pure hopping problem, v R =0 for all sites, which

ensures conservation of probability. However, we

want to include processes such as radiative recorn-

bination, that do not conserve the number of elec-
trons.

To be concrete, we will consider a system in

which the hopping entity is an electron that initial-

ly is bound to a hole at the origin (site 0) and has
the possibility of hopping away through a random
distribution of localized states. Thus, the site oc-
cupation probabilities are subject to the initial con-
dition

(23b)

and the rates at which electrons are lost by other
than hopping processes are

and

vp =vac+vrad. (25)

where y R R, is the hopping rate from site R ' to
site R, I R is the total hopping-away rate from site

R to any other site,

(24)
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vR ——v„ for R+0,
where v„d is the radiative decay rate of the exci-
ton, v„ is the rate at which electrons are thermally
activiated to E, [see Eq. (21)]. and we have as-

sumed that once this occurs, the electron inevitably
escapes from the vicinity of 0 and is out of the
problem.

Since luminescence is only possible when the
electron is bound to the hole (is on site 0), an im-

portant quantity is 9 0 (t), the probability that an

electron that was initially on site 0 is also there a
time t later. 9 o(t} depends sensitively on the con-

figuration of neighboring sites. If there is a site R
close to site 0, the electron can hop to site R rath-
er easily, so Ã 0 (t) will decay rapidly from its ini-

tial value of one. If the site 0 is relatively isolated,
then 8 0(t) will decay much more slowly. The
quantities of experimental interest can all be calcu-
lated in terms of the configuration average of 9 o,
denoted by (Ã 0(t)). For instance, the average

probability G, (fico, t }, that an electron which was
initially bound to a hole with energy ED —%co is
there a time t later [invoked in Eqs. (17) and (18)],
is given by the expression,

p(E}=p,(E)+p„t(E) . (27)

If the defects that give rise to these states are suffi-
ciently similar in size and nature to the holes to
which the electrons are initally bound, then

unimportant and can be ignored without signifi-
cant error. Thus, the energy of the state at site 0
can be treated as a configuration-independent
quantity, ED. More generally, the variations in the
electron energies can be important and all quanti-
ties must be averaged over the distribution

Dc,„)(E)of electron Coulombic binding energies.
Note that this distribution of electron binding ener-

gies is not to be confused with the distribution of
total exciton energies which is largely determined

by the spread in hole energies. Averaging over

Dc,„] is especially important if the density of states
is also peaked in the vicinity of ED as shown in

Fig. 4(b). A peaked density of this form will, in

fact, be found in any amorphous semiconductor
with a high density of charged defects since each
positive charge induces an electron bound state
with energy within about AED of ED. Thus, the
density of states is the sum of a featureless density
of "intrinsic" tail states p, (E), and a peaked densi-

ty of "defect" states,

G, (fico, t)= (Ã ()(t)),-=, ,( )+, (26)
pdet(E) c+Dcoul(E) & (28)

where the entire dependence on %co is contained in
the radiative recombination rate. The average
probability that the same electron will recombine
radiatively at some time Y,„(fico) is expressed in

terms of G, in Eq. (18b).
Unlike the more usual random-walk problems,

where interest focuses on transport phenomena that
depend on the long-range behavior of the hopping
motion, the problems considered here depend on
the random walk over short distances, since once
the electron has escaped from the immediate vicin-

ity of the hole, it has little chance of ever returning
to it.

To complete the formal definition of the hop-

ping problem, we must prescribe the ensemble of
hopping rates yR R,. In other words, we must

make some assumptions about the density of local-
ized states and the hopping rates between them.
%e focus our attention on two classes of systems.
Naively, one would expect the density of con-
duction-band tail states p, (E), to be a smooth
function of energy and featureless in the vicinity of
ED as pictured in Fig. 4(a). In this case, we will

see that the small differences in the Coulombic
binding energies of the electrons bound to holes in
different local environments, EEL in the figure, are

b(E R,ER, ) =max(O, E R ER, ), —(29b)

E R is the energy of the state at site R, and we

have implicitly assumed that all states are of
roughly the same size g, and have energies within
about Acta of each other.

At zero temperature, Eq. (23) is readily soluble
since the electron is only permitted to hop to states
with lower energy (hop down). Thus, whenever an

where c+ is the concentration of positively charged
defects. (This particularly simple example is treat-
ed in Ref. 30.) However, in general this approxi-
mate equality is not valid due to differences in the
core energies of different defects. As indicated in

Eq. (2} these core corrections are typically very
small, but they can be of the same order of magni-
tude as AED and so can affect the hopping statis-
tics dramatically. Finally, for the purposes of the
detailed calculations in this section we will assume
that the hopping rate between sites is of the sim-

plest form consistent with Eqs. (3) and (4),

2~ R —R'~yg R. R'
gR R ~ =foe

(29a)

where
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electron hops away from 0, it can never hop back.
This implies that the second term in Eq. (23) is
zero, and 6, is equal to

G (fico t)=e "" (e "0') (30)

vr&d( ct) )t —fJ ( ED )g ( &PE )
G, t,flu, t j=e " e

where g is a dimensionless density of available
states,

(31a)

rt(ED) = I p(e) de,
6

(31b)

and g is the characteristic hopping function dis-
cussed by Scher and Lax ' and by Scher and
Montroll,

co
( x)n

g(x)= —6 g
n n~

For hopping rates of the form given in Eq. (29),
this configuration average can be performed
analytically. If the density of states is featureless
so that the energy of the state at site 0 is essential-

ly a configuration-independent quantity, then one
finds

(32)

pig g Ilc

R

(33a)

with the individual hopping rates defined by the
equation

culations increases their complexity for it implies
that in order to understand the process in which
the electron escapes from the origin, we must also
understand the processes whereby the electron can
escape from the neighboring sites, once it has
hopped there. For instance, an important quantity
is the effective hopping-away rate from the origin
I *0, which is defined implicitly in terms of the
mean (configuration-dependent) time the electron
spends on the site 0,

(vo+l*o) '= I $0(t)dt .
0

Here v0+I *0 is the total loss rate from site 0,
and is equal to the sum of the effective hopping-
away rate I *0, and the nonhopping decay rate v0.
The effective hopping-away rate can be expressed
as the sum of individual effective hopping rates to
neighboring sites

