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Phonon frequencies of one-mode behavior of mixed alkali-halide crystals with nega-

tive-ion substitution have been calculated as a function of wave-vector and molar-mixing

ratio. The mixed-crystal model utilizes a pseudo-unit-cell as a basic repetitive unit incor-

porated into the breathing-shell model of lattice dynamics. The fundamental repetitive

unit cell for the mixed crystal ABi „C„consists of A ions at their normal lattice site and

with nearest neighbors consisting of a fractional amount of B and C ions proportional to
their mixing molar ratio. The model parameters are deduced from physical observables

such as the elastic constants, long-wavelength transverse-optical mode frequency, and the
high- and low-frequency dielectric constants of the parent compounds. Room-

temperature calculations of one- and two-phonon densities of states and dispersion rela-

tions of KC1& „Br„,KC1& „I„,and KBr& „I„are found to agree with the available Ra-

man scattering, infrared reflection, and absorption data.

I. INTRODUCTION

A solid may be considered as an ordered or
disordered system depending on whether its atomic
arrangement is a lattice or not, corresponding to
the ideal crystalline and amorphous states, respec-
tively. Mixed crystals, on the other hand, may be

regarded as solid solutions in which the crystalline
lattice topology is preserved but in which the
atomic spatial arrangements depend on the molar
concentration of impurity atoms in the host crys-
tal. Thus, they may be considered a particular
case of disordered systems marked by a close asso-

ciation with the dynamics of the perfect crystal but
lacking in translational periodicity.

The determination of the vibrational properties
of mixed crystalline compounds will be based on
the assumption that the nature of the disorder is
such that its properties can be obtained as an ap-
propriate extension of the corresponding properties
of the ideal ordered system. As the impurity con-
tent increases, it changes from playing a localized
role in the frequency spectrum to one comparable
to that of the host system. In this case the com-

pound is called a mixed crystal.
From the x-ray point of view, the system formed

by the mixture of pure compounds is truly a crys-

talline formation. The latter displays unique lat-
tice constants that change linearly with the molar
concentration (Vegard's law') from one pure end

member to the other. Disorder is configurational
in contrast to glasses in which it is also spatial.

Localized impurity ions that only break the
translational and inversion symmetries will be con-
sidered as limits for very low molar concentration
and they will be discussed only in the framework
of mixed-crystal systems. In particular, our in-

terest will be limited to mixed alkali-halide com-
pounds. For the pure end members of such sys-

tems the breathing-shell model is known to apply
well.

Experimentally, mainly through far-infrared and
Raman spectroscopy, it is observed that when two
pure alkali halides are mixed by substituting for a
cation or an anion two extreme situations can oc-
cur: In one case only one set of long-wavelength

phonons will be evident, characteristic of the resul-

tant system at any molar concentration. In the
other case, an equally typical behavior, two sets of
frequencies appear, i.e., a longitudinal-optical (LO~)
and a transverse-optical (TO~) mode associated
with one end-member diatomic compound and a
longitudinal-optical (LO2) and a transverse-optical
(TO2) mode corresponding to the other end-
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member diatomic compound. These two behavior
types are known in the literature as one-mode and
two-mode behavior. A review of the experimental
data as well as the models has been given by
Chang and Mitra. Barker and Sievers" have made
an extensive review of lattice vibrations associated
with defects, emphasizing the infrared absorption
and Raman scattering spectra.

Based on the idea that the appearance of two
reststrahlen bands may be thought of as conse-

quence that the two mixing components in

AB~ „C„are in sublattices that vibrate rather in-

dependently against the lattice of the nonmixing
ion sublattice, Chen et a/. proposed their ran-
dom-element-isodisplacement (REI) model. They
assumed that the cation and anion of the like
species form units that vibrate with the same phase
and amplitude. The important factor in this model
is that force constants Fz&,F&c between ions A and

