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The relationship between dipole-field sums and Lorentz tensor components in single
crystals is described and used to develop a method for computing the tensor components
via rapidly convergent sums of Bessel functions. The method is used to compute Lorentz
factors for simple, body-centered, and base-centered orthorhombic lattices and derivatives
Lorentz factors for simple orthorhombic lattices. Both the Lorentz factors and their
derivatives are found to be very sensitive to lattice structure. The Lorentz-factor formalism
is used to derive the equivalent of the Clausius-Mossotti relation for general orthorhombic
lattices and to relate permanent molecular dipole moment to crystal polarization for the
case of a ferroelectric of polarizable point dipoles. It is found that the polarization
“enhancement” due to self-polarization familiar from classical theory may actually be a
reduction (i.e., P <Py) in consequence of negative Lorentz factors in one or two lattice
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directions for noncubic crystals.

I. INTRODUCTION

This paper considers the dependence of the inter-
nal electric field in a single crystal on crystal struc-
ture and changes in the field under small deforma-
tions. The crystal is assumed to be orthorhombic
and either homogeneously polarized or resolvable
into two or more homogeneously polarized sublat-
tices. Of particular interest is the field at a lattice
site, which is the internal field acting to polarize a
molecule in the crystal.

The formalism chosen is that of depolarization
and Lorentz tensors, which has been described by
Colpa.! Herein, advantage is taken of the fact that
the depolarization tensor is known for certain mac-
roscopic shapes and since the Lorentz tensor de-
pends only on crystal structure and observation
point within the unit cell, its components can be ex-
pressed as dipole sums. These dipole sums are then
transformed into rapidly convergent sums of Bessel
functions. The method has the advantage of pro-
viding explicit expressions for the Lorentz tensor
components which display the tensor’s symmetries
clearly.
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II. DIPOLE SUMS AND LORENTZ FACTORS

A. Formalism and method

The electric field Edip( T) at a point (T) inside a
crystal, each of whose lattice sites is occupied by an
electric point dipole of moment P, is just the sum of
the fields _at T due to each dipole in the sample.
The field Ed,p(r) is linearly related to the polariza-
tion P of the crystal, P—np with n the number of
dipoles per unit volume, through the symmetric di-
pole sum tensor' C:

— N ay ~ _, =
Egip(T)=—0C(P)P, (1)
€

where ag=4m for Gaussian units and ay=1 for ra-
tionalized meter-kilogram-second (mks) units, €y=1
for Gaussian units, and €,=28.85x 107! faradm ™'
in rationalized mks units. The components of C are
given by

1

— |, )
=

Ckl :-(4")Tn)_l 2” a;d
?l

where 3}, is a second derivative operator on T’ with
respect to Cartesian components k and /, and the
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double prime on the summation indicates that the
sum extends over all positions T’ of dipoles inside
the crystal, omitting terms for which r'=¥.

Evidently, C depends on both the microscopic
parameters, i.e., the crystal structure, and the mac-
roscopic ones, i.e., the shape. The essence of the
formalism of depolarization and Lorentz tensors is
the decomposition of C into a linear sum of two
tensors, denoted D and L. The depolarization ten-
sor D depends only on the macroscopic parameters
and the location of T in the crystal, while the
Lorentz tensor L depends only on the microscopic
parameters and the position of T in the unit cell. In
terms of the depolarization and Lorentz tensor
components, the components of the dipole sum ten-
sor are expressed as’

Ci(¥)=Lyy(F)—Dyy(F) . (3)

The choice of D to represent the depolarization
tensor follows the notation of Colpa.! However, it
is sometimes denoted by N or N /4x in the litera-
ture. The principal values of D are known as the
depolarization factors, and those of L as the
Lorentz factors. The following sum rules apply:

Cux(T)+C, () +Cr(1)=0
D (V) 4Dy, (T)+Dy(T) =1, @)
Ly (T)+ Ly, (1) +L,(T)=1,

from Ref. 1, Refs. 1—3, and Refs. 1 and 8, respec-
tively.

It is well known that if the crystal is taken to be
ellipsoidal, with its principal axes along £, §, and 2,
the depolarization tensor is diagonal and indepen-
dent of position. This is equivalent to the statement
that a uniformly polarized ellipsoid produces a uni-
form depolarizing field. Depolarization factors for
ellipsoids have been tabulated by Stoner? and by Os-
born.’ In the calculation of Lorentz tensor com-
ponents, the fact that one or two of the depolariza-
tion factors are zero for the limiting “needle” and
“coin” shaped ellipsoids of revolution is used.

The Lorentz tensor components are independent
of the overall crystal shape and the direction of po-

3(x —jc)?

=l

X

FIG. 1. Orthorhombic unit-cell coordinates and lat-
tice spacings, with field observation point indicated.

larization'; they depend only on the relative lattice
spacings and the location of T in the unit cell. Thus
it is possible to consider a different crystal shape,
orientation, and polarization direction for each
combination of (k,/) in Eq. (3). With appropriate
choices of these macroscopic parameters, Dy; can be
made equal to zero for any given (k,/). Then the
Lorentz tensor component can be calculated directly
from the appropriate dipole sum. Because ap-
propriate shapes for setting Dy, =0 involve letting
one or two of the crystal dimensions become ma-
croscopically small (although they must remain mi-
croscopically large), it is necessary to transform the
slowly convergent dipole sums into ones which con-
verge rapidly.

The method is most easily illustrated by example.
The coordinate system chosen is illustrated in Fig.
1. The origin is at a lattice site of a simple
orthorhombic lattice with lattice spacings c,a,b in
X,9,%, respectively. The observation point is
r=(x,,z). To calculate the Lorentz factor L,,
(=L,.), one imagines a needle-shaped crystal with
its long axis and polarization both in the £ direc-
tion. The point dipoles are located at
r'=(jcX +kay +1b%). Because of the needle shape,
the index j ranges from minus to plus infinity while
k and [ have finite range, but are at least several
tens. The lattice has been stipulated to be simple, so
there is only one dipole per unit cell and
n =(abc)~!. The depolarization factor D, equals
zero for this needle-shaped crystal, so

L.n=%%s 3

4 klj=—o

[(x —je)+(p —ka)*+(z —1b)*]>"?