-(lllx+gs) +3((2)(lilx+gg)+2((3)

for large x, where gE
——0.5772 is Euler's constant,

g(2)=1.645, and g(3)=1.202. The quantity rt(ED)
characterizes the density of available states and
plays a central role in determining the hopping
statistics at nonzero temperature as well as at zero
temperature. To obtain a result that is more gen-
erally applicable, even when the density of states is
peaked near ED, Eq. (31a) must be averaged over
the distribution of Coulombic binding energies

G (fico t)=e "" I deDC i(e)e

(31a')

At finite temperatures, Eq. (30) is valid for times
small. compared to the median hopping lifetime.
The sum over sites that determines I 0 must be
generalized to include sites with energy greater
than E 0- since hops to sites with states higher in

energy are permitted. At longer times, however,
when there is a substantial probability that the
electron has hopped away from 0, processes in
which the electron hops away and then hops back
become important. Since these hopping back ef-
fects always tend to increase the probability that
the electron is on site 0, Eq. (30) can be used to
calculate a lower bound to 6, at any temperature.
Incorporating the effect of hop back into the cal-

v~ +y~~ + g y~, ~
R '+0

(33b)

where y*R, R is the effective hopping rate from site
R to site R'. The first term on the right-hand side
of Eq. (33b) is the direct hopping rate to site R;
the second is the correction to the effective hop-
ping rate due to hop back.

In qualitative terms, Eq. (33) can be understood
simply. If it is easy to hop from 0 to R, but site
R is isolated from other sites, i.e.,

y~, -+ && y-+~
R '+0

then the most likely way to leave site R is to hop
back to site 0 so y*R 0 -0. On the other hand, if
site R is well connected to its surroundings i.e.,

v-+ + g y*-+, -+ &&y-+~
R '@0

then once the electron has hopped to site R it
probably will not return to site 0, so y*R 0 =yR 0.
The difficulty in solving Eqs. (33) accurately arises
from the fact that in order to compute the
effective hopping-away rate from site 0, we must
know the escape rates from its neighboring sites,
which in turn depend on the configuration of still
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further neighbors.
We are thus led to introduce an approximation

scheme which enables us to truncate this hierarchy.
As certain aspects of the physics can be understood
most simply in terms of this approximation we

will discuss the approximation briefly and then
present the results of analytic calculations per-
formed using the approximation.

B. The greatest rate approximation

&rad
X

+rad+ +ac +~

where, as in Eq. (8), H,' '(I ) is the probability
that the effective hopping-away rate from the ori-

gin [I p in Eq. (32)] is less than I; hence

[—(d/dI ) H,' '(I )]dI' is the probability that the
effective hopping-away rate is in the interval
(I', I +dI ). The GRA allows us to simplify Eq.
(34) in two ways. First, the ratio of rates is re-

placed by a step function,

+rad +ra d e(v„,+v„—I ),
+rad+ +ac +~ +rad+ +ac

(34}

(35)
so Eq. (34) can be integrated trivially,

Because hopping motion in a disordered system
is characterized by a broad distribution of hopping
rates (see Fig. 2), the largest rate of a set of rates
tends to be much larger than any of the others.
The greatest rate approximation (GRA) systema-

tizes this observation by replacing sums of rates by
the largest individual rate in the sum, and the ratio
of a smaller rate to a larger rate by zero. Results
obtained using this approximation are expected to
be asymptotically exact in the limit of an infinitely
broad distribution, that is in the limit of infini-

tesimally small g. In the more interesting case of
finite g, it yields results which generally reproduce
the magnitude and the form of the functional
dependences of the various quantities of physical
interest.

To see how the approximation works, consider
the calculation of the partial quantum efficiency

Y,„(fico), defined in Eq. (18b). Combining the re-

sults of Eqs. (26) and (32), Y,„can be expressed in

the form

Y,„(W)= f dr —„~,"'(r)
dr

At low temperatures, hopping is the dominant ion-

ization mechanism (v„&&v„,z) so in effect
Y,„(fico)=9", '(v„,s). Second, the GRA simplifies
the calculation of H,' '(I ). In Eq. (33a), I p is ex-

pressed as a sum of effective leaving rates to indi-

vidual sites y*R p. In the GRA, 9",~'(I ) is rein-

terpreted as the probability that there is no site R,
to which the effective hopping rate y*R o is greater

than I .
With this simplification, it is easy to calculate

H,'~'(I ) at zero temperature. First, assume that
the spread in Coulombic binding energies AED can
be ignored so that site 0 has a well defined energy

ED. Since the individual hopping rates to the
neighboring sites are independent of each other,

—x(&)(E r)( ()( )

—X ~ (Ep, I')
(36)

where X' '(ED, I ) is the mean number of sites in

the neighborhood of the origin to which the hop-

ping rate y R 0 is greater than I . In terms of g,
the dimensionless density of available sites defined
in Eq. (31b),

(36')

N (ED I ) =rl(ED )[ln(yp/I )] . (37)

More generally, we must average over the distri-
bution of Coulombic binding energies. Thus, Eq.
(36) should be replaced by the expression P

~(&)(1 ) f dED (E) —N +~(E,D

where Dc,„~(E)~0for ~E ED
~

~&b,En—. Be-
cause hED is so small, i)(E) will typically vary lit-

tle over an energy range of order AED if the densi-

ty of states is featureless near ED as in Fig. 4(a).
In this case, Eq. (36') reduces to Eq. (36}. Howev-

er, if there is a high density of charged defects, re-

sulting in a density of states peaked in the vicinity
of ED as in Fig. 4(b), Eq. (36') must be used to cal-

culate the quantum efficiency.
Even in the context of the GRA, calculating

'(I ) as a finite temperature is a formidable

task, which depends critically on the functional
form of the density of states p, (E). However, the
leading correction to Eq. (36') at low temperatures
can be computed exactly in the GRA and depends

only on the density of states near ED. We will

start by ignoring the distribution of Coulombic
binding energies, and so obtain results that are
valid if the density of states is of the featureless
form shown in Fig. 4(a) (low density of charged
defects). To first order in T, we find that

'(v„z) =exp[ E'~ ' —(T/Tp)ln(} —p/v g)

+rad+ +ac
(34') Xf(&' ')+O(T')],

(38}
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where N'~ '=N'~ '(ED, v„d), kii Tp is an energy
characteristic of changes in the integrated density
of states as in Eq. (20), and f(N'~') is a dimen-
sionless function, computed explicitly in Appendix
C [Eq. (C23)] which is negative for N'~ '&0.95
and positive for N' '&0.95. Thus, samples with
high zero-temperature quantum efficiencies

[Y,„(irico) & 0.385] become more efficient as the
temperature is increased while samples with low
zero-temperature quantum efficiencies have rough-
ly temperature-independent quantum efficiencies
which have a slight tendency to decrease as a func-
tion of temperature.

