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A dislocation model for the smectic-A —nematic transition is mapped onto a peculiar sort of
anistropic superconductor, which is then studied using a momentum-shell renormalization

group. The elastic constants behave according to the helium analog, while the specific heat
x 4 xdisplays an inverted X anomaly. The x-ray correlation-length exponents are v~~
=

5
and v~= &&,

in fairly good agreement with experiment.

There are many theories of the nematic to
smectic-A transition currently extant, ' ' none of
which have succeeded in correctly predicting the
experimentally observed critical exponents.
DeGennes's' argument that the transition should be
equivalent to the superfluid-normal transition was
disputed by Halperin, Lubensky, and Ma, who ar-
gued that it should rather be equivalent to the
superconductor-normal transition, with director fluc-
tuations driving the transition to first order. Unfor-
tunateIy some experimentally observed transitions
appear continuous down to reduced temperatures
t —10~-orders of magnitude smaller than that at
which the predicted first-order transition should oc-
cur. In contrast with both these theories, the experi-
mentally observed critical behavior appears to be an-
isotropic, with different correlation-length exponents
vq(vii) for fluctuations within (normal to) the layers.

It has been conjectured' that a dislocation' un-
binding theory of this transition might explain some
of these anomalies. I will show in this paper that, at
least for some finite range of values of the parame-
ters, the dislocation loop model has the thermo-
dynamic properties of an inverted X- Ytransition, i.e.,
one with the high- and low-temperature sides of the
transition reversed. This is in agreement with the re-
cent work of Dasgupta and Halperin' on the three-
dimensional superconductor. (There are theoretical
reasons for believing that this model has the same
critical properties as a smectic, although this does not
appear to be the case experimentally. ) The x-ray
correlation length exponents are given exactly by
vfi=6v, /5 and vf =4v, /5, where v, is the superfluid
correlation-length exponent.

The dislocation loop model that I will use here is a

lattice version of that considered in Ref. 4, and as-
sumes that dislocation loops are the sole excitation
responsible for the smectic-A -nematic transition.
These loops are the boundaries of extra layers insert-
ed into the smectic; we can characterize them by a
vector i7iI that points along the boundary and whose
magnitude is the number of such extra layers. (Since
only an integral number of layers can be inserted, RI
is integer valued. ) The partition function for this
system was derived in Ref. 4; on a lattice it is '

with

Z= X 8(Fi ttl, ) exp( —H),
(m]}

2

H= —, X, Pi&+2E,8& mi(q)m&( —q) . (2)
E]gJ

2 2+)2 4

Here R; is an integer valued vector field that mea-
sures the charge (i.e., the number of extra layers in-

serted) of the dislocation at the site i, R(q) is its
Fourier transform, z(J) is the direction normal to
(within) the layers, P& =(8& q& q, /qq )(—1 —8~8J,),
K~ =K~d'/ksTis a reduced elastic constant, d is the
smectic layer spacing, and E, is the dislocation core
energy. The constraint 5 BI=0, where LL is a lat-
tice gradient operator, simply requires that dislocation
lines form closed loops. The length A. is related to
the elastic constants 8 and E~ that control compres-
sion and bending of the layers, respectively, by
A.
' = K)/8.
Following Peskin, "I apply a Hubbard-Stratonavich

transformation to this model, i.e., I introduce a con-
tinuous vector field A; to mediate the interaction:

with

1

Z'=& gdA, g 8(Z m, )exp —Hz((A;))+Xim; A; —E,~m, ~ 8(A, )8(Z A;)
( }

Hg ( %;)) = —' X l ( q,'/K ~ q ~2 ) + (q ~2 /8 ) ]I A, I

' (4)
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where A, is the Fourier transform of A; and B —= Bd2//ks T.
It is easily verified by performing the Gaussian integrals over A that Z' is equal to Z as given by Eq. (1) up to

a multiplicative constant.
Now I cope with the constraint Z m& =0 by introducing another auxiliary field Q&.

pm

Z'=z QdA;„X exp Hq(—(A;})+X(im; ~ A; —E~m;~~ +p;Z m;) 8(A, )g(g A;) .
77 (~ } I

l

Integrating out Q, will recover the constraint. I can now integrate by parts in the exponential; i.e. , use

X, QiFi, rn; =—g,. rii, ~ F7/; and rewrite the partition function as

Z'= J QdA& Jt '
exp[ —Hz([A, })] X exp X—E,(m&)'+im, (A& —F7/, ) 8(A, ){3(Fi A&) .