— [(x —je?+(y —ka)?+(z —bY*] 372 | . 5)
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Analogous expressions for the other two Lorentz factors are obtained by imagining needle-shaped crystals
with long axes and polarization along § and 2.

Because the off-diagonal elements of D are zero for any ellipsoid, the choice of shape for calculation of off-
diagonal Lorentz tensor components is not critical. The symmetry of L is most clearly seen by choosing a
disc shape or “coin.” For example, to compute L,, (=L,), a disc lying in the x-y plane may be imagined.
Then

. be © 3(x —]C)(y —ka)
i _abe ‘ (6)
ca(T) 41 ;j,kg [(x —je+(y —ka)+(z — by

—

Here the sum on !/ is finite so that a rapidly converging equivalent to the j and k sum is needed. The symme-
try of the Lorentz tensor is evident from Eq. (6); clearly L., =L,.. Expressions for L, and L,, are derived
similarly.

Transformation of the dipole sums in Egs. (5) and (6) into rapidly convergent sums is carried out in the next
section. Before proceeding, however, it is useful to make a few observations. First, although the Lorentz ten-
sor components have been evaluated by imagining particular crystal shapes, they are particular only to the lat-
tice structure and observation point within the unit cell, and are thus quite generally applicable. Second,
Lorentz tensor components for more complex lattice structures can be found by superposition. For example,
at a lattice site of a body-centered (bc) orthorhombic lattice,

L= [L$(0,0,0)+Lic/2,a/2,b/2)],
where the (s) superscript indicates the simple orthorhombic lattice, and lattice spacings c,a,b in X,7,Z, re-

spectively, have been assumed. The factor of —;— arises because there are now two dipoles per unit cell. It will
turn out for this case that the Lorentz tensor is diagonal.

B. Transformation of sums

To obtain useful expressions for the Lorentz tensor components, rapidly convergent equivalents to the di-
pole sums in Egs. (5) and (6) are needed. The method chosen is similar to those of Van der Hoff and Benson*
and of Tripathy et al.’ and proceeds by evaluation of three generalized sums for # > 0. These are

Flpsa= 2 [p*+(s —md?] "2, (7a)
m
(s —md)?
S(n) = , (7b)
(p,s,d) % [p2+(s _md)z]—n/z v
(s —md)(s'—m'd’)
s , (Tc)
(p,s,s',d,d’) m,zm' [p2+(s_md)2+(s;_m/dr)2]—n/2
where 0 <s <d, 0<s'<d’, and the indices m and m' take on all integer values (0,+1,4+2,...).
Evaluation of each sum proceeds by use of a representation of the gamma function,®
D)=y [~ 1*~le~Mdt (Rez>0, Rep>0), (8)
the Poisson summation formula,
Srm=3 [ ¥ f(xdx ©
m h -
and an integral representation’ of the modified Bessel function of the second kind of order v,
1 v/2
K,(2VBy)= 5 % fo t¥~le—B/V=71g4: (ReB>0, Rey>0). (10)

Let us first consider the general case in which p >0, and return later to consider the p=0 case.
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1. Evaluation of '™
By use of Eq. (8), '™ may be cast into the form
f%:,)s,d)= —l fow t[(n/2)—1]e —pzt 2 e—-(s —md)ztdt . (1 1)
r|t "
2

The sum in large parentheses is evaluated by use of Eq. (9):

2 © . 2
ze—(s—md) t_ 2 fo e 2mihxp —(s —xd)t g,
m h

_2 g 2 N ominssd [° -y | 2THY.
_dfoe”dy+dhe’" foeycos 4 dy
_—__.‘;’—T 124 ‘;7_7’ zle2m'hs/dt—l/2e—1rzh2/d2t’

h

where the prime on the summation sign indicates that the term with 2=0 is excluded. Substitution back into
Eq. (11) yields

L ®
y;;,)s,d)= = fo t(n*B)/ze—ptht
n
dT |—
2
v _YT s e21rihs/df°°t(n—3)/2exp ok szilz dr .
dr n h 0 d t
2

The first integral in this expression is just T[(n —1)/2])p~*~V for n > 1, while the second has the form
given in Eq. (10). Thus, forn > 1,

n/2
Val(n —1)/2 29/? ) 2mihs h 2| h
fﬁ;,)s,d)— Lin ]'*‘ > etk od } Kin—nn ﬂ-d } (12)
dr |2 |pn-! I
2 P i

2. Evaluation of S'™
Evaluation of § proceeds similarly as follows:
gm 1 f‘” /=1, —p
(p,s,d) 0
r

S (s —md)?e~' —md)’t ]a’t .

m

n
2
Now

—(s —md)? © L
z (s —md)2e —ts—mdr’t_ 2 f (s —xd)2e2mihxg —(s —xd)’t g,
m h —®

dy

m2h?
odr |

_2 f e _y'-’tdy_*_%z'e}n'ihs/d 9
h

© 2
f e Ycos
0

(=32 2T *h* PR
d2

2mhy
d

=__‘ —3/2 2 2mrihs /d

2d - exXp
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whence

2 7Tzh2

— %t —
P d’t

3

(n)
S(p,s,d) =

2dT

dt

© 2 . 0
[fo t(n=5)/2,—p tdt+2re2mhs/d fo t(n—S)/zexp
h

(SR

]
(n—=7)/2
+ fo t exp

22
2 T°h
—pt— dt
p d ]

i

The integrals can be done as before to yield, for n > 3,

(n—3)/2
" Vall(n=3)/2]1 21 o, o h 27|k |p
Sipsd) = [ ] + 3 ermihsrd od Kn_32 4
n n—3 n h
— F -
2dT > P d >
h (n—1)/2 ) n
I B
— 2mp? ] Kin—s172 ] ] .
pd d
(13)
3. Evaluation of 2 ("’(p,s,s',d,d')
S0 s dd) = fow t(”/Z)"le_”z'[ > (s—md)(s'—m'd")
n m,m’
I" —
2
X exp [—(s —md)’t lexp [—(s'"—m'd’)’t] |dt . (14)