To understand this behavior, first consider a sys-
tem which has a rather low quantum efficiency,
that is a system with N' '& 1. Most sites have
hopping-away rates greater than v&,d. If the elec-
tron can hop away from the site 0 with rate
greater than v„d to a site R, it is likely that it can
also escape from site R with rate greater than v„d.
Thus, even at finite temperature, the effective
hopping-away rate will be greater than v„d. Only
in the atypical configurations in which the site 0 is
sufficiently isolated from its neighbors that the
electron can never hop away before it recombines
radiatively with the hole will contribute substan-
tially to the quantum efficiency. The density of
available sites increases monotonically with in-

creasing temperature, but at low temperatures, the
increase is slow. Thus, the number of isolated sites
decreases slowly as a function of temperature caus-
ing a correspondin~ decrease in the quantum effi-
ciency [i.e., f(N'~ ) positive]. On the other hand,
if NI ~ ' & l (an efficient sample) most of the sites
have hopping-away rates substantially less then

v„d, so at zero temperature, only in those configu-
rations in which the origin has an anomalously
close neighbor site R, will the electron manage to
escape from the hole before it recombines radia-
tively. However, since the site R is anomalously
close, at finite temperatures there is a substantial
probability that the hopback rate yp R, which van-

ishes at zero temperature, is greater than the hop-

ping rate from site R to any other site. Hence, the
electron is likely to hop back to the origin and the
quantum effic][ency increases with increasing tem-
perature [i.e., f (N' ~ ') negative].

The temperature-dependent quantum efficiency
calculated using the GRA is shown in Fig. 5 (the
solid lines) for two characteristic values of N' ~ '

and yp/v„d, and the results are compared with the
results of the computer simulation experiments
described in Sec. III0. Notice particularly the in-

serts, where the very low temperature results

1,0

'fex
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FIG. 5. Comparison between the results of the nu-
merical simulation experiments described in Sec. III 0,
and the approximate analytic expressions obtained in
Secs. III 8 and III C. The points are the results of the
numerical experiments and the error bars indicate the
extent of the numerical uncertainty of the results. The
solid lines are the results of calculations using the GRA
and the dashed lines were calculated using the TRA. In
all cases, the density of states is of the form in Eq. (41a)
and the hopping rates are given by the formula in Eq.
(29). The inserts show the low-temperature results on
an expanded scale.

(T/Tp &0.05) are shown. The agreement, both in
the magnitude and zero-temperature slope of the
quantum efficiency, is seen to be fairly good. Al-
though calculating the terms in Eq. (38) that are of
second and higher order in the temperature is diffi-
cult, the sign of their contribution to the low-
temperature quantum efficiency can be understood
simply within the context of the arguments
presented above. At second order in the tempera-
ture, the temperature dependence of the leaving
rate I'R, from the nearest neighbor site to the ori-
gin, becomes important. Most often, this site will
have energy less than E p since most hops are still
down in energy, so N' ~ '(E R ) is generally less
than N' ~ '(E

p ). As discussed above, this implies
that there is a greater tendency for hopback effects
to cause I *R to be a decreasing function of tem-
perature than there is for I *p Therefore, so long
as the density of available states does not increase
too rapidly,

[p(ED)ksT] ))[p'(ED)(kiiT) ],
the first deviations from the behavior described in
Eq. (38) are expected to be toward increased quan-
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Xe ' in(yo/I' )f(X'~') .

(38')

If the density of charged defects is sufficiently
large that the density of states is highly peaked in
the vicinity of ED, then the quantum efficiency
will generally be an increasing function of tern-

~() )
perature at low temperature since the factor e
in Eq. (38') heavily weights those parts of the dis-
tribution of electron binding energies for which
N'~ ' is small, and hence f(X'~') is negative.

C. The typical rate approximation

At temperatures of order To and higher the ex-
pansion in Eq. (38) breaks down and systematic
calculations, even within the GRA, become very
difficult. (An explicit criterion for the range of va-

lidity of the GRA is developed in Appendix C.)

Moreover, since the results depend sensitively on
the form of the density of states, even numerical
simulation experiments are of limited value in this
regime. Nevertheless, a qualitative understanding
of the hopping process can be obtained in this tem-

perature regime. %e shaH see that results based on
this simple approximation, the typical rate approx-
imation (TRA) developed below, are in moderately
good agreement with the results of the numerical
simulation experiments described in Sec. III 0.

At high temperatures, despite the fact that the
distribution of hopping rates is still extremely
broad, the distribution of effective leaving rates is
relatively narrow, so in calculating such average
quantities as the quantum efficiency Y,„(fico), the
configuration-dependent leaving rate, I *o, can be
replaced by a configuration-independent typical
leaving rate y,

F,„(%co)= farad

+rad+ +ac +7
(39a)

To see this, consider a configuration in which the
site 0 has an anomalously close neighbor site R

turn efficiency, even if the zero-temperature quan-
tum efficiency is somewhat less than 0.385. This
is indeed the behavior that is observed in both
cases shown in Fig. 5.