B, and A and C, change linearly with concentration
as do the lattice constant. However, the force con-
stant F~c is a fitting parameter whose value is
chosen to obtain a very good agreement with the
experimental results for GaPi „As„. A step for-
ward had been achieved by Chang and Mitra by
modifying the REI model (MREI) so that it in-

cludes the Coulomb field. The result of employing
this field is that the model reproduces the known
long-wavelength frequencies of the end member

crystals AB and AC. With these boundary condi-
tions F~c is calculated. The MREI model is able
to predict the zone-center frequencies for any
molar concentration for two-mode and one-mode
behavior systems, and it has been extended by Gen-
zel et al. to develop a series of relations for
predicting the appearance of one- and two-mode
behavior from the character of the pure com-
pounds. These were later modified by other au-

thors ' and must be considered only as useful

guides.
A more recent attempt to describe the lattice

dynamics of mixed crystals was made by Kutty"
using the Green s-function technique. Tripathi and
Behera, '

by means of a Green's-function formula-
tion, proposed a self-consistency theory for pho-

nons in mixed crystals without conclusive results.
The coherent-potential approximation' (CPA)
must also be mentioned as a potentially useful ap-
proach to study disordered systems. In particular,
the work of Taylor should be cited' in which
CPA technique leads to some success in three-
dimensional calculations of the spectral features of
mixed alkali halides. Sen and Hartmann' used the

coherent approximation to explain the switching
from one-mode to two-mode behavior in one di-
mension.

Chang and Mitra, ' beginning with the concept
that the mixed-crystal behavior must follow the
pattern of the pure end members developed the
concept of the pseudo-unit-cell to explain the
zone-center phonons at any concentration. It is as-
sumed that mixing atoms are randomly distributed
and that the components of the unit cell are de-
fined as A, (1 x)B,—and xC, (0&x & 1) where 8
and C are the substituting ions. The force on ion
A due to ion 8 is given by (1 x)Eq—z, due to ion C
by xF&c, but the force exercised on B due to A is

Fz~ and the one on C due to A is Fzc because the
molar fraction of ion A is one. The generalized
equations of motion in a one-dimensional mixed
diatomic unit cell were proposed by Vetelino and
Mitra. ' Varshney et al. ' have calculated the lat-
tice dynamics of ZnS& ~Se„and GaP& „As„using
the pseudo-unit-cell model and the coupling coeffi-
cients of the rigid-ion model of lattice dynamics
affected by molar-concentration factors. Twelve
constants are calculated from physical observables.
However, to fill the gap between the experimental
data and the unknown input a fitting in the least-
squares sense is introduced that results in an ela-
borate procedure with no immediate physical inter-
pretation, thus precluding the generalization of the
method.

Our idea consists of attacking the problem on a
broader basis by extending the two-dimensional
pseudo-unit-cell concept to a three-dimensional
analysis for an AB& „C„mixed system. In the
present approach previous nonphysical assumptions
such as those of force constants that vary with
concentration in a linear functional form by the in-

troduction of a parameter Ox (Refs. 6, 16, 18, and
19) and the least-squares fit used to determine
model parameters of the mixed system are
dropped. It is shown that the knowledge of the
model parameters of the pure end members and
the assumption that force constants, as well as lat-
tice constants, vary linearly from one pure end
member to the other is sufficient to describe the
lattice dynamics of a mixed alkali-halide crystal.

II. BREATHING MIXED-DIATOMIC
LINEAR CHAIN

The picture of a breathing mixed-diatomic linear
chain will be presented here to point out the basic
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ideas in the development of the three-dimensional
model presented later and to avoid the lengthy
algebra that is involved in deducing explicitly
the three-dimensional coupling coefficients.
Figure 1(a) shows a mixed linear chain for the
A B

& „C system with only nearest-neighbor in-

teractions with a negative effective ion that is
"breathing. " Second-neighbor interactions are
shown in Fig. 1(b). We do not agree with the
ad hoc assumption that one-mode behavior may be
explained in terms of a resonant mode associated
with the C„ impurity in a AB~ „host crystal with
x =0 and that such resonant behavior could be ex-
tended to any concentration x. This is question-
able in that this situation may be predictable in an
almost pure compound but we believe it is unphys-
ical to propose it for polar crystals at finite con-
centrations, since one would expect the develop-
ment of a macroscopic field associated with each
set of vibrational modes. At long wavelengths this
would show in infrared as an extra reststrahlen
band due to the "impurity" LO-TO splitting in ad-
dition to the "one-mode" band. This description is
close to what arises in a two-mode compound as it

is known for K„~Rb„I, and, more recently, in

K&,T1,C1 and K~ Tl Br. These systems, at
x =0 and x =1, and in the long-wavelength limit,
have a spectrum that reduces to a band related to
the host crystal accompanied by a local mode.