In this form the double sum can be separated into two single sums which can be evaluated separately:

—(s—md)2t; .+ (s —m'd")? (s —md)2 )2
2 (s —md)e (s —md) t(S —m'd')e (s md)tzz(s_md)e (s —md) tz(sr__m:dr)e_(s —md)t.
m m’

m,m’

Now,

_ _ 2. 0 . _ _ 2
> (s —md)e ~c—mI= 3 f e2mhx(s —xd)e ~'s T gx
m BT

_lSias|_9 © L —ylu—dp
_dzhe l ak]f_we dy ,

where A=(2mih)/d. The integral is just (7/¢)!/%exp(A?/4t), so the sum on m becomes

s —md)e—s—md_ _ﬁ z;eum—s/zeﬂm
m 2d 4

:3/2
__ T ZIeZﬂihs/dht—3/Ze —mh2/d%

2
da® %
277.3/2

o
=5 t =3 2psin
A=t

21rhs

2,42
e—-‘lrzh ZES
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The sum over m’ is identical, and the double sum is just the product, i.e.,

2 (s —md)(s'—m'd")exp[ —(s —md)t—(s'—m'd" 4]

m,m'
2
a7 & _3,,.. |2mwhs 2mh's’ 7 || h h'
= t ™ hh'sin expi—— | |5 | + | .
(dd’)* ,,,,,221 d d l pl t d d
Substitution of this expression into Eq. (14) and integration over ¢ yields
(n—6)/2
(n) 8 T
2(0,5,5',d,d") = P
n
T | = |[(dd')?
> (dd")
< .| 2whs 2wh's’
X ¥, hh'sin -
hh'=1 d d
2 27(n—6)/2 2 21172
h h' h h’'
X "7 + d, J ] K(n-—6)/2 27Tp E‘ + 7 ] ] . (15)
T
The sums in Egs. (12), (13), and (15) will con- S S d |~ =2
verge rapidly because of the presence of the Bessel 0.0.d) % | |
functions. The leading terms (with #=0) in the ex- 20~y _2) (16b)

pressions for #™ and S do not converge rapidly
for small n as p increases, but these will be seen to
cancel conveniently when the sums are used to
evaluate the Lorentz factors.

4. Special cases: p=0

In transforming the sums in Eq. (7) into the ex-
pressions in Egs. (12), (13), and (15), p was assumed
greater than zero. However, the terms with p=0
will be needed to evaluate the Lorentz tensor com-
ponents. For #™ and S there are two possibili-
ties if p=0: either s=0 or s£0. For =" there are
also two distinct possibilities if p=0: Either s
and/or s’ equals zero, or neither s nor s’ equals
zero. These four cases are considered separately in
the following.

(@) Case 1: p=0, s=0. In this case the m=0
term must be excluded from each of the sums .#"
and S™. In the context of the dipole model, this is
equivalent to excluding the dipole at the observation
point. Because p=0 this case is equivalent to sum-
ming along an infinite chain of dipoles. Thus,

FGoa=3"|md|~"
m

=2d~"{(n) , (16a)

where {(n) is the Riemann zeta function of n.

(b) Case 2: p=0, s5£0. For this case the m=0
term in each sum is retained (the observation point
is not a lattice site). We have

L= |s—md| "
m

—hn
=d "y m+
m=0 d
+ |m+ l—iH }
d
(17a)
yéﬁ,)s,d)zd—n g!n’i +§ n,l_% J’
SiEaa=d ="V £ In-2,~
N
+4 n-—2,1—; }, (17b)

with {(n,s /d) the generalized Riemann zeta func-
tion. Note that, since {(n,1)=¢(n), cases 1 and 2
may be combined if {(»n,0) is interpreted as £(n) by
stipulating that the m=0 term is excluded from the
sum if s=0.

(c) Case 3: p=0, s and/or s'=0. Inspection of
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Egs. (7c) and (15) indicates that 2=0 if one or whether or not p=0. If neither s nor s’ is equal to

both of s and s’ is zero, whether or not p=0, pro- either 0 or %, the evident symmetry in Eq. (15)

vided that the term m =m'=0 is excluded from the must be sacrificed in order to obtain a rapidly con-

sum if s =s'=0. This will mean that the Lorentz verging expression, i.e., only one of the indices may

tensor at a lattice site is diagonal. be summed over. Thus, for p=0, and neither s nor
(d) Case 4: p=0, s540, s'#0. Equation (15) im- s’ is equal to zero

plies that =W =0 if s and/or s’ is equal to %,
J

2§3,)s,s’,d,d’)= ——l_— 2 (s"—m'd’") fow t("/z)—le—(-"_m,d,ﬂt lz (s —md)e_(S—md)zt }dt
n m' -
rl
2
2 < o 272
=—4i——2(s'—m'd’) E hsin 27ThS f t(n__s)/zexp __(s'_mldl)lt_ Tril dt
dZF l m'’ h=1 d 0 dt
2
-3)72
47372 , ) N omhs -h (n—3) 2k |5 i
=——2(s —m'd )hE h sin 7 Al —md| Ko_sp2 T - .
der |2 |- =1
2
This may be rewritten as
4372 (n—3)/2
DATIA dd)—-—L—(d (—n— 3)/2( zhsm 2mhs | | wh
d d
dr | =
2
—(n—-5)/2 orhd
) , - , s’
= K, _ okl d PP I
szol m+d, (n 3)/2| P m+d,H

, |(n=5)72 2rhd’ ,
’ N T ’ S
m+1—;,7] K(n—-3)/2{ d lm +l——?]]]}

5. Dipole sums

The dipole sums required to evaluate the Lorentz tensor components are special cases of the generalized
sums considered above. Reference to Egs. (5) and (6) indicates that the required sums are .#*, $©*), and =%