To obtain a formula for H,' '(I') that is valid

for a peaked density of states of the form shown in

Fig, 4(b), 'Eq. (38) must be averaged over possible
electron binding energies

~( & )(I ) J dg D (&v)
—iv~+ ~(E, I')

(yo R »y) which itself has effective leaving rate
I *R =y. In the absence of hopping back, the elec-

tron would spend an average time -y R'o on site
0. The effect of hop back is to increase this mean

time, or reduce the effective leaving rate I'o. If
we assume that the electron can only escape via

hopping to site R, then the effective leaving rate,
taking hop back into account is

~a o'~r-=
0 +f

At high temperatures, where y R 0 -yo ~, the
leaving rate from site 0 will be approximately
I *0 -y. Thus the effect of hop back is to produce
leaving rates on the order of the typical leaving
rate regardless of the "bare" hopping rate. (Con-
fj.gurations in which yo R ~&y are sufficiently rare
that they do not significantly affect this result. )

Of course, the details of the above analysis are
not completely correct, as they are based on no-
tions developed in the low-temperature regime
where the GRA is applicable. Since the distribu-
tion of leaving rates is narrow, it is no longer per-
missible, as we did in the aoove discussion, to con-
sider only the effective hopping rate to one
"closest" neighbor site R, since there may well be
several sites to which the effective hopping rate is
comparable. Nonetheless, the general physics of
that simple discussion are in fact valid. At high
temperatures, the effective leaving rate is not sensi-
tive to the details of the local configurations about
the site 0. In configurations in which site 0 has
some close neighbor sites, the electron wiH hop
many times between these close sites before diffus-
ing away. In configurations in which the site 0
has no near neighbors, the electron will simply sit
on the site 0 until it hops away. In either case, it
is the rate at which the electron escapes from the
neighborhood of the site 0 that determines the ef-
fective leaving rate, not any individual hopping
rate.

There is a certain degree of arbitrariness in the
choice of the typical leaving rate y. y must cer-
tainly be smaller than the median hop rate y,d,
since even if the bare hopping rate p R o from site
0 to site R is equal to the leaving rate from site R
to the rest of the world, the effective leaving rate
I *0 is considerably smaller than y R 0. On the
other hand, the hopping rate yd„which determines
the dc conductivity or the diffusion constant is un-
doubtedly smaller than y, because it is dominated
by the difficult hops that the electron must make
to diffuse across a macroscopic system, ' How-
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ever, for our purposes, once the electron has es-

caped from the immediate vicinity of the origin it
will never return. This is especially true if we con-
sider the case in which a certain fraction of sites
are nonradiative recombination centers where the
electron can be annihilated as discussed in Sec.
II D. y is a rate characteristic of hopping within a
small cluster of sites. %e have defined y as that
rate for which the probability that the fastest hop-
ping rate from site 0 is y, is equal to the probabili-

ty that the second fastest rate is y. To justify this
choice, let us define a cluster as a set of sites mu-

tually connected by hopping rates greater than a
defining value y;„. If we set y;„=y we will find
small isolated clusters comprised of about one to
ten sites, but as we choose smaller values for y;„,
the typical size of the clusters will increase rapidly.
This prescription for y yields the result

y=yoexp[ —[g'(ED, T)] (39b)

To verify that this prescription is reasonable, we
have checked that it satisfies the inequalities dis-
cussed above in the infinite-temperature limit
where the spread in site energies can be ignored. If
Co is the mean concentration of localized states,
then

ln(y d/yo) = —(0 79)2Ro/g ~

ln() /7 o) = —(1.0)2Rp/g,

»(rDC/ Vo) = —(1.4)2RO/g,

(40)

(see Ref 35) whe. re Ro (4~CO/3) '~3.——Thus, )
falls in the appropriate range. To check that the
predictions of the TRA are accurate in the high-
temperature regime, we have compared the predic-
tion of Eqs. (39) with results of the numerical ex-
periments described in Sec. III D. This comparison
is summarized in Fig. 5, where the two results are
seen to agree to within the accuracy of the numeri-
cal experiments.

D. Numerical simulation experiments

In order to test the validity of the approximate
calculation discussed previously we have performed

where vP(ED, T) is the effective temperature-
dependent density of available states analogous to
g(ED ),

p3

6

(39c)

a series of numerical experiments on a simple class
of model hopping systems.

The density of localized states to which an elec-
tron can hop is assumed to have a square-band
form,

1 for 0&E & 1
p g

0 otherwise, (41a)

and the density of levels induced by charged de-
fects is given by

1 «r I& &D—I
&~+D

Dco i(&)= X .
2~ED 0 otherwise,

The case of a featureless density of states such as
the one shown in Fig. 4(a), can be simulated by
choosing b,ED small and making certain that

—(1—ED)k~ TD 8 (1
This latter condition ensures that the fact that the
density of tail states is bounded above has minimal
effect on the hopping statistics. The case of a high
density of charged defects can be simulated by

1

choosing ED and AED equal to —,.
In the numerical simulations, a configuration of

the disordered system is generated by randomly

placing 100 sites within a sphere of radius
L =(75/n)'~ [which a.ssures a unit density of sites
as specified in Eq. (41a)] and associating with each
site a randomly chosen site energy between 0 and
1. A site is also placed at the origin with energy
randomly chosen between ED —bE& and ED
+ b,ED. The hopping rate y R R, is computed for
each pair of sites according to Eq. (29), with suit-

ably chosen values of g and T. All sites within a
radius 3 L of the origin, that is in the central 30%
of the volume, are considered to define the local
environment of the origin, while sites in the outer
70% of the volume serve to model the medium in
which the local configuration is placed. Thus, the
approximation is introduced that once an electron

(41b)

with ED between 0 and 1. The hopping rate be-
tween sites is calculated from Eq. (29). Thus, the
statistics of the hopping motion are fully specified
by the input parameters ED, AED, the decay length

g, the temperature T, and the radiative decay rate

v„d/yo. For instance, the parameter E' ' defined
in Eq. (37), which determines the zero-temperature

quantum efficiency, is given by the expression

3

X ' = [ln(yo/&, .d)] .( )
rrED( 3

6
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2
has hopped to a site farther than 3 L from the ori-

gin, it will never return. The error introduced by
this approximation is estimated by calculating the
correction to the quantum efficiency that results
from keeping terms to first order in the neglected
hopping rates from distant sites (in the outer 70%
of the volume) to near neighbor sites (in the inner
30% of the volume). At low temperature (T & 1)
and for all choices of the other system parameters,

En, AED, and g, the error in the calculated quan-
tum efficiency is thus estimated to be less than
5%. At higher temperatures, the neglected terms
result in a systematic overestimate of the quantum
efficiency which may be as large as 10—15 % in
the range 1 & T & 25. Still higher temperature cal-
culations will require larger sample sizes to obtain
satisfactory accuracy and have not been attempted.

