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Piezoelectric and pyroelectric coefficients for ferroelectric crystals with polarizable molecules
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Expressions for piezoelectric and pyroelectric coefficients for a crystal of polarizable

point dipoles are derived. The effect of crystal structure on the local electric field acting to
polarize the molecules is included via the Lorentz-factor formalism. The derived expres-

sions for the piezo- and pyroelectric coefficients are found to contain terms dependent on

derivatives of the Lorentz factors. These terms reflect the changing of molecular dipole

moments in response to the changing local electric field in the strained crystal. Inclusion of
this effect results in predictions of coefficients substantially different from those obtained

using the Lorentz field approximation.

I. INTRODUCTION

The internal electric field acting on a molecule in
a crystal of dipoles depends on the crystal struc-
ture' and changes when the crystal is strained. '
If the molecular dipoles are polarizable, the polari-
zation of the crystal will depend on the internal
field and therefore on the crystal structure. Fur-
thermore, changes of the internal field due to small
deformations of the crystal such as those expected
in piezoelectric and pyroelectric response measure-

ments will contribute to the measured changes in

sample polarization.
In this paper expressions for device-measured

piezoelectric and pyroelectric coefficients are
developed for a model system which is a single crys-
tal composed of polarizable point dipoles with per-
manent electric dipole moments. The effect of crys-
tal structure on the electric fields acting to polarize
the dipoles is included by revising the Clausius-
Mossotti relation according to the Lorentz tensor
formalism. ' The revised relation is then employed
to obtain an expression relating sample polarization
to the permanent dipole moments and the crystal
geometry. This, in effect, revises the "enhance-
ment" factor of (tc+2)/3 familiar from classical
theory. Appropriate derivatives of sample polariza-
tion are taken to obtain expressions for piezoelectric
and pyroelectric coefficients.

orthorhombic lattice and in the shape of a thin slab.
The faces of the slab are presumed oriented along
the lattice directions, as illustrated in Fig. 1. The
molecules at the lattice sites are treated as point di-

poles with permanent moments po in the z direc-

tion, and with polarizability o.. Sample dimensions

are X, Y,Z in the three coordinate directions. Lat-
tice constants are taken to be c,a, b in x,y, z, respec-
tively. The sample is presumed to have electrodes

applied to its large-area faces so that the applied
field is in z.

The electric field acting on a molecule in the lat-

tice can be written'

E) ——E,d+L.P,
where E,d is the macroscopic electric field in the
medium, P is the polarization, and L is the Lorentz
tensor which depends on the lattice geometry. For
the case of general orthorhombic lattices (including
body- and base-centered), 1. is diagonal. With the

geometry specified in Fig. 1, the vector notation
may be suppressed, because P and E,d are in the z

II. MODEL SYSTEM

The system to be considered is a uniformly polar-

ized single crystal of dielectric constant a with an

ICI I

I I I

FIG. 1. Model system geometry: macroscopic and mi-

croscopic views.
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direction. If the lattice is cubic, each of the three
diagonal elements of L is equal to —,, and Eq. (1)
gives the well-known Lorentz field.

Now, the dipole moment p of a molecule in the
lattice is given by

I =Pp++Eloc ~

and if n is the number of dipoles per unit volume,
the polarization of the sample is

LPP =Pp+nczE] =Pp+ na E g+
Ep

(3)

where P=np and Pp ——npp. In previous work, ' a
relationship between a and the dielectric constant ~
was found for the case in which po

——0. This rela-

tion,

A relation among P, E,z, and tc can be obtained
by differentiation of Eq. (7) and substitution into
Eq. (Sa), using Eqs. (5b) and (6). However, the sim-
ple expression required to give Eq. (4) can only be
obtained if this is done with 2 and Z held fixed.
Thus, the dielectric constant appearing in the rela-
tion must be the high-frequency (electronic or
clamped) one. With A and Z fixed, one finds

=co(a —1) .
~Em.g

A second expression for BP/BE,& may be found
by differentiating Eq. (3). If A and Z are fixed, so
are L and n, whence

BP nn

BE,q (1—naL /eo )

eo(a —1)

[1+L(~ 1)]— (4) Equating the expressions for BP/BE, z in (8) and
(9) returns Eq. (4), i.e.,

was then inserted into the equivalent of Eq. (3) to
relate P and Pp for zero macroscopic field

(E,q
——0). It is useful to rederive Eq. (4) for the

present case because it serves to clarify the assump-
tions and to identify a as the high-frequency (elec-
tronic) dielectric constant, which is often referred to
as the clamped dielectric coristant in discussions of
piezoelectricity.