Equations (12), (16a), and (17a) give for .#%,

+£(3,1-2

N
3, A==
’ d

_3§ y

where 8, o is the Kronecker delta function and the stipulation is made that £(3,0) is to be interpreted as £(3).
Slmllarly, Egs. (13), (16b), and (17b) give S*)-as follows:

J%L ‘Kl zﬂdLLa] , (192

(3) _ v ,2mihs/d
L os,d)=4d 85,0 d 2 + 2

(5) s s 2
S(p,s,d) [ *d +§ 13’1_ d 8p,0+ 3dP2
L AT 0 ominssa | L0 ] rlhlp | _, | 2m|hlp (19b)
R pd | a N ’
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with the same stipulation on the meaning of £(3,0).
Two different expressions for =’ must be given. The more general one, which can be used in all cases ex-
cept special case 4 above, is obtained from Eq. (15) as follows:

327 & i | 2mh 2mh's’
Ef,s,,)s,s',d,d’)z a7 pl/zh hZ_o hh'sin 7; N ”d,s ]
, 2 y 21—1/4 h 2 B 212

where the fact that K_,(z)=K,(z) has been used. For the special case in which p=0 and neither s nor s’
equals zero, Eq. (18) gives

0

1672 ).
Sossdd) = [h
5, 3d3 “

21rhs

2mhd’ , s
p ‘m +d'

m’+1—;—,,HH. (20b)

C. Lorentz tensor components

P

Obtaining expressions for the Lorentz tensor components is now a simple matter of associating the argu-
ments of the dipole sums with the appropriate arguments of a desired tensor component. For example, Eq. (5)
indicates that, to obtain the Lorentz factor L., the infinite sum is over the index j, which is associated with
lattice spacing ¢ and observation point coordinate x. Comparison of Egs. (5) and (7) then allows L. to be
written

abc () (3)
Lcc(C,a,b,X,y,Z)= 4r ~ (3S(Pabrx c) f (pgpsx:€) ) ’

with pg, =[(y —ka)*+(z —1b)*]~'/2. Here the full functional dependence of L, has been indicated explicitly,
to emphasize that the Lorentz factors depend on both the lattice spacings and the observation point coordi-
nates. With Egs. (19a) and (19b), the expression for L. becomes

S

2720
2
€ ki

Z”Ih |pab

Lo.(c,a,b,x,,2)= ¢l3,% 8, , (la)

ab
pel +6

x e
3,1__ 2/e2mhx/ch2K0
c
h

la
2

where the sum over k and / excludes the term having k =/=0 if y and z are both zero, and includes it other-
wise. The other two Lorentz factors L,, and L,, will be of the same form, with appropriate interchanges of
lattice spacings and observation point coordinates. It can be seen from Eq. (21a) that the Lorentz factors do
not depend on the absolute magnitudes of the lattice spacings and observation point coordinates, but rather on
ratios among ¢, a, and b and ratios x /c, y /a, and z/b. This is more evident if the argument of the Bessel
function is rewritten as follows:

2 2

—+

2 21172
27 lh |Pab

Z_1

7| 2

—k

a
¢

o |o
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Thus the Lorentz factors are completely specified by two ratios among the lattice spacings and the fractional
distance of the observation point from a lattice site. It will be convenient to define an ordered triplet
T=( Jfe>farfp) Whose components are the fractional observation point distances, ie., f.=x/c, f,=y/a,
f»=2z/b. Then Eq. (21a) may be written

1 ab ab 27 | R | pap
2

Lcc(c7a’b’fc’fa’fb)=_—2[§(3’fc)+§(3’1_fc)]8p ,0_277_ z’eZﬂhfcthO
2 ¢ o ¢ %l h

(21b)

Another symmetry is evident from these expressions: The Lorentz factor associated with a particular axis
is symmetric with respect to interchanges of all variables associated with the other two axes. For example, L,,
is unchanged if a is interchanged with b and f, with f}, as follows:

Le(c,a,b,fc,farfo)=Lec(c,b,a,fc,fp:fa) -

Expressions for the off-diagonal Lorentz tensor components are obtained in a similar fashion, by identifying
appropriate lattice spacings and observation point coordinates with the arguments of =, For example, Eq.
(6) indicates that to obtain L, the infinite sums are over indices j and k, associated with lattice spacings c
and a. Comparison of Egs. (6) and (7c) then indicates that L., can be written in terms of
29|z —1Ib|,x,p,c,a). The most general expression for L., is given by

3abc
41

L (c,a,b,x,y,z)=

8,02 0,x,,c,a)+ 3 29|z —1b | ,x,p,c,a) | , (22a)
1

where §, ¢ is the Kronecker delta function, and the sum over / excludes the term [ =0 if z is equal to zero. The
expression for 3*(0,x,y,c,a) is obtained from Eq. (20b) while that for =°)( |z —Ib | ,x,,¢,a) is obtained from
Eq. (20a). Like the Lorentz factors, the off-diagonal components of the tensor are functions of ratios among
the lattice spacings and the f; defined above. Then, if z540, L, is given by

Loy (c,a,b,f ¢, fa:fb)

2 o0
_ 2421'2b s l|fb_1 |23 hh'sin(2whf,)sin(2mh'f,)
i hh'=1

b 2 Wb 211/4 b 2 n'b 21172
X = ] K1/2‘27T|fb_l| [“ + H,
c a
(22b)
and if z =0, it is
Ley(c,,b, 0 f,0)= 4“’;’” > (thin(%Thfc) > [Kl 27RE (1 11,0 | K, 27’6”“ <m+1—f,,>H]
h=1 m =0

2 0
+ 24:;b 2, [ll | 172 2 hh'sin(27hf, )sin(2wh'f,)
Ji h'=1

h,h’
2]—1/4

hb
c

hb

h'b

a

X

2 2

h'b
a

1/2
} ] . (22¢)

Similar expressions may be olbtained for the other off-diagonal elements. The fact that =*)(p,s,s’,d,d’)=0 if
either s and/or s’ is zero or 5 means that the Lorentz tensor is diagonal if any two of f,,f,,f» have any com-
bination of these values.