For these reasons we have focused our attention
on the force-constant behavior for the first and

second neighbors, and watching for the set that
will produce what is experimentally known.
Below, one-dimensional equations of motion
abstracted from the actual three-dimensional prob-
lem for one behavior are written. These are writ-
ten in terms common to the three-dimensional

cases, i.e., u's are the core displacements, U's are
the shell-core displacements, and r's are the shell

deformations. The pseudocell is assumed to con-
tain either two "hard" or "soft" atoms constituting
the "pseudo-mixing-ion" and a third ion as is
shown in Fig. 1(a). The figures take into account
the interaction of the i and j ions. Hence the equa-
tions for one-mode behavior A+B& „C„system
with 8& „and C breathing (e.g., KC1, „Br„)
written with Bilz's notation for the one-
dimensional-shell model ' become core equations,

m "u'2„——(1 x)I'AB(u2„+—~ +U2„,—2u 2„)+xE&c(U2„+& +v2„, —2u 2„)

+AA(u 2n ~2 u 2n +u 2n —2 ) ~

u2 —1 ( x)kB(u2 —1 U2 —1)

c-c C Cxm u2„& xkc(u„——
&

—U2„~),

(2.1a)

N-I 2N 2N+ I

A

FAA
h/ y/ y/ y/—

v

FAA

FIG. 1. Mixed diatomic linear chain: (a) Nearest- neighbor interactions, (b) second-neighbor interactions (one-mode
behavior).
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shell equations,

0=(1 x )kri(u2„1 —u2„1)+(1—x)f„ri(2V2„1—u2„2 —u2„)B B B A A

B B B BC B C C+(1—X) FSrr(2V 2n 1
—u2„3 —u2n+1)+X( 1 —X)Fuu (2V2n i V2n —3 "2n+1)

+x (1 x)F—

/care+�(1
x) Fg—roars,

xkC(V2n —1 ~2n —1)+xfAC( V2n —1 ~2n —2 112n }c c C A A

2 C C C CB C B B+x FCC(2V2n —1
—V2n —3

—V2n+1}+(1—x)fuu (2V2n —1 V2n —3
—V2n+1)

+x(1 x)Fq—sbrs+x F„chrc,

(2.1b)

and "breathing" equations,

~~a(2V 2n i
——rr 2n

—rr 2« —2 )
B A A

+HAB hrB +HBchrc ——0,
FgC(2V 2„1—"2„—"2„2)

C A

+HAchrc+HcB ArB ——0,

(2.1c}

stability in the mixed compound. ' The two molar
mass factors imply a net molar dependence for
each term of the dynamical matrix that will affect
the coupling coefficients shown in the following
sections.

where H =2F&r, +G (Ii =B,c) and m (N =A,B,C)
are the ion masses. It can be observed that the
force constants are multiplied by molar weights
that correspond to the presence of the ion in the
pseudo-unit-cell. Besides, the masses of the substi-

tuting ions are weighted by their concentration, as
shown in Fig. 1. Naturally, in the three-
dimensional picture only one particle is on each
lattice site and no first-neighbor interactions are al-

lowed between like charge atoms since this would

imply the explicit introduction of the idea of un-

III. THE THREE-DIMENSIONAL
PSEUDO-UNIT-CELL APPROACH

The three-dimensional model that uses the
breathing-shell model of lattice dynamics, known

to give a reliable description of the neutron scatter-

ing data on pure alkali-halide crystals, considers
nearest neighbors and next-nearest neighbors for
effective negative-ion —negative-ion interactions.
In principle, the equation of motion involving ion
displacements for A+Bi,C„can be described by

~ ~

M UB
1 —x

U
x

&i:x~+
C A+

+Bi—x

&i:x&i:x
C„B)

A+C„

&i:xCx

Cx D

A+

U
1 —x

U

(3.1)

where M is the diagonal matrix specifying the effective masses, U; is the column Cartesian displacement
matrix for the three ions (i =A+, Bi „C, ). A+A+, A+Bi „,etc. , are matrices that take into account
short- and long-range interactions, polarization and breathing effects between ions A+A +, A+Bi „,etc.
The superscript means the charge of the ion and the subscript the molar-concentration dependence. This, in
terms of the BSM, implies that the dynamical problem is still described by the equation