277
f m.}

j ~

(5)

(6)

Recognizing the term in large square brackets as the Fourier transform of a periodic Gaussian allows me to ex-
press the partition function as a Villain model for peculiar superconductor

Z'= J gdA; J g exp —H ([A })— XIA —b g;+2mS I' &(&,)&(Z A;)
I

~ 277 {s )
4Ec

in which the inagnetic energy ~

'7 xA ~'/8n p, has been replaced by the Hamiltonian (4), and there is a new con-
straint A, =0 in addition to the usual V A =0 that holds for superconductors in the Coulomb gauge. I expect
this Villain model to have the same critical properties as the Hamiltonian

H =Hg( (Ai}) +J X Xcos(qh, ~„-
—@i—Ai„), (8)

l

where the index p, denotes different lattice directions, and with J=1/4E, as E, 0. In turn, this system should
have the same critical properties' ' as the following "soft-spin" model:

H=H&((A( r )})+ —,
'

&
d r[rlgl'+ulgl" +ci~('7 —iA)ill{{'+c,l&,gl'+O(g )],

where P is a complex order parameter, and I have re-
placed the three-dimensional discrete lattice with a
continuous space of dimension d. As always, ' I will

assume that r is proportional to the reduced tempera-
ture t = ( T T,/T, ) and that u—is roughly indepen-
dent of t near the transition. The equivalence
between this model and the original dislocation loop
model [Eq. (1)] only holds in d =3; nonetheless, the
continuation to arbitrary dimension is useful in that it
enables me to do an e expansion about d =4. The
conclusion that this model has an inverted XYtransi-
tion is, as we shall see, independent of the e expansion.

I proceed by the usual momentum shell tech-
niques, with the modification that (for computational
convenience) I choose a hypercylindrical Brillouin
zone of infinite extent in the z direction, rather than
the usual hyperspherical one.

After integrating out all Fourier components of A
and itI in a hypercylindrical shell with b «q «1, I
anisotropicly rescale wave vectors: qq b 'qq,

q, b ' 'q, and fields: i'(qi, q, )=b

I have rescaled q, and qq differently to allow for the
possibility of anisotropic scaling.

In practice, both a and the equally arbitrary param-
eter q& will be chosen to produce fixed points. The
rescaling of A is chosen to keep the coefficient of the
A~ i{1~' term in H (the "charge") from renormalizing.

Cd i(BKi)'i'Bc[ 3 3—
(10b)

dKi

dl
=(a+~ —2)Ki,

(
— B Cg ic3'

dl 2(d —1)c,ii~

(loc)

3cg

2[(ci+r) ]"'
Scg2

(d +1)[(ci + r) c,]' '

(10d)
* = —(qq+3a)c, +O(B,u', uB ), (10e)

dci c32 Cq i[KiB(c3+r)]'i'
di ' c,'" {t[)+(c,+r)'i']

+ O(KiB,u'), (10f)

I

Taking b = e'with the l differential leads to the fol-
lowing recursion relations:

dr SCd )u—=(2 —a —ri~)r+
di [(c3+r)c,]'

1

+ Cq i(BKi)'i'c3+0(BKi, u2), (10a)
2

du 10' )u(t 30 2v)g)ti i 3i2
cg ( cg + r)
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where Cq is the surface area of a d-dimensional
sphere divided by (2m) ~. It is important to note that
the recursion relation (10c) for Ki is exact to all or-
ders in perturbation theory; there are no graphs that
renormalize K~, since it is the coefficient of a non-
analytic (in q) term in the Hamiltonian [Eq. (4)].
Hence all conclusions based on (10c) (i.e., most of
the conclusions of this paper) are independent of the
e expansion.