XK1 [2‘”’ | fo—1]
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D. Derivatives of Lorentz factors

Derivatives of the Lorentz factors with respect to the lattice spacings are of interest because they will arise
in theories describing physical processes in which small deformations of the lattice occur such as piezoelectri-
city and pyroelectricity. They can be readily obtained from Egs. (5) and (21), and the analogous expressions
for Ly, and Ly,. The resulting expressions provide some useful relationships among the derivatives, provided
that f is held constant.

From the sum rule for the Lorentz factors in Eq. (4), i.e.,

Le(c,a,b, )4 Lg(c,a,b, f)+Lys(c,a,b, =1,
in which f stands for the ordered triplet (f.,f4,f3), it follows that

oL, + oL ,, 0L, o,
da b,c,? da b,c,_f> da b c,?
oL oL oL
cc + aa + bb =0, 23)
b o7 | O Jo 7 | 00 Ju. 7T
AL, L[ ALy B
dc a,b, T dc a,b, T dc a,b, T ’

where the subscripts outside the parentheses indicate the variables being held constant and the arguments of
the Lorentz factors have been suppressed for notational simplicity.

A second sum rule applies for each Lorentz factor, i.e.,
d(Inc)

oL
d(Ina)

aL”
d(Inb)

o, (24)

b,c, T a,b, T

where [l may take on values aa,bb,cc. Because all three Lorentz factors are of the same form, Eq. (24) is
proved for all three if demonstrated for one. This is done below using Eq. (21b) for L... The derivatives are

-
a,c, f

oL, 1 ab 2mab

— = ——[&(3, 3,1—1:)18, , 0—

d(lna) b, T 27 ¢ [§( fc)+§( fc)] Papr0 C2

il 2m|h 2| h
P ore |2 | pas 03K, | | pas ] ,
ik h da
0L 4r2ab 2mihf, 27 | h | pap
=L ’ < h 3 —k 2.2 —IK 2

o(Ina) Jp. 7 et c3 % = € | b [*(fa—k)a"pay K, — 2 |’ (25a)
L. 4r’ab 2mikf, 27 | h | pap

— =L ’ Vh|3f =D K, | —2 |, 25b
d(Inb) ac T et C3 k1 2h ‘ | | fb ) Pab 1 c ( )
AL, 47%b « <, 2mihf, 27 | h | pas

_ =L ’ c|lh 3 K

alne) |op7 <t %Eh ek paKy | = (250)

‘Adding these three equations yields
aLCC aLce aLcc
3Ina) |ye 7 |30nb) |, 7" |Bne) |,y 7

4m%ab , | 2ming, 27 | h

B c3 kIEh e A l3{[(f“_k)2a2+(fb_l)zbz]PE:l—Pab}Kl ——%ﬂ =0,




the term in braces vanishing by definition of p,.
This proves Eq. (24).

Equations (23) and (24) are in a sense the same
statement, because the derivatives of the Lorentz
factors are interrelated by

oL.. 9L 4

d(Ina) |, 7 |9d(nc) |7

) oL

Bl = |t , (26)
3nd) |, v |dnc) |, 7

AL, 9Ly

3(nb) |, .7 |d(na) |, 7"

This is shown in the most straightforward fashion
by taking derivatives on Eq. (5) and its analogs for
L,, and L, and comparing appropriate pairs of
derivatives.

Evidently, if f,=0, the sums appearing in Egs.
(25a)—(25¢c) are positive definite. The analogous
sums in the expressions for the derivatives of L,
and L, will be positive definite if f, =0 and f, =0,
respectively. Because of this, the relations in Eq.
(26), and the sum rule for the Lorentz factors in Eq.

(4)1 iffa :fb =fc=O,

3Ly
aink) ~Lu>0 kA -
3Ly

oy ~Lu<0

where k and !/ take on values a,b,c, and the partial
derivatives are taken holding all variables except the
lattice spacing indicated in the denominator con-
stant, as in Eq. (26). The condition f =0 applies
when the Lorentz factor is computed for a lattice
site of a simple orthorhombic lattice.

E. Application to orthorhombic lattices

In this section the expressions developed in the
foregoing are used to examine the dependence of
Lorentz factors at lattice sites on lattice spacing for
the cases of body-centered and base-centered
orthorhombic lattices. These may be obtained by
envisioning the lattice to be composed of two inter-
locking simple sublattices and superimposing the
dipole fields.

Equations (1) and (3) indicate the dipole field at
point T inside an ellipsoidal crystal with uniform
polarization Pis given by

— Qy — o ~_ —
Ed;p(?)z—e—[L(r)—D]P R (28)
0
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where use has been made of the fact that the depo-
larization tensor is constant throughout the volume
of a uniformly polarized ellipsoid. The field at a
lattice site of a body- or base-centered orthorhombic
crystal can be found by superimposing the fields
from two identical interlocking sublattices such as
those illustrated in Fig. 2. The Lorentz tensor com-
ponents desired are those appropriate to a lattice
site of the A sublattice. The total diple field at such
a site is

Edip( 04 )=EdipAA (0) +EdipAB(?AB ),

where (6A) indicates that this is the field at an 4
sublattice site, Egip44(0) is the field due to the di-
Roles on the A sublattice at its own lattice site,
Egip4p(T4p) is the field due to dipoles on the B sub-
lattice at an A lattice site, and T 43 is a vector locat-
ing the A lattice site in the unit cell of the B sublat-
tice. The sublattices have lattice spacings c,a,b in
X,7,Z, respectively. With f 5 defined as T4 nor-
malized to the lattice spacings as before,

— — an  ~ N -
EdipAA(O):G—O[L(C,a,b,O)—D]PA ,
0

- ap ~ N ~
Eaipan(Tap)=—[L(c,a,b,T15)~D1Ps ,
0
where D is the same in both cases because the two
imagined sublattices are macroscopically identical.
If Py=Pp, the total polarization is
P=P,+Pp=2P,, whence

— — Qy | ~ —
Egip(04 )=€— {s[L(c,a,b,0)
0

+E(c9a’b? ErAB )] _5}15 .
29)

Comparison of this expression to Eq. (28) indicates
that the Lorentz tensor for the whole lattice is

® A SUBLATTICE

(o) BODY CENTERED O B SUBLATTICE

(b) BASE CENTERED

FIG. 2. Identical interlocking sublattice used to find
Lorentz factors for orthorhombic lattices. (a) Body cen-
tered. (b) Base centered.
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f:%[f(c,a,b,6)+E(C,a,b,?AB)l ‘ (30)

The field at an A lattice site for P y ;EP}; is given by

— — Qy _ ~ — —
Edip(OA )=“6—[L(C,a,b,0)PA
0

+f(c,a,b, ?AB )ﬁB —5?] .