With this definition of the set of y-„R, Eq.
(23a) is Laplace transformed as in Eq. (Cl), and
then solved numerically for the Laplace transform
of 9' o(t). The quantum efficiency Y,„ is given

directly in terms of the Laplace transform of
9' 0(t) by Eqs. (18b), (26), and (C2). The short-

and long-time behavior of Ã 0 (t) can also be calcu-

lated simply from its Laplace transform as dis-
cussed in Appendix C, Eqs. (C7) and (Cl 1). The
behavior at intermediate times can be estimated by
interpolating between the long- and short-time
forms of 9' o(t) In order .to calculate the configu-
ration average of these quantities, the entire pro-
cess is repeated for 400 different configurations for
each set of the system parameters. The results of
some of these calculations are shown in Fig. S

where the quantum efficiency is plotted as a func-
tion of temperature for two densities of states.
The error bars mark the range of uncertainty of
the experimental results due to the combined ef-
fects of hopping back from "far" sites and the sta-
tistical fluctuations expected from experiments on
a finite number of configurations.

E. Hole thermalization

To study the thermalization of photogenerated
holes we apply very similar considerations to those
we have discussed previously for electron intersite
hopping. In order to treat the general problem, the
equation of motion of the site occupation probabil-
ities [Eq. (23)] must be modified slightly by the in-
corporation of a source term P'R,

R '

(42a)

where A z is the probability that a photogenerated
hole will be captured by the state at site R, and
v R is the radiative decay rate of an electron-hole

pair at site R. We will be interested in two physi-
cal situations: transient photoluminescence in
which the holes are excited by a flash of light at
t =0, and steady-state photoluminescence which is
excited by continuous illumination. In the first
case, the source term is

P'
R (t) =(const)(o R 5(t),

where 0.
R is the cross section for capture of holes

by the state at site R, and the initial conditions are

9 R(0)=0.

In the steady-state case, the initial conditions do
not matter, and the source term is

AR =(const)cr R .

In both cases, the quantity of interest is the
configuration-averaged spectral distribution of
holes defined in Eq. (8),

P„(E,t) = (9 R (t)5(E E-„))—
(42b)

Owing to the broadness of the valence-band tail, the temperature is always small compared to the charac-
teristic variations in the density of states, so we are always interested in hopping in the low-temperature lim-
it. Thus, for the most part, holes will hop to a given site from a site with higher energy and leave by hop-
ping to a site with lower energy. This implies that there is no correlation between the "hopping-on" rate
and the "hopping-off" rate, so the integrand in Eq. (42) can be factored,
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P(E) AR(r)gyR R SR (r) e " e
R' R

—I R(t —r) —v, d(E/A')(t —w)

=p. (E)( ~-„(~)+g)'-„-„.&R.(~) (& )s-, E'=
R ' g-+ —gR

(43)

At time t, the rate at which holes reach sites with
an energy E is a product of two factors: (i) the
density of states p„(E), reflecting the number of
sites with energy E, and (ii) the "site-population"
rate, the average rate at which holes populate a
given site R, which has energy E,

~"(')+ r l'" R & R (')
R' g-+ —gR

The resulting expression for the steady-state distri-
bution of holes P„(E) is

P., (E)=&(&)p.(E)( )
1

~R+ R

where S(E) is the average site-population rate of
sites with energy E. As the density of states is
generally a much more rapidly varying function of
energy than S(E), P„ is not terribly sensitive to
S (E). In Eq. (10b), we used the GRA to evaluate
the configuration average to obtain an expression
for the steady-state luminescence spectrum.

To obtain an expression for the time-dependent
distribution of holes valid in transient photo-
luminescence experiments, we must rely on the ob-
servation that the distribution of "hopping-off"
rates is much broader than the distribution of site-
population rates. Thus, at times long compared to
yo ', but shorter than v,,d, the variation of the
hopping-off rate dependent factor in Eq. (43) can
be ignored over the range of times that site-
population occurs,

(
~~(~)+ g)'R R, G-„,(~)) S(E)()(~) .

R R

In other words, a hole will hop until it finds a site
sufficiently isolated that it cannot hop any more
on the time scale of interest. The resulting expres-
sion for the time-dependent hole distribution is

P„(E,t) =(const)p, (E)(e " ) .

Again, evaluating the configuration average using
the GRA, we obtain the result quoted in Eq. (10a).
Note that, consistent with the above picture of the

physics of hole therrnalization,

P„(E)—P„(E,v,,~) .

In other words, the same physical picture applies
to the steady-state case as to the transient, but in
the steady-state case the time scale is set by the ra-
diative lifetime, rather than the time at which the
luminescence is observed.

Finally, because the density of valence-band tail
states is large, most of the hole thermalization will

be completed at times short compared to the radia-
tive lifetime. Consider, for instance, the position
of the peak energy,

Aa),k(t) =E,—E~,k(t),

of the luminescence spectrum in Eq. (8) at time t
If we substitute Eq. (36) into Eq. (8), and differen-
tiate with respect to energy, we obtain the implicit
equation for E~,k(t),

d'n. «i .k) dn. «p-k)
n(yo(t) l

dE peak dEpeak

(44)

where rj„(E) is the dimensionless density of
valence-band tail states with energy greater than E,
defined analogously to g(E) in Eq. (3lb). At short
times, the holes are predominantly found in states
with energy near the band edge, where the density
of states is large. However, once the holes have
reached states with energies in a range where the
density of states is low and rapidly varying, little
change in E~,k will occur over many orders of
magnitude of time. Thus, we were justified in

treating the hole thermalization and the radiative
process as independent in Eq. (17).