In precisely three dimensions, these recursion rela-
tions have fixed plane with r = ~, cj = c, = u = 0,
8 = const, and Ki = const, if we choose a = 1 and

q&= 0. This plane is characterized by algebraic

decay of correlations —i.e., 6 (r~ 0) ~ (rq) and

G(0,z) cL (z) "—of the smectic order parameter
(which should not be confused with the artificial or-

der parameter introduced here) with q)) 8/248K
and gq= (1+a)q))= 2q)). The last relation is just a
simple consequence of anisotropic scaling.

These are all just well-known properties of the or-
dered smectic-A phase. ' ' Since r ~ corresponds
to the disordered phase of )l), it follows that these
transformations have had the dualitylike property of
interchanging the high- and low-temperature sides of
the transition.

The transition itself is controlled by an isolated
fixed point with a =0 = Ki. The thermal eigenvalue
of this fixed point (which would be the inverse of the
correlation-length exponent v in the absence of the
complications discussed by LDI) is )). =2 —2e/5,
which is just that of the XYmodel, to lowest order in
e. Since in addition the scaling is isotropic (a =0),
this fixed point has precisely the properties of the XY
fixed point. In renormalization-group jargon, the
vector potential terms in (9) constitute an "irrelevant
perturbation" to the XYbehavior.

How are these results modified when e grows to
unity (d =3)? One thing that cannot change is the
recursion relation (10c) for Kt, for the reasons given
earlier. Thus for a ( 1, the conclusion that K~ renor-
malizes to zero, even in d =3, is unaltered. But for
small Ki, we must choose a = O(QBKi) in order to

keep cq and c, from renormalizing (a =Cq i+BKi
for Ki « 8 and e « 1); hence a is indeed « 1

when Ki 0 (unless 8 ~) and a zero Ki, the finite
8fixed point will be stable even in d =3. Such a fixed
point will always have X- Yexponents, since all terms
involving Band K] drop out of the recursion rela-
tions for u and r [and, clearly those for the coeffi-
cients of higher-order terms in (9) as well].

Likewise, the existence of a fixed plane in d = 3 is
independent of the e expansion. Note that the topol-
ogy of the Hamiltonian flows (fixed plane controlling

the smectic A phase, isolated fixed point controlling
the NA transition) is just that conjectured in Ref. 4
on the basis of crude physical arguments. They failed
to anticipate, however, that Ei = 0 (in their language,
q'= ~) at the isolated fixed point.

As pointed out by Lubensky et al. ,5 the existence
of an isotropic fixed point does not imply that the
two correlation lengths (P) and (f) experimentally
observed in x-ray scattering need diverge with the
same exponents. This is a consequence of the fact
that E~ is a "dangerous irrelevant variable" in the
sense that the correlation lengths diverge when E~
goes to zero. We can calculate the behavior of these
correlation lengths using the arguments of Ref. 4,
which suggest that 0=n, ')) 't' and If)=n, 't'X't',
where n, is the areal density of free-edge dislocations
piercing a given plane, provided that we allow X to
depend on the length scale we are considering
(l). ~ at long wavelengths in the nematic phase,
since 8 0 there).

From the renormalization group constructed here
one can show'6 that n, ~ (, ' and )). ~ (P' at the
relevant length scales near T„where g, is a super-
fluid correlation length. This gives vf[=6v, /5 =0.8
and vj =4v, /5 =0.533, where in the numerical esti-
mates I have used for the superfluid correlation
length exponent v, = 3. This compares reasonably

well with the experimental values v[] =0.763 and
v&=0.623 reported by Kortan et al. '

Since the transition is controlled by an X- Yfixed
point, the elastic constants B, E2, and E3 obey the

helium analog; i.e., 8 cc )t[ ', Kz 3cc [t )
', near T, .

The anharmonic effects considered in Ref. 14
[which are neglected in the model Eq. (1)] are con-

-1/2 —3/2
trolled by a parameter w =8 /Ki . The above

results imply that this parameter vanishes like
~
t

~

' 2

as the transition is approached; thus the harmonic
theory used here should give an accurate description
of the transition.
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