From this expression it is clear that, even for the
case of an antiferroelectric substance in which
?B =-P 4+, the dipole field at a lattice site is not, in
general, zero, even though the total polarization is
zero.

For the body-centered and base-centered
orthorhombic structures depicted in Fig. 2, the frac-
tional offsets are

F(body) 11
fap =(3,5,3)
F(base) 11
f =(0 ?’7)7

where the choice of the X (or ¢) direction in the
base-centered case is, to this point, arbitrary. For
these values of f 45, the Lorentz tensor is diagonal,
and the field is completely specified by the three
Lorentz factors for each case under consideration.
The Lorentz factors for the body-centered lattice
are given by

L =1(L+ L) (31a)

and those for the base-centered case by
L") = (L + L) (31b)
where [ takes on the values a,b,c and
Lyu=Lylc,a,b,0) ,
L5 =Ly(c,a,b,5 ,%,%) )

L(base)_L”(ca b 0’ 53 ) ,

have been defined to simplify the notation.

Because the Lorentz factors depend only on ra-
tios among the lattice spacings, their dependence on
structure can be examined by specifying a >b >¢
and computing the Lorentz factors as functions of
b/a and c /b as these ratios vary from zero to one.
The choice of a >b >c¢ means that, for the base-
centered case, the zero shift between sublattices is in
the short axis. This choice was motivated by in-
terest in future applications of the model.

From the expressions in Eq. (31), it can be seen
that the contributions to the Lorentz factors for
both base- and body-centered cases due to the A

sublattice are the same. They are just the Lorentz
factors at a lattice site of a simple orthorhombic
crystal, which have been tabulated by Colpa.! Their
values were computed using the expressions derived
in the preceding section. Results agreed with
Colpa’s to the accuracy of the present calculation
(four places after the decimal). It should be noted
that he has used ¢ > b >a, so a and ¢ must be inter-
changed for the comparison. These results are plot-
ted in Fig. 3, for comparison to contributions from
the B sublattice. Calculations of the Lorentz fac-
tors were made at intervals of 0.1 in b /a and c /b,
and the curves drawn through the points. In the
plots, the three Lorentz factors are shown as func-
tions of the intermediate-to-long lattice-constant ra-
tio (b/a) for various values of the short-to-
intermediate lattice-constant ratio (c/b). The term
“axis” in the figure captions is borrowed from
Colpa’s terminology. However, it is not meant to
imply any macroscopic shape, but only to indicate
the direction corresponding to a particular lattice
spacing. Thus the long axis is the j direction in
which the largest lattice spacing (a) has been as-
sumed here. The Z (b) and X (c) directions are the
intermediate and short axes, respectively.

It is immediately clear from Fig. 3 that the
Lorentz factors for the long and intermediate axes
are negative for substantial ranges of (b /a,c/b).
This observation has been made before,® but is
worth emphasizing because it implies that the inter-
nal electric field in these directions will tend to
reduce the moments of molecules in the lattice rath-
er than enhance them. That is, negative Lorentz
factors imply depolarizing internal field com-
ponents. The Lorentz factor for the short axes,
L4, shown as broken lines in Fig. 3(b), is always

05| " is) Ty
Pl'(a) Lapg(tong oxis) Y \\(bl Lapc (short oxis)
an

\_ Laap!{intermediate
\ A e

Laac 1

)

-03

N
=

Lorentz foctor Lpp,

Lanp |

n

i)
=]
>

o
o

o
o

-03

-4 Ay L L " .
0O 02 04 06 08 10 20

[o] 0.‘2 0?4 OTG 08 ITO
b/a b/o
FIG. 3. Lorentz factors for lattice site of simple
orthorhombic lattice (sublattice 4). (a) L44, (long axis).

(b) L4, (short axis) and L 44 (intermediate axis).
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positive (polarizing) and becomes strongly so for
small values of ¢/b and b/a. The lines labeled
¢/b=1 in Fig. 3 give the Lorentz factors for a
tetragonal lattice whose two equal unit-cell dimen-
sions are shorter than the third. Along this line in
Fig. 3(b) L 44 =L 44.- When b/a=c/b=1, the lat-
tlice is cubic and each Lorentz factor has the value
< as is required by symmetry.

The Lorentz factors L %% are plotted in Fig. 4.
In contrast to the 4 sublattice factors, these are al-
ways positive and in the range 0 <L5Y) < 1. Thus,
the B lattice never contributes a depolarizing field
in the body-centered lattice. However, for small
values of b /a or ¢ /b, the field due to dipoles on the
A sublattice will dominate. When b/a=c/b=1,
the point at which L{%® is calculated has cubic
symmetry, so that all three Lorentz factors are
equal to —;—

Lorentz factors for body-centered orthorhombic
lattices, calculated using Eq. (31a) are shown in Fig.
5. As anticipated, the range of geometries for
which the Lorentz factors for the long and inter-
mediate axes are negative is smaller than for the
simple orthorhombic lattice. But a large range of
(b /a,c /b) values still yield negative Lorentz factors,
i.e., depolarizing fields. This is illustrated in the di-
agrams in Fig. 6, in which the signs of the Lorentz
factors in the long and intermediate axes are indi-
cated as regions in ¢/b-b/a space for simple and
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FIG. 4. Lorentz factors at lattice site of 4 due to di-
poles of B, body-centered case. (a) L5 (long axis) and

L% (short axis). (b) Intermediate axis.

body-centered orthorhombic lattices.