To do this, consider the way in which the dielec-

tric constant is determined experimentally, by plac-
ing a sample between electrodes and measuring the
capacitance as the voltage V on the plates varies
near E,&

——0. That is, one measures

eo(a —1)

[1+L (Ir —1)]

Substitution of this into Eq. (3), and setting
E,q ——0 (for example, by shorting the electrodes)
returns

P = [ 1 +L (K—1 ) ]npp = [ 1 +L (K—1 ) ]NpoA

(10)

where N is the number of dipoles in the sample and
II is its volume (Q=XYZ). The total dipole mo-
ment H of the sample is then

dQ'
dv ..='

V
mes= Z

(sa)

(5b)

H =QP = [1 +L ( K 1' ) ]Np p—

III. PIEZOELECTRIC COEFFICIENTS

(6)

with 3 =XX the sample area. The electric displace-
ment is given by

with Q the charge on the electrodes and Z the
thickness of the sample. For the configuration of
Fig. 1, the capacitance is just

ep aAC=
Z

The device-measured piezoelectric coefficients d3;
of the system in Fig. 1 are given by

Qg.gl T Vg~(+') 0

(12)

so

—=op E,g+P,

Q=epAE, g+AP . (7)

where R; =X,Y,Z for i =1,2, 3, respectively, and g;
are the device-measured forces in the x,y,z (1,2,3,
respectively) directions. The g; can be related to ef-
fective stresses o.; by defining cross-sectional areas
A; from A; =Q(R;) '. In this case o; =g;(A;)
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The subscripts on the derivatives in Eq. (12) indi-
cate that temperature (T) and voltage (V) are held
constant, and force is applied in only one direction.

The sample dipole moment H is given by Eq.
(11). If we assume that N and po are fixed, the
derivative of P in Eq. (12) becomes

T

()ggi T, Vg(~ )
——0

= (a —1)Npp
aL
Bg

J
gl' T& V~g'(~ )

—0
r

BK
+LNp p

gi T, V,g (~,(
——0

(13)

Equation (4) provides a relation between i( and L
which may be written

Aeo(ir 1)=—Na[1+L (a —1)] .

Differentiation with respect to g;, with N and a
fixed and rearrangement, yields

—(a. —1)[1+L(ir —1)]

BlnQ
X (14)

Evaluation of the derivative of L proceeds by ob-
serving that L depends only on the lattice geometry
so that, with temperature and voltage fixed, and

gj (Qi) 0, then L can depend on g; only through
changes in the lattice geometry resulting from g;.
Thus'

Qg.gi T& V&g (~ )=0

aL Blna BL Blnb+
ulna s, y Bg; g Blnb, , y Bg;

r

BL Blnc+ Bine, s -p Bg; ab, - TVg =0
(15)

where f =(x/c, y la, zlb), the position in the unit cell normalized to cell dimensions, ' and where use has been
made of the fact that the number of unit cells remains constant, i.e., the change in sample volume is due to
changes in unit-cell dimensions. Thus

al~
~gi ~z

Olney

Bg.