Mro U=[R+Z C Z (R+Z C Y QH—'Q+)(R+IC—+ Y C Y QH 'Q+} '(R+—YC Z QH 'Q+}—
-QH-'Q+X, (3.2)

where short-range coupling coefficients (R ),
Coulomb (C), atom-shell deformation (Q), shell-

deformation —shell-deformation (H ) interactions,
and the diagonal matrices for the effective masses

(M), ionic charges (Z), shell charges ( Y), and core
with own shell interaction (IC ) are now 9 X 9 ma-
trices due to the presence of three ions in the
pseudo-unit-cell. As in the linear case, first-nearest
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neighbor and second-negative-neighbor interactions
are being considered as in the modified random-
element-isodisplacement model (MREI), i.e., there
are (1 x)—B ions and xc ions nearest neighbors to
A, and no first-neighbors interactions are allowed

between like charge ions. The only inputs used are
the macroscopic physical properties like elastic
constants C~ &,C&2,C44, the long-wavelength trans-

verse optical frequency (TO), and the high- and

low-frequency dielectric constants of the two end-

member compounds. In addition, the stability con-
dition has been used.

One- and two-phonon densities of states have
been calculated for 64000 frequencies by weighting
each multiplicity of the phonon frequencies of the

optical band in the pseudo-Brillouin zone by the
molar fraction associated to the compound end

member to which it would belong.
The next sections are dedicated to explaining the

cases experimentally studied for negative-ion sub-

stitution resulting in one-mode behavior. In spite
of the lack of experimental data, two-phonon in-

teractions have also been included, because they are
helpful in explaining sideband spectra, very often
detected and sometimes erroneously attributed to
first-order modes, and to encourage spectroscopic
research in this area.

term can be written as

Wx) ———(A+2B) . (4.2)

Physically, this approach implies that one may
think of A+ in terms of a virtual particle that will
be identical to A+ ion at the two extremes, x =0
and 1. The ionic charge associated with this "par-
ticle" will be also the linear combination of those
of system A +B and A+C

ZA ——(1—x)ZB yxZC,

Z~=Z~.a~ Zc=Zwc ~

(4.3)

ABC +AABAAC ~

BBc=( 1)&BABB—AC

ABC ——(1—x)A„'B +xAAC,

BBc——(1 x)BAB+xB—Ac .

(4 4)

(4.5)

where as before the subscripts characterize the
parent compound. Besides, it is in agreement with
the general idea that the model must reduce itself
to reproduce the phonon spectra of the pure crys-
tals when no impurity is present. The same idea is
behind the force constants of the crossed second-
neighbor negative-negative interaction, 8

&
~Cx,

i.e.,

IV. ONE-MODE BEHAVIOR MIXED CRYSTALS
%ITH NEGATIVE-ION SUBSTITUTION

A. Formulation of the problem and
molar-dependence parameters

There are three alkali-halide mixed crystals
which show one-mode behavior and which have
been fairly well studied. They are namely,
KC11—x Brx KC11—x Ix~KBr1 —x Ix.

Consistent with the one-dimensional approach, a
positive-positive interaction must evolve from the
pure compounds A+8 and 3+C . Then, since

all the lattice dynamics are built upon a harmonic
first-order calculation it seems logical that they
mix linearly,

A =AAB(1 —x)+AAcx,

B=BAB(1—x) +BAcx,
(4.1)

where A,B are the nearest-neighbor force constants
of the mixed system. The subscripts AB and AC
refer to the diatomic parent crystals. Second-
neighbor interactions between the positive ions are
not explicitly considered. Consequently, the self-

It is important to stress that here negative-negative
interactions imply second-neighbor interactions in
which the self-term is

A )2
——(1—x)AAB,

A i3 ——xAgc,

with H now rewritten as

II,~ =6A~+ G,~,
IIcc=6Ac+ G~c (4.7)

HBc ——A (cos2aq„r0+ cos2rrq» r0+ cosq, r02rr) .

The pseudo-unit-cell includes other force constants,

Wx'23 — (ABC + 2BBC +2ABC +4BBC), (4.6)

and that the core-she11 restoring force constant wil1

change linearly from kz, of the 8 ion to kc of
the C ion. The breathing, and, because of the
presence of two negative particles, the breathing-
breathing interactions, will have to be defined in
terms of another set of force constants. These are
contained in relations similar to Eq. (2) of Ref. 22.
Hence
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as such of a A+ Ci „ interaction, but they are
those of the pure end compounds.