Figure 7 shows the Lorentz factors L%’ for the
case of zero shift in the short axis. The magnitude
of these factors range from zero to one, as was the
case for the body-centered B sublattice factors.
However, for the base-centered case, the short axis

factor L% is less than or equal to zero for all

(body) ) 25 1
(a) Lg (long axis) c/b
1.0
051 4
0.8
707 20 4
88
° 04| 15 °0/: ]
/8121  (body)
2 -0.5+ .03 10 07 c |
S 0.8
S~ 0.9
- ok 4 (I)g
§ 0.5 /88 g
5 Z8& | (body)
< -15F 1 o -05 [ Lp
~ i
< -04
g 20 0.2
4 05 _03 1
-2.5F 1 10 1
-3, 1 bod
3or -1.5 (b) L(c y)(shon axis ) b
and
-35 1 L(QDOdy)(in'ermedialo axis)
- 1 1 1. 1 1 _zo 1
[o] 02 04 06 08 10 O 02 04 06 08 1.0

b/a

FIG. 5. Lorentz factors for lattice site of body-centered orthorhombic lattice. (a) L™ (long axis).

body) (

axis) and L intermediate axis).

b/a

(b) L™ (short
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o6

c/b
-

0.4r

0.2

(a) Lg (long axis)
N L L 1 I L<O, both cases

o o2 OAb/ 06 08 1.0 1 | <o simple, but

‘ L>0, body centered

IO L>O0, both cases

1.0

pust
0.8f
0.6
. \«4{
3
0.4
0.2 I

(b) Ly (intermediate oxis)

L s " s
O 02 04 06 08 10
b/a

FIG. 6. Geometries yielding polarizing (L >0) and
depolarizing (L <0) fields for simple and body-centered
orthorhombic lattices. (a) L, (long axis). (b) L, (inter-
mediate axis).

(b /a,c /b) combinations. The A lattice site at which
the Lorentz factors are being computed is no longer
a point of cubic symmetry when b/a=c/b=1, and
this is reflected in the inequality of the Lorentz fac-
tors in this case.

Lorentz factors for base-centered orthorhombic
lattices, computed according to Eq. (31b), are plot-
ted in Fig. 8. The factors L\®*® and L;** are
similar to their counterparts for the body-centered
case (Fig. 5). The short-axis Lorentz factor L *®¢),
however, has been shifted down by the negative
contributions from L% and is less than L
and L% for a range of (b/a,c/b) values. Thus,
while L% > [0 5 1008 and L,,.> L,

1Of — — -
—~
S
0.8} (base N e/

LaBa )( long axis )/\§\‘

o
o
T

(base)

Lorentz factor Lagy
o o
>
T

0 <=9
SNRTIIe7
-0.2} (base) ~ \\\\0.8 |
LaBe (short axis)-"~ _>~09
-04 ~1.0
-0.6

O 02 04 06 08 10
b/a

FIG. 7. Lorentz factors at lattice site of A due to di-
poles of B, base-centered in a-b plane.

05 _la) L?“.’(Ionq oxis) /cllgd
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8
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0.4
~ -osf 03
b
3
nﬂ
T -of
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S
8 st ]
]
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$ -20f B
-
_25h
_30f
15F —— L
-35f =
b
| ! A A ) 20 . A J
0O 02 04 06 08 10 0O 02 04 06 08 IO
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FIG. 8. Lorentz factors for lattice site of base-
centered orthorhombic lattice as functions of b/a for
various values of ¢/b. (a) L™ (long axis). (b) L**®
(short axis) and L (intermediate axis).

>L,4, for any particular (b/a,c/b) value, this is
not the case for the base-centered lattice.
Derivatives of the Lorentz factors with respect to
lattice dimensions are of importance in processes in-
volving responses of strained crystals. Mueller® has
discussed their importance to the photoelastic effect
in cubic crystals. He gives values for the deriva-
tions of L, and L, for a cubic lattice deformed in
the z (b) direction, and compares them to values
found using two derivations different from his own.

The results .he quotes are given in Table I along

with values found using the method described here,
for comparison.

To illustrate the variation of the derivatives with
lattice geometry, the nine logarithmic derivatives of
the Lorentz factors at a lattice site of a simple
orthorhombic lattice (sublattice A4), i.e.,

oL 44
d(Ink)

], k, =a,b,c .

were computed. These logarithmic derivatives of
the Lorentz factors, like the factors themselves, are
functions of ratios among the lattice spacings and
therefore may be displayed in the same form as
were the factors, i.e., as functions of b/a for vari-
ous values of ¢/b with a >b >c. Each of the nine
derivatives was calculated for each (b /a, c /b) value.
Results satisfied the relations given in Egs. (23),
(24), and (26) to four places beyond the decimal
point in every case. Computations were made at in-
tervals of 0.1 in b/a and 0.2 in ¢/b. The lines



26

TABLE 1. Derivatives of Lorentz factors for a cubic
lattice strained in 2 (b) direction.

oL, oL, S

ab ab ouree
0.499 —1.000 Mueller,® his own method
0.501 —1.01 Herzfeld, quoted by Mueller®
0.5045 —1.0090 Mueller, using Banerjee’s method?
0.5049 —1.0098 Present method

#Reference 8.

shown in Fig. 9 were drawn through the points to
illustrate the variation of the derivatives with lattice
geometry. From Fig. 9 it can be seen that the
derivative of a Lorentz factor with respect to the
lattice parameter whose axis is associated with it,
e.g., (L 44,/9Ina), is always negative while those
with respect to the other lattice parameters may be
of either sign. At least one must be positive, in
consequence of Eq. (24).