IV. THE POSSIBILITY FOR COMPARISON
WITH EXPERIMENTS (WITH PARTICULAR

REFERENCE TO a-Si)

To encourage the research for materials in which
the photolurninescence is dominated by trapped ex-
citons, we will conclude by summarizing the im-
portant qualitative features to be expected of such
a system. The most striking features of the present
model is the asymmetry in the properties of the
electron and the hole. Thus, we expect such a ma-
terial to have a luminescence spectrum with width
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comparable to the width of the band tail, but a
we11-defined activation energy for dissociation of
the exciton. Indeed, such an asymmetry in spectral
width has been reported in hydrogenated a-Si. The
luminescence spectrum is about 0.3-eV wide, while
the temperature and electric field dependence of
the quantum efficiency can be interpreted in terms
of a spread of activation energies for quenching of
the luminescence of less than 0.02 eV. More re-
cently, however, it has been shown that the same
data can be interpreted differently. Thus, there is
at present no compelling reason to believe that
trapped excitons are important in a-Si. More
direct evidence of the existence of hydrogenic exci-
ton levels is needed to establish their existence.
For instance, it may be possible to quench the
luminescence with light in the infrared at an ener-

gy just sufficient to ionize the exciton.
Finally, the second possible quantitative signal

of trapped exciton luminescence is the extreme sen-
sitivity of the low-temperature quantum efficiency
y(T), to small changes in defect concentration. In
particular, for relatively efficient samples the possi-
bility exists that y(T) in otherwise quite similar
samples behaves qualitatively differently at low
temperatures with behavior ranging from increas-
ing with temperature to slowly decreasing with
temperature. Again, although some such behavior
has been observed in a-Si, its proper interpretation '

is not obvious.
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APPENDIX A: PHONON-ASSISTED
ELECTRONIC TRANSITION RATES

The theory of phonon-assisted electronic transi-
tion rates has been intensively studied by many au-

thors. These studies, for the most part, are
based on the assumption of harmonic phonons and
an electron-phonon interaction that is linear in the
phonon displacement. For the purpose of this pa-
per, the details of that treatment do not matter, as
the properties of interest depend logarithmically on
the transition rates, so only logarithmic accuracy is
required.

Let y be the transition rate between two elec-
tronic states. Regardless of whether the process
under consideration is phonon-assisted hopping, ac-
tivation to the mobility edge, or nonradiative
recombination, the considerations determining the
rate are basically the same. First, the maximum
rate at which a phonon transition can occur is
determined roughly by the maximum phonon fre-
quency, which is co& in the case of acoustic pho-
nons considered here. The transition rate is gen-
erally proportional to the square of an electronic
element between the two sites, of which the most
important term is an electron overlap factor S. A
third factor, expressing the fact that multiphonon
processes are difficult, is also present. This term
can be calculated exactly in a number of simple
models but is generally quite complicated. If the
energy difference between the two electronic states
hE is small, however, then multiphonon processes
are unimportant, especially at low temperatures,
and this factor may safely be ignored. For large
values of hE, Englemann and Jortner have
shown that the rate falls roughly exponentially
with the average number n of phonons emitted in
the process. If one or both of the electronic states
is small, of order an interatomic spacing a, this
average number is determined by the Debye fre-

quency,

n —
~

&E
~
l~g),

but for large states, Emin has pointed out that
only phonons with wavelength comparable to the
radius g, of the electronic states contribute so

n —
~

hE
~

l(rona lg) .

Finally, a term must always be present that
expresses the condition of detailed balance. Thus,
the general heuristic formula used in all our calcu-
lations for the transition rate between two electron-
ic states is

p= cog)
l

-2R/f
'1 for BE=0

I —ng
e for EE&0, (Al)
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where g, is the radius of the smaller state, g~ is the
radius of the larger, R is the spatial separation be-
tween the states, n is the average number of pho-
nons involved in the process and is given by the
formula above, and AE is the difference between
the zero-phonon value of the initial- and final-state
energies.

So far, we have considered only the coupling be-
tween electrons and acoustic phonons. In some
amorphous insulators, especially in many systems
that incorporate H, there are high-energy optical
modes associated with the H. Because these modes
tend to be highly localized, they will be only very
weakly coupled to large electronic states, and so
will not affect processes involving only large states.
However, nonradiative recombination, which in our
model involves rather small hole states and which
is said to be suppressed by the e "term in Eq.
(A1), might be highly affected by the presence of
these phonons. '

where the approximate equality in Eq. (82b) is a
consequence of the fact that as »ah, ~, . If ah, t, is
not much larger than an interatomic spacing, the
integral in Eq. (82b) does not depend sensitively on
the underlying structure of the tight-binding wave
functions, but only on the size of the hole wave
function. Thus, the integral squared is equal to the
volume of integration times a characteristic dis-
tance squared. With certainly better than order of
magnitude accuracy, we can approximate the
volume of integration 0, as

J dr
I
de(r)

I

and the characteristic distance squared as the ex-
pectation value of L in the hole orbital. Thus, if
we assume that the wave functions are simply ex-
ponentially localized,

P„=e '~'u/(ma )'~

where u =e or h, then

APPENDIX B: DIPOLE-MATRIX ELEMENTS
AND OVERLAP FACTORS

3

X =(2ap)
Q

for a, &)ap-a . (84)

2
X2= J dr/*, (r) Px(sr) (82a)

2

=
I
1(,(o) I' J dr gf'-,'(r R)xy„(r)—

In this appendix, the approximate calculation of
the dipole-matrix elements which determine the
rate of radiative recombination is discussed [see
Eqs. (12)—(14)]. Consider a large localized elec-
tron state P, (r), centered on the origin with radius
a„and a hole state Ps(r), with a much smaller ra-
dius a~ &&ae. Within the context of the effective
mass approximation, ' the electron wave function
can be described in terms of an envelope function

g, (R), and the Wannier-type tight-binding wave
functions f '-'

( r —R), needed to describe
conduction-band edge states,

((},(r)= gg, (R)f-"( —R), (8 la)
R

where the points R are a set of atomic coordinates.
If a~ is large compared to an interatomic spacing
a, the hole wave function, too, can be expressed in
terms of an envelope function 1t~(R), and the
valence-band tight-binding orbitals f' '-' ( r —R), -

Pp, (r)= Qgp(R)f'-'(r —R), (Blb)
R

but if ah, ~, is comparable to a, Eq. (Blb) is not ap-

propriate. In either case, the squared dipole matrix
X is given by the expression

In the opposite extreme, when a~ ))a, the dipole
matrix is proportional to a distance a,b, charac-
teristic of the size of the tight-binding orbitals,

X'=
I P.( o)

I
'14s( o)

I

'(4~)'(a b
)'

where
2

(rrr) =( gf-[r —R)xf-"(r)
R 0

R

and ( ) denotes a configuration average. Because
the tails of the tight-binding wave functions typi-
cally extend over several times the interatomic
spacings, a,~ is generally as much as two or three
times the interatomic spacing. Again, assuming
the localized envelope functions are simply ex-
ponentially localized as in Eq. (83) (see Table I)

3
1X = — (2agy ) for a, &)a/, ))agb .
2 a,

(85)

For greater simplicity in performing the calcula-
tions in this paper we have always used Eq. (84) to
estimate the transition rates. More properly, a for-
mula of the form

3
2ap 2 2max[(2ah), (2a~b) ]

(82b) should be employed. However, in view of the
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many uncertainties in the analysis and in particular
the uncertainties regarding the exact size and shape
of the localized-hole wave functions, the additional
complexity does not seem warranted.