B. Coupling coefficients

In this section the molar dependence of short-
range interactions and Coulomb coefficients will be
introduced in terms of the above force constants.
Thus the positive-positive short-range interaction
will be reduced to

'0
~ar4'

R»(AA) = Wx i,
R„y(AA) =0 .

(4.8)

Cyclic permutation of the coordinates generates the
rest of the coefficients. In the following only these
two terms will be stated. In the same way that the
force constants of positive-positive interactions
were considered to have their magnitude constant
for any molar concentration, Bj „B&, and

C„C„coupling coefficients will be proportional to
their molar concentration. Hence, second-neighbor
short-range interactions R~q will be given by

Slagle and McKinst~
gain
Sharko etal
Barsch eta).
caiculatecl

LC

0

CL 0. 2 0,4
X

0.6 0 8 Br
MOLA R FRACT ION

FIG. 2. Concentration dependence of the elastic con-
stants of KC1& „Br„.

R (BB)= [Wr2+ (AABBAB )cos2mq„r p

X (cos2irq„r p+ cos2mq, r p )

with

X rpsin2irq~rp](1 —x),

Wir2 (AAB +2BAB +~AB +4BAB )

Similarly for R

R„y(CC) =[Wx3+(AAc+BAc)cos2irq„rp

+2BA'Bcos2rrq~rpcos2wq rp](1 —x),
(4.9)

R 3,(BB)= [—(AAB BAB )sin2n. q„—

R» (AB)= [AAB cos2n.q„rp

+BAB (cos2irq„r p+ cos2irq, r p )]

X&1—x,

R„y(AB)=0 .
(4.11)

Similar reasoning leads to

R»(AC) = [AAccos2n. q„rp

nearest-neighbor interactions. These are easily
treated in the context of how forces were made
molar dependent in the linear pseudo-unit-cell:

X (cos2irq~rp+cos277q rp)

+ 2BAccos2m q~ rpcos2irq, r p ]x

+BAc(cos2irq~ rp+cos2mq, rp)].
X~X,

(4.12)

R„z(CC)= [—(AAc —BA'c)sin2irq„rp

X sin2irq„rp ]x,

Wsc3= —(AAc+ 2BAc+2AA'c+4BAc),

Next, it is necessary to take into account the

(4.10)

R„y(AC) =0,

where (1—x) was replaced by x stressing that this
interaction is complementary to the previous one.
Analogously, for the B„C& „ interactions, it is in-
ferred that the Rzz matrix will be affected by
x (1—x). We have the following:
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FIG. 3. One-phonon densities of states and dispersion relations for KCl~ „Br. Dashed lines correspond to Raman
scattering results from Ref. 25.
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+8' )cos2n. qr (0c sos.q~ 0+r +cos2nq,ro).~~(~C)=[(~K23+ BC BC

(4.13)+28accos2mqy rocos2~qz or v'x (1—x),
'n2m r sin2nqrro &x(1—x) .

~ ~

(BC)=[—(ABc BBc)sin2mq, ro—stn2n qr ra

the convenience of the calculation, wtlltreated separately an sumElectrostatic interactions, tre
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be weighted by the same factors that were used for the short-range interaction. Explicitly, this means

+ + +
for C„„, C;, (A,B)=+(1—x)C

J AA~ for C~B,

+
(1—x} for C», C, (A, C)=i xC

l J BB~

C,"(C C)=C . . x for C, C; (B,C).=&x(1—x)C
I J CC& lJ for Ciic,

for all i,j;x,y, z . (4. 14)

7-- --7

TO

3-- --3

2--

' Ferraro et af.

~ Fertel and Perry
o Mitsuishi et. al.

calculated

--2

1'

Cl

I I I

0.20 0.4,0 X
0.60

MOLAR FRACTlON

0.80 Br

FIG. 4. Transverse- and longitudinal-optical modes

of KCll „Br .

Once the coupling coefficients are determined, the

determinant is solved for ninety points along each

principal dirmtion of the pseudo-unit-cell in the re-

ciprocal space. Impurities are expected to lift de-

generacies present in the crystalline Brillouin zone.
The densities of states are calculated by assuming

that an eigenvalue at a particular symmetry point
will have a multiplicity at the point directly pro-

portional to the molar concentration of the diatom-

ic compound associated with the phonon. Hence,

by identifying each eigenvalue it is possible to asso-

ciate it with the acoustical or optical bands before

it enters in a channel and is counted. Those in the

I

acoustical band will not be weighted. On the other

hand, optica1 phonons wi11 have a multiplicity con-

centration dependence as pointed out above. The
same criterion was applied in calculating the two-

phonon spectra in which the summation bands

were correlated according to the weight of the
first-order phonons intervening in the combination.