It is clear from the foregoing that both the
Lorentz factors and their derivatives for
orthorhombic lattices are strongly dependent on lat-
tice structure. They may take on any value, positive
or negative. Therefore, use of the usual classical
theory of dielectrics, which assumes the validity of
the Lorentz field approximation, effectively setting
each of the Lorentz factors equal to % and their
derivatives equal to zero can lead to large errors for

noncubic crystals.
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III. POLARIZABLE MOLECULES

The internal electric field at a lattice site of a
crystal of point dipoles is a strong function of lat-
tice geometry. If the dipoles are associated with po-
larizable molecules, the polarization state of the
crystal will be structure dependent. Thus if there is
some dipole moment associated with a “bare” mole-
cule, this moment will be modified in the crystalline
environment by an amount which is structure
dependent. If the molecules have no permanent
moment, the structure will influence the polariza-
tion developed under a given applied field. When
the crystal is strained, the internal field changes,
and the polarization, if any, changes also.

In this section a uniformly polarized crystal of
polarizable point dipoles on an orthorhombic lattice
is considered. To simplify the notation, the crystal
is imagined to be an ellipsoid with at least one of its
principal axes coinciding with a lattice vector
(Lorentz direction). The applied field due to exter-
nal sources and any permanent moment of the mol-
ecules in the lattice are presumed to be in the same
direction as this common axis. With these assump-
tions, the tensor notation may be suppressed. The
local electric field E),. acting on a molecule (at a
lattice site) is given by

o
Eloc =Eappl —+ —6_(L —D)P ,
0
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z --= k3¢ - - 08
< -15F L s~ i 4
7/ e
;s
-20 - /
| /!, J
/ /ry , 06
1 n N s L L N N L L1 a2
0O 02 04 06 08 10 0O 02 04 06 08 1.0 0O 02 04 06 08 10

b/a

FIG. 9.
OL 44 /0Ink. (c) OL 4. /0Ink.

p/o

Logarithmic derivatives of Lorentz factors for simple orthorhombic lattice.
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where E,;,, is the applied field due to external
sources and L is the Lorentz factor for the common
axis. It is convenient to define a macroscopic field
in the medium E_ 4 as the sum of the applied and
depolarization fields,’

Qo
E ed =Eapp] ——DP,
€
whence
Qo
EloczEmed‘}':’LP . (32)
0

We first suppose the molecules to have no per-
manent dipole moment, but to have molecular po-
larizability @. The induced dipole moment p is re-
lated to a by

P =akiq

and, if all the molecules are the same, the polariza-
tion is just P=np, with n the number of dipoles per
unit volume. Then, from Eq. (32),

P=na (33)

Qo
Enea+—LP
€o

The polarization is related to the macroscopic field
E .4 through the dielectric constant « by
P €o

=—(k—1),
Emed Qo

which, with Eq. (33), allows na to be expressed in
terms of « as

(34)

Notelthat for the case of cubic symmetry, i.e., when
L =+, this reduces to the usual Clausius-Mossotti
relation,

€o

Qo

3(k—1)
K+2

Now suppose the molecules to have permanent
moments py. Then the moment of each molecule is

p=po+aEi,

or, in terms of the polarization,

P=P0+naE10C s (35)

where Py=np,. With E|,. as defined in Eq. (32),
and Eq. (34) relating na to « and L, Eq. (35) be-
comes

P=[1+L(K—l)]P0+£*9'(K——l)Emed. (36)
0

Then, if it is arranged to have E .4 =0,

P=[1+L(k—1)]Py, (37

which, for L :% becomes P=(%)(K+2)PO, the
enhancement due to self-polarization found using
the Lorentz field approximation. It may be noted
that Egs. (36) and (37) hold for each component of
P and E 4 if all the tensors (L, «, and a) are diago-
nal. The appropriate dielectric constant k is the
electronic or high-frequency one, sometimes called
Kk, and associated with the index of refraction.

In Sec. II it was found that many choices of lat-
tice dimensions result in one or two negative
Lorentz factors. Because k> 1 in all cases, Eq. (37)
implies that the “enhancement” due to self-
polarization will actually be a reduction in these
directions, i.e., P will be less than P, for crystal axes
having negative Lorentz factors.

Equation (34) may be solved for (k—1) to find

Qo
—na
€o
k—1)=——"". (38)
%o
1——nalL
€o

This indicates that if the molecular polarizability a
is isotropic, the dielectric constant « will be aniso-
tropic for noncubic crystals. Equation (38) also im-
plies the possibility of a structure-dependent “polar-
ization catastrophe,” i.e., a finite value of P with
Py=E_ .4=0, or equivalently, k— o, - when
L=¢y/(apna).

IV. CONCLUSION

The electric field internal to a crystal of molecu-
lar dipoles depends on the lattice structure through
the Lorentz tensor. While this tensor is in general
different from the dipole sum tensor which depends
on the shape of the crystal as well as the lattice
structure, the two can be equated for suitably
chosen shapes. A method for transforming these
dipole sums into rapidly convergent sums of Bessel
functions has been demonstrated. The rapid con-
vergence of these sums assures the required shape
independence of the Lorentz tensor components.

Computation of the Lorentz factors and their
derivatives for othorhombic lattices has shown that
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the internal fields are quite sensitive to lattice struc-
ture. Thus the assumption L =% commonly used
in dielectric theory can lead to large errors if the
lattice is not cubic.

For lattices whose Lorentz tensors are diagonal, it
is straightforward to include the effects of noncubic
structure in the classical theory of macroscopic po-
larization in response to an applied field in the form
of a modified Clausius-Mossotti relation, and to
derive from this a structure-dependent ‘“enhance-
ment” factor for crystals containing polarizable
molecules with a fixed permanent moment. For
many crystal structures, this enhancement of Py
turns out to be a reduction in consequence of nega-
tive Lorentz factors in one or two of the lattice
directions.

Even for cubic crystals, changes of the Lorentz
factors in response to small strains result in aniso-
tropic response. Derivatives of the Lorentz factors
have been shown to be as sensitive to crystal struc-
ture as are the Lorentz factors themselves, and
should be accounted for in any theory involving
changes in lattice dimensions.
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