Finally, it should be noted that the formula for
the dipole moment in Eq. (83) can be used to esti-
mate the radiative decay rates in direct gap crys-
tals. In GaAs, for instance, the rates calculated
using Eq. (B3) are found to be in good agreement
with the results of more sophisticated calcula-
tions.

APPENDIX C: THE STATISTICS
OF HOPPING A%'AY

where 8 is the Laplace transform of 9,
9R(A, )= I dte "'9'R(t). —

0
(C2)

To solve this equation for 9 0 (A. ), we define the
frequency-dependent rates

,% R, (A, )
r+~(g) — g y~ ~ y~ ~

R R ' R R R '

y R

(C3)

where I 'R (A, ) is the effective hopping-away rate to
all sites excluding the origin, which we will always
consider explicitly. I'

R (A, ) is the A,-dependent

analogue of the effective hopping-away rate I p,
defined in Eq. (32), and its physical interpretation
is identical. In terms of 1*~(A, ),

9 0(A, )= A, +vo+ g
R

X&Rp- [l+v- +y-- + I *-
(A, )]

(C4)

The starting point for the calculations in this ap-
pendix is Eq. (23a). From there, the development
follows a course parallel to that in Secs. III A and
III B. First, via symbolic manipulations, we will
derive the various formal results discussed in Sec.
III. Then we will adopt the exphcit form for the
hopping rate in Eq. (29) and perform the various
detailed calculations invoked in the text. In order
to make progress with Eq. (23a), we take its La-
place transform

(~+vR+I'R)~R(~)=~R 0+ X&R R ~R (~»
R'

(Cl)
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and

y~ ~g~(g)
9 R(A, )=

"+vR+yo a+
(C5)

Notice that the occupation probability 9 R (A, ) is

expressed as the ratio of the rate at which electrons
hop from the origin to site R, to the rate at which
they escape from site R. To obtain information
about 9 o(t) at short times we must examine the

large A, behavior of 9' o(A, ),

&o(1[)- ~+&o+XyRO
R

(C6)

which implies

9-(t)=exp — v +gy- r
R

1+
2

r kayo RyR 0+
R

(C7)

9 0(k)=[vo+I'o+A(1+Z)+0(& )]

This same result can be obtained directly from the
equation of motion for 9 0 (t) by substituting the
short-time behavior of 9 R (t),

9 R(r) =yR -, r+O(t'),

into the right-hand side of Eq. (23a). The correc-
tion term,

g y~~ y~ ~1

R

is thus seen to be the first hopping back correction
to the direct leaving rate. At long times, the
behavior of 9 o is determined by 9 0 (1[,) at small

where I *0 is the same hopping-away rate that is
defined in Eq. (32), and can be written in the form

ro=g yRO—
[v-, +y-, -, + r*-, (o)]

and Z is defined by
(C9)

y-- 1—r- (A, )OR dg R
A, =O

[v-+y--+ r'-(0)]'

(Clo)

Equation (C8) can be inverse Laplace transformed
to yield the asymptotic form of 8 o at large t,

(v-, +r'-, )r

(1+Z)
19'-(t) — exp&+z (Cl 1)

Equation (Cl 1) describes a situation in which the
site at the origin is in quasiequilibrium with the
sites around it, spending a fraction 1/(1+Z) of its
time on the origin and Z/(1+Z) of its time on
neighboring sites. This explains why the effective
rate of nonhopping escape from 0 is reduced from
its zero time value vo by a factor 1/(1+Z). I"o,
as before, is an effective hopping-away rate; how-
ever, now, in order to truly escape, the electron
must escape from the equilibrium region about the
origin. Finally, the mean time the electron spends
on site 0 is equal to 9' o(0), which confirms our
interpretation of I'o in Eq. (21),

9'-, (0)=(v-, + r*-, )-' .

To make contact with experiment, we must cal-
culate the configuration averages of the quantities
that we have calculated for single configurations so
far. At short times, because the electron leaves by
all available paths independently, the configuration
average of the leading term in Eq. (C7) can be
evaluated rather simply,

vpj+yjRj) f

)
—e D[[e R" [[+—e o[/ (/ e R")]+

R
(C12)

where X is the number of sites in the system. For a large system, yR 0 =0 for most configurations, hence

(1—e " ) is of order 1/N and in the limit N~oo,

(1—(1—e ' )) ~exp( N(1 —e "' )) .—

If y R 0 is given by Eq. (29), then

N(1 —e "")= J dRdep(e)[1 —exp( yot e
' —)]

(C13)

(C14)
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where

b(e, ED) = .
e —ED if eyED
0 if e~E~ .

At zero temperature, the integral does not depend
on the details of the density of states p(e). The re-

sult is the expression in Eq. (31) of the text. At
finite temperature, the integral is more sensitive to
p(e), but it can be performed rather simply for
many forms of the density of states. However, this
exercise is of limited usefulness, as 8 p(t) is only

given by the expression in (C7) at short times, be-

fore hopback becomes important.
The GRA. To make further progress, we must

introduce some approximations. In this next part,
we will discuss the calculations of low-temperature
properties we have evaluated using the GRA. The
fundamental quantity we wish to calculate is

'(E, I ), the probability that the effective
hopping-away rate [defined in Eq. (32)] from the
site 0 is less than I, assuming that the state at site

~"'(E, I ) & ~,',„'(E,I ), (C15)

since hopping back always lowers the effective
leaving rates. 9'b„,'(E, l ) is a simple quantity to
calculate since, in the limit of an infmite system
(N —+ co ), the probability q(E, 1 )d1, that there is a
site R with hopping rate y& o in the interval
(I'—dl", I ) is independent of the number of sites
to which the hopping rate is greater than I . Thus

0 has energy E p E—for all configurations. (For
the purposes of this Appendix we have made expli-
cit the dependence of 9' ~ ' on the energy of site 0,
although in the text the energy dependence was
suppressed for brevity. ) Within the GRA, H' ' is
the probability that there is no site R to which the
effective hopping rate y'R 0 is greater than I .