C. Dispersion relations and density of states

ECIr „ar

Table I shows the force constants and the model

parameters as evaluated to calculate the lattice
dynamics. Elastic constants were measured by Sla-

gle and McKinstry and Sharko and Botaki, cor-
roborating the basic idea that for mixed alkali

halides one may correctly assume a linear change
of the force constants. These are compared with

the calculated elastic constants in Fig. 2 and show

excellent agreement. The infrared phonon spectra
have been measured by Fertel and Perry; the Ra-
man spectra have been measured by Nair and
Walker and also by Fertel and Perry. Ferraro
et a/. measured the high-pressure spectra. Com-

parison of theoretical results with these data fol-
lows. Figures 3(a)—3(g) are the one-phonon spec-
tra for 0.00001, 0.05, 0.25, 0.45, 0.65, 0.95, and

0.999 99 molar fractions.
It is possible to see that the main features corre-

spond to a reststrahlen band that moves nearly
linearly from one end to the other, the acoustic
band, and a low-lying band that fulfills the three

extra degrees of freedom that are due to the third
ion in the pseudo-unit-cell. On the left-hand side
the Raman results from Ref. 25 are superimposed
to the calculated density of states.

Low-lying modes show a narrow band that at
low concentration does not disturb the phonon
spectrum of the host crystal. As the impurity con-



26 LATTICE DYMANICS OF MIXED ALKALI HALIDES. I. . . . 4589

i6, (o)
KCl099999&QQQQot

l2- J

,'X=O.

4.—
(

I
)
)

is. (b)
095 Q05

X X r A L

l2-

8—
rr

0 0.4 O.S 0.8 0.4 0.2 0.W
4 X X r A L

KClQ75 BrQ&5

.-'X=0.2
8 — ('

I

/
/

4
C

i6--(d)

0
r

I I

0.+ 0.8 0.8 0.4
6 X X

KClQ55 BrQI.5

0.2 0.4

l2-—

G(~,.~ ~.) Arbitrary
Unify

0 0.4 0.8 o.s o.~ o.a o.e

FIG. 5. Two-phonon densities of states and dispersion relations of KCl& „Br„. Dashed lines correspond to Raman
scattering results of Ref. 25.



4590 MASSA, MITRA, AND VETELINO 26

(e) KClo3s o6

X

iX=0.69
/

/l

0 0.4 0.8 0. 0.4 0.2 0.4

KC oos B o.gs

V
C:

CF'

a
4.

0 0.4 0.8 0 2 0.4

(g)

K Clooooo~ Bros9999

8 — r-

G (~; ~.) Arbitrary Units 0.4 0.8 0. 0.4 0.2 0.4

F&G. 5. (Continued. )

centration increases, the system becomes a ternary
one that gives rise to an anomalous behavior in the
acoustical modes at the zone center. Moreover, the
longitudinal low-lying mode shows a kink related
to the instability of this mode at certain molar

fractions. Here, once more, one must stress the
fact that the points shown in Fig. 3 are the actual
calculated eigenvalues which implies that for a less
dense mesh (say 30 points} most of these effects
may go unnoticed. This instability can be easily
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made to disappear by increasing the effective ionic
charge or by manipulating some of the force con-
stants. This would involve an ad hoc explicit
parametrization of the model without any clear
physical meaning and without substantiating exper-
imental data. Furthermore, this will not alter the
basic dynamical results. Consequently, it was be-

lieved to be more useful to follow the evolution as
the molar ratio changes. The result is as follows:
The disturbance of the acoustic modes at the I
point indicates that a maximum of instability for
the longitudinal low-lying modes occurs at
x =0.50.

At low temperatures the contribution to specific
heat is predominantly from low-frequency phonons
which belong to the acoustic branches at relatively

long wavelengths. As can be seen in Fig. 3, densi-
ties of states show an anomalous peak at low fre-
quencies whose presence will drastically change the
bahavior of a thermal-expansion measurement. It
is very interesting to note that such an effect has
been measured, e.g., the case of a Li+ impurity in
KC1. The low-lying modes contribute a large
column at zero frequency to the histogram of den-

sity of states causing a distortion of the overall
picture. We have therefore chosen to neglect the

first small incremental step in frequency in the
large peak.