Blnc

ulna

,b7

Blnb

These logarithmic derivatives of the sample or lattice dimensions with respect to the force components can be

related to elastic compliances s;j The latter are defined from

alnRj
80. =sji

T, V, 0 (~;)——0

with o; the stress components, which are related to the g; by o; =g;(A;) '. Near g; =0,

T, V, g =0
so that

BlnRj
T V-=O

R;
0

R;
Sji e0

Thus, Eq. (15) can be written as follows:
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BL R;
Syl' +

Bg T, v, =0 0 ()lna
b

BL s„+
Blnb

BL
alnc T~ V~ g (@~)

=0
(16)

The remaining differentials to be evaluated are simply various elastic compliances,

Olney, R;
ng/' T V g'(@')=0

Ri

0 SZl ~

T& V~ g (~ .
)
=0

(17a)

(17b)

Equations (14), (16), and (17a) may now be substituted into Eq. (13) to obtain for the derivative of the sample

dipole moment,

Qg.gi T, Vg(@)——0

BL 9L 3L
(a —1) syi + Szi + SXl

L L

—L (» —1)(s„;+sy,+s„) (18)

Then, with Eq. (17b), the expressions for the piezoelectric coefficients [Eq. (12)] become

d 3;
——P ~ (a.—1)

BL BL BL
yl+ '

gl 6 zl+
gl

xl zl

where P is the sample polarization, and the subscripts on the derivatives have been suppressed for notational

simplicity.
A similar expression for the hydrostatic piezoelectric coefficient of the model system can be obtained by ei-

ther of two approaches. One is to observe that

d» ——gd„,

and to add the three coefficients. The other is to write

dlnz

r, v
(20)

with/t the hydrostatic pressure, which is the negative of the stress in each direction, i.e., o„=a~=cr, = —p
for the hydrostatic case. Evaluation of Eq. (20) leads to

d» =P (I~—1) LPy+ —LP, y —LP, —P, —aL BL BL
Gina y Blnb

' dlnc
(21)

where the P; are coefficients of linear compressibility for zero applied field, defined by

BlnR;

8/k R (~) T, v

and the fact that [(ulna)/(Bp)]», &
——[(Olney)/(Bp)]xz etc. has been used. Evidently P„+P~+P,=P, the

volume compressibility of the crystal. The P; are related to the elastic compliances by

p;= sj.
J
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IV. PYROELECTRIC COEFFICIENT

The device-measured pyroelectric coefficient II is defined from

II =n-'
BT ~v 0

BlnZ
(22)

The temperature derivative of H can be evaluated in the same manner as were the force and pressure deriva-
tives to obtain

g, V=O

BL BL BL
((r —1) ay+ &z+ u&Bin(i &, y ()lnb &, 7

'
()inc

—L ((r —1)(a„+ay+a ) (23)

where a; are coefficients of linear thermal expansion at zero field, defined by

=QI
BT R (~.(, v=o

This yields for II,

II =P(z —1)- BL BL BLLai, + —
&I b

La + —
&I

La„——a, (24)

V. DISCUSSION

The essentially new terms in the expressions in
Eqs. (19), (21), and (24) for the piezoelectric and py-
roelectric coefficients are those involving the
derivatives of the Lorentz factor. Physically, these
terms arise because, when the lattice is strained, the
internal electric field changes. This change in field
causes a change in the molecular dipole moments
which results in a change in the polarization, be-

cause the molecules are polarizable. These terms
should contribute to changes in P even for cubic lat-
tices, because the derivatives of the Lorentz factors
are nonzero for such lattices.

If the material is highly isotropic the terms con-
taining the derivatives of the Lorentz factors will
sum to zero in consequence of a sum rule for the
derivatives. ' This will occur in the case of the py-
roelectric coefficient II if thermal expansion is iso-
tropic, i.e., if a„=a„=u„and in the case of the
hydrostatic piezoelectric coefficient dp, if
p„=p~ =p, . It will not occur for the piezoelectric
coefficients for uniaxial stress, d 3;, unless

s„;=s~; =s„,which seems most unlikely, as this im-
plies a material which expands uniformly under
uniaxial stress. Normally, one expects materials to
expand in the stress direction and contract in the
two perpendicular directions. Only in rare cir-
cumstances will the Poisson ratios be negative, and

even then are unlikely to be such as to cause com-
plete cancellation.

The influence of the new terms on predicted
piezoelectric reponse can be examined by comparing
the coefficients computed using (19) and (21) with
those which would have been obtained using the
Lorentz field approximation, i.e., with L = —, and
dL =0, for specific assumptions on the s;J. Consid-
er the case of a crystal for which s, , s~„, and s are
positive and s,J ——0 for i' If the. crystal is
mechanicaly isotropic, i.e., if s =s~„=s, and cu-
bic, Eq. (21) for ds will give the same result as the
Lorentz field calculation because the derivative
terms will sum to zero.