To get a feel for the nature of 9"~'(E, 1 ), we
will first calculate the probability Hb, „,(E,I'), that
there is no site R to which the "bare" hopping rate

yR o is greater than I". Hb„,' is equal to H' ' at
zero temperature, and at all temperatures

r

bareHb~„'(E, I ) = — I dRde p(e)5(1 —yp e
—2xfg a(e, E)lksT—

) (()(E ~)bare

where the term in large parentheses is q(E, I ). Integrating Eq. (C16) we obtain

Hb„,'(E, I )=exp[ —N b,„,'(E, I )],
where Eb„,' is the mean number of sites to which the hopping rate is greater than I,

Nb„,'(E, I') = N'~'+(N'~ '/4)[(T/Tp)ln(yp/I )]

(C17)

6p'"'(E)(k, T, )"

n! n+1 n+2 n+3 +nb
(C18)

where E' ' is the zero-temperature value of Xb„,'.
[In Eq (37) N'. ~' is expressed in terms of the den-

sity of available states q(E).] ks Tp is the logarith-
mic derivative of q(E) defined in Eq. (20), and
p'"'(E) is the nth derivative of p(E). The logarith-
mic dependence of Hb„,' on the rate I" is charac-
teristic of the broad distributions of rates found in
hopping systems, especially at low temperatures.
We will find that, with the effect of hopping back
properly accounted for within the GRA,
R'~'(E, I ) is given by the expression in Eq. (38)
which is of the same form as the expression for
Hb~,' in Eqs. (C17) and (C18), however, with the
factor of (N'~ '/4) in Eq. (C18) replaced by a
characteristic function f[N' '(E, I )].

To see this first consider the expression for the
effective hopping rate to site R given by Eq. (33b).

We distinguish two classes of sites, "near" sites
which are in closer contact with site 0 than with
the rest of the world, I *R & yo R, and "far" sites
which are in closer contact with the rest of the
world than with 0, I"R & yp R. (Note, since we
are interested in low temperatures, the rate at
which electrons are thermally activated to E, is
small. Thus, in this~art of the appendix we will
let vR =v„=0 for R+0.) Within the GRA,

~'«'(E I ) = ~'"'(E I')~'"""(EI ) (C19)

where H' "' is the probability that there is no far
site for which y'R o y I, and H'""' is the proba-
bility that there is no near site with y R ~ & I .
Moreover, the expression for y*z 0 is also simpli-
fied by the GRA,
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'f yo R &~R
y-- —y--X r-RO RO R 'f ~OR)~R .

~0 R

(C20)

At finite temperature, hops involving several
sites contribute to the effective hopping rate, so it
is no longer necessarily true that the probability
q'(E, I')dl of finding a site to which the effective
rate is in the interval (I —dI', I ) is independent of
the number of sites N, to which the effective hop-
ping rate is greater than I . However, in an infin-
ite system, q* is not very strongly dependent on N

for N small (the range of physical interest). More-
over, to lowest order in the temperature, or within
the GRA at all temperatures, q* is, in fact, com-
pletely independent of X. Thus, just as with b, «,
it follows that H'"'"' falls exponentially with the
mean number of near sites, N'""'(E, l ), to which
the effective hopping rate is greater than r.
depends analogously on N' "'. Together with the
result in expression (C19), this implies

9'(E, l )=exp[ —N'""'(E, l ) —N' '"'(E, l")]

where, from Eqs. (C20)

and

T

N'""'(E,r)= I dRdep(e) J dy — H' ' e, y 5(I' —ye )8(yoe ' —y),
dy

(C21)

N("'(E, r)= J dRdep(e) Jdy — ~'"(
e, y)

2R /g a(eE——)/kg ,T 2R /g h(E,—e (/—k~ T
X5 I yoe — y yoe— (C22)

In these expressions, the term —(djdy)9" ('(e, y) is the probability that the effective leaving rate from the
site R is in the range [y,y+dy]. Equations (C21) and (C22) are complicated integral equations for
9"('(E,I ) in terms of itself. In general, there is no good way to solve these equations. However, to first
order in the temperature, the zero-temperature expression for H(('(e, l') can be used to evaluate the in-
tegrals on the right-hand side (r.h.s) of Eqs. (C21) and (C22). Corrections to the effective hopping rate from
site 0 to site R due to the temperature dependence of the effective leaving rate from site R appear first in
second order.

With this simplication it is straightforward to evaluate the integrals. The result is expressed in Eq. (38).
The characteristic function f(x) is given by the expression

g(/3(x)(x —1/3) —(1/3)!x
f(x)= —+xe (C23)

and (1/3)! is the gamma function of —2/3, (1/3)!
—g(/3 ( 00 ). For small argument, x « 1,f(x) is
negative,

f(x)= —(1/3)h'/ +x+. . . (C25)

while for large argument, x ))1, f(x) is positive,

x (1/3)hf(x)-——
4 3

(C26)

Of particular importance is the value of the argu-
ment xo ——0.95, where f(x) changes sign, since this
marks the line between those values of the parame-

where g(/3(x) is the incomplete gamma function,
x

(C24)

120f(N') ')
(T/To)ln(yo/I ) «

p'(E)kg To
(C27)

I

ters for which the quantum efficiency is an in-
creasing or decreasing function of temperature.

Finally, a criterion must be developed to deter-
mine the range of temperatures over which the ex-
pansion of N') ' to first order in T is useful.
Rather than performing the complicated numerical
integrations necessary to calculate the second term
in the expansion, we can use the second-order term
in the expansion of Eb„, to estimate the size of the
higher-order effects. Typically, the terms in the
expansion of Nb~„are larger in magnitude than
those in the expansion of 1V'' '. Thus, the expres-
sion in Eq. (38) is probably valid so long as
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fect the results due to the extreme narrowness of the
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few times hED below the photoinduced states, then
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