Far-infrared measurements show a band at all
concentrations studied. This implies that Kramer-
Kronig analysis yields one longitudinal-optical
mode and one transverse-optical mode characteris-
tic of the one reststrahlen band. Figure 4 shows
this result together with Refs. 9, 27, and 29. A
possible explanation for the discrepancies is the un-
certainty of the nature of the samples from which
the experimental data have been obtained. Super-
imposed is the prediction of the pseudo-unit-cell
model for I point that shows the right behavior
with very good agreements at some concentrations.

A substantial impurity concentration will disrupt
the translational symmetry and this will allow the
otherwise forbidden first-order Raman peaks to be
detected. Nair and Walker have made an inten-
sive experimental study of samples covering all
~olar ratios. It will be shown here that definitive
conclusions can be drawn when the Raman spectra
are compared with the results of the present calcu-
lation covering all molar ratios. Specimens
analyzed in A &g polarization geometry exhibit two
main bands in the two-phonon region. Figures
5(a) —5(g) are the two-phonon lattice dynamics.
Two-phonon densities of states are shown together
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with the experimental results with nearest concen-
tration ratios. From this is is seen that two-
phonon Raman spectra of the two pure end
members compare very well with the main features
of the calculated two-phonon denstities of states at
the lowest molar concentrations. It may also be

pointed out that the band at about 8 THz can be
assigned to the I.O+I,A combination. The low-
frequency region can be assigned to one-phonon
density of states as also was assumed by Nair and
%alker for low concentrations and this seems to
prevail at any molar ratio. This implies that from
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the Raman scattering data one is able to obtain a
clear reflection of the phonon densities of states at
any molar ratio. The correspondence between cal-
culated and experimental peaks is almost one to
one, particularly in the case of the acoustic bands.

To make these points even clearer, Fig. 6 shows
the excellent agreement between the LO+LA as-
signment and the high-frequency peak, and the
match of the calculated phonons, TO and LO at
the X point with the main features of the one-
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phonon region. These samples were also studied
with the T2z geometry. Once more a strong peak
is observed in the one-phonon region (3—5 THz)
and a broader, but well-defined band at higher fre-
quencies (6—8 THz). The first is associated with
the LA+ TA summation in addition to processes
associated with the combination of low-lying
modes. However, the breakdown of selection rules
imply also contributions from the entire density of
states in addition to single summation processes in-
dicated above that will result in a general broaden-
ing. For comparison we have also shown the
half-width main peak position of the density of
states in Fig. 7. It can also be seen that the band
in the high-frequency side clearly corresponds to a
LO(X) +TO(X) combination with contributions
from 2TO(X) and 2LO(X) processes.

2. EClg ~I„

Figures 8(a) —8(g) and 9(a)—9(g) show the corn
piete lattice dynamics of these mixed crystals, as-
suming that they are miscible. Table II gives the
force constants and parameters used in the calcula
tion. Unfortunately, there is no infrared data, and
only one composition has been studied by Nair and
Walker by Raman scattering. It was observed

that for x =0.04 the acoustical band appears simi-
lar to the case discussed above. This is not
surprising since KC1 is still a well-defined host
crystal for this concentration in which the presence
of iodine ions excites the first-order spectra.

As in the case for KC1& „Br„,Fig. 10 shows the
position of longitudinal- and transverse-optical
modes at the I point. The band due to the low-

lying modes has a behavior similar to that
described before, i.e., it goes to zero frequency as
the concentration decreases, and has the maximum
effect for x =0.5 in the distorted acoustic modes
at the zone center.

3. KBrg „I~

The elastic constants of this solid solution have
been measured by Botaki et al. ' at various con-
centrations. The assumption of linear additivity of
the end-members force constants shown in Fig. 11
indicate, as in the case of KC1~ „Br„,a successful
description of their molar-concentration depen-
dence. KBr~ „I„has been intensively studied in
Ref. 30 using Raman scattering. Figures
12(a)—12(g) and 13(a)—13(g) show the one- and
two-phonon spectra, calculated for all the concen-
tration range, and the measured Raman spectra.
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Figure 14 shows the predicted position of the
infrared-active transverse and longitudinal modes.
To date no infrared studies have been performed.
Force constants and model parameters are shown
in Table III. Experimentally the A&g and T2g sym-
metries have been studied showing similar features

to those of the other two compounds discussed
above. Figure 15 shows explicitly the assignment
given to the higher frequency main band. As Figs.
12(a)—12(c) imply, rather than a single-phonon
pea k this band is more properly represented by a