For the general crystal having s;J =0 for i', Eq.
(19) yields

BL
d3( P(a. 1)s —— L- —

Blnc

aL
d 32 P(a. 1)s—— ——L

Gina
(25a)

BL
d» Ps~ (a.—1) ——L —1—

Blnb

where, in the subscripts on d, the indices 1,2,3 are
associated with x,y,z, respectively, which is the usu-
al way of describing the piezoelectric coefficients.
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Throughout this section the vector quantities have
been assumed to have nonzero components only in
the z (or 3) direction, which is associated with lat-
tice spacing b T.herefore the I. appearing in all the
equations is Lb. Then, if the lattice structure is
simple orthorhombic, it can be shown that'

d» P——(a —1)

BLb —Lb) 0,
Mnc

BLb —Lb) 0,
ulna which becomes, for the simple cubic lattice,

(26a)

BLb
df =pcI (ic —1)[(0.505 —0.333)(p~+Py )

so that Eq. (25a) implies dpi and ds2 are positive
and d33 is negative for such lattices for any choice
of a,b, c. This will not necessarily be true for more
complex lattices, e.g., body- or base-centered
orthorhombic. If the lattice is simple cubic, we
have'

BL BLb =0.505
Blue Gina

and BLb/Blnb= —1.01, so Eq. (25a) becomes, for
this case,

dz, Pc(a 1)s»——(0.505——0.333)&0,

—(1.01+0.333)P,]—P, j, (26b)

which may be either positive or negative depending
on the relative magnitudes of the I3; and the value
of ~. In the special case of isotropic compression,
i.e., for P„=P» =P, =Pa, one finds

dg = P13p[31 (K——1)+1]

from which dI, '= P lrPO for—the isotropic cubic
case. The Lorentz field calculation would have
given

ds2 P(~ 1)s„»——(0.505 ——0.333) &0, (25b)
dP = P3— (P„+P»+P,)+P,

(26c)

33 szg[ (& —1)(1.01+0.333)+1](0

tF c (K —1)
d32 ———P s~ &0, (25c)

dLF pc (&+2)
()33 =

3

where the superscript C on P in Eqs. (25b) and (25c)
indicates that L= —, is used in relating P to Po.
Note that all three coefficients are negative in the
Lorentz field (LF) case, whereas only d33 is negative
in Eq. (25b). Thus, even if s» =s»» =s~, the predic-
tions for the two theories would be different.

For the case under consideration, (i.e., s;1 =0,
i'), P, =s;; and Eq. (21) yields for the hydrostatic
piezoelectric coefficient,

The predicted values of the coefficients which
would have been obtained using L = —,, dL =0 are

t.F c (ir —1)= —P s~ (0,

which is always negative. For the isotropic case
this gives ds""'— P lrl3, so that—in this very special
case the predictions of the two theories coincide.

In a similar fashion the pyroelectric coefficient
calculated by the present method reduces to that
found using the Lorentz field approximation only in
the special case of a thermally isotropic cubic crys-
tal. This is not surprising, given the assumption in-
herent in the Lorentz field approximation, but is
notable because it points out the implications of
these assumptions.

VI. CONCLUSION

Inclusion of the dependence of the internal elec-
tric field on crystal structure in computing
piezoelectric and pyroelectric coefficients for the
model crystal system has resulted in the appearance
of new terms in the expressions for the coefficients.
These reflect the changing of molecular dipole mo-
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ments in response to the changing internal field in
the strained crystal. They appear because the point
dipoles representing the molecules are polarizable as
well as having permanent moments. Comparison of
present results to those obtained using the Lorentz
field approximation indicates that the predictions of
the two models will be very different in general,
even for cubic crystals.

While the accuracy of modeling real molecules as

point dipoles may be questioned, the importance of
including the influence of the fields due to neigh-

boring molecules on each other is brought out clear-
ly in the calculation. Evidently it is an important
effect to include in modeling piezoelectric and py-
roelectric response.
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