Thisportion of the one-phonon density of states. is
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is also true for the lower part of the spectra.
Since TO and LO are the main contributors to

the sharp peak at about 3.5 THz their positions
have been plotted in Fig. 15 against the sample size
corrected principal experimental A &g peak. The

same very good agreement is obtained when the
lower frequency part of the spectrum is studied.
Positions of LA(g} and 2TA(g} phonons have also
been plotted against the experimental results. The
reason for explicitly choosing an overtone band is
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it remains detectable even in the pure end com-
pound. Figure 16 also shows the half-width posi-
tion of the main band of the calculated one-phonon
density of states. This is to point out, as in the
case of KCl& Br„, the contribution of the first-
order processes to the lower-frequency part of the
spectra.
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FIG. 14. Transverse- and longitudinal-optiml modes
to KBr& „I„.

to make understood the role that first- and
second-order peaks play in certain regions of the
disordered spectrum. Main features in this region
can always be associated to one-phonon but eventu-

ally the prominence of any band will be given by
its electron-phonon interaction cross section.
Another interesting feature to point out is the val-

ley between peaks shown in Fig. 12 is much deeper
than in the case of KC1~ Br, which indicates the
presence of a gap in the one-phonon densities of
states. A striking feature assigned in Ref. 30 as a
first-order band for x =0.95 becomes understood
when the spectrum is compared with two-phonon
density of states. Figure 13(f) shows that the peak
results from a LA+TA band and a combination of
the low-lying modes with the optical modes. Then,
a perfect match is obtained if the anharmonic tem-
perature shift is taken into account. The low-

intensity broadband in the high-frequency side of
the inset can be seen to correspond correctly to the
combination bands of the two-phonon density of
states. The spectrum of T2g symmetry shows a
feature that apparently is the superposition of at
least two main structures associated with the
acoustic bands and the low-lying modes. Figure 16
shows the experimental points against LA+TA, at
the I. and 7 symmetry points, as functions of the
molar ratio. This is related to the strong peak ob-
served with 3 ~g symmetry and it is consistent,
since it is a second-order feature, with the fact that

The lattice dynamics of one-mode-behavior
mixed alkali-halide crystals with negative-ion sub-

stitution has been discussed under a pseudo-unit-
cell approach. This technique simulates a topolog-
ical average with regard to the locations of ions in

lattice. A repetitive unit for AB& C„compound
is a cell consisting of 3 ions at their normal lattice
site and with nearest neighbors consisting of a
fractional amount of 8 and C proportional to their
mixing molar ratio. The basic lattice-dynamics
model employed is the breathing-shell model in
which positive ions are assumed to consist of hard
cores only, while negative ions consist of hard
cores and deformable shells. The model parame-
ters were deduced from physical observables of the
end systems. Short- and long-range coupling coef-
ficients were weighted by molar fraction factors
that depend on the concentration of the appropri-
ate interacting ions.

One- and two-phonon dispersion relations and

density of states have been calculated for
KC1& Br,KC1& I,KBr& I . One may infer
that the common denominator for one-mode mixed
crystal with negative substitution corresponds to
the appearance of a low-frequency band perturbing
the acoustical modes at the zone center. It would

behave as a kind of impurity "soft mode" and it
goes to zero frequency when the impurity is re-

duced to minimum levels. Optical and acoustical
bands have an overall very good agreement with

what was observed experimentally. This implies a
strong support for the proposed model since exper-
imental peaks of the Raman spectra of the distort-
ed system are always associated with higher sym-

.metry points. Thus a logical conclusion that a
pseudo-Brillouin-zone still exists, regardless of the
molar ratio. This will have the crystalline symme-

try points but with relaxed selection rules associat-
ed with them, further supporting the concept of a
three-dimensional pseudo-unit-cell, and by exten-
sion, the pseudo-Brillouin-zone in the reciprocal
space.

The authors want to point out that they are will-
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ing to provide upon request the calculated eigen-
values of the dispersion curves and the correspond-
ing density of states from the on-line computer
output for any molar concentration and mixed

crystal presented in this paper.
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