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The relationship between dipole-field sums and Lorentz tensor components in single

crystals is described and used to develop a method for computing the tensor components
via rapidly convergent sums of Bessel functions. The method is used to compute Lorentz

factors for simple, body-centered, and base-centered orthorhombic lattices and derivatives

Lorentz factors for simple orthorhombic lattices. Both the Lorentz factors and their

derivatives are found to be very sensitive to lattice structure. The Lorentz-factor formalism

is used to derive the equivalent of the Clausius-Mossotti relation for general orthorhombic

lattices and to relate permanent molecular dipole moment to crystal polarization for the
case of a ferroelectric of polarizable point dipoles. It is found that the polarization
"enhancement" due to self-polarization familiar from classical theory may actually be a
reduction (i.e., P &Po) in consequence of negative Lorentz factors in one or two lattice
directions for noncubic crystals.

I. INTRODUCTION II. DIPOLE SUMS AND LORENTZ FACTORS

A. Formalism and method

This paper considers the dependence of the inter-
nal electric field in a single crystal on crystal struc-
ture and changes in the field under small deforma-
tions. The crystal is assumed to be orthorhombic
and either homogeneously polarized or resolvable
into two or more homogeneously polarized sublat-
tices. Of particular interest is the field at a lattice
site, which is the internal field acting to polarize a
molecule in the crystal.

The formalism chosen is that of depolarization
and Lorentz tensors, which has been described by
Colpa. ' Herein, advantage is taken of the fact that
the depolarization tensor is known for certain mac-
roscopic shapes and since the Lorentz tensor de-

pends only on crystal structure and observation
point within the unit cell, its components can be ex-
pressed as dipole sums. These dipole sums are then
transformed into rapidly convergent sums of Bessel
functions. The method has the advantage of pro-
viding explicit expressions for the Lorentz tensor
components which display the tensor's symmetries
clearly.

The electric field Ed;~(r) at a point (r) inside a
crystal, each of whose lattice sites is occupied by an
electric point dipole of moment p, is just the sum of
the fields at r due to each dipole in the sample.
The field Eq;~(r) is linearly related to the polariza-
tion P of the crystal, P=n p with n the number of
dipoles per unit volume, through the symmetric di-

pole sum tensor' C:

Ed;„(r)= C(r)P,
~o

where ao 4tr for Gaus——sian units and ao ——1 for ra-
tionalized meter-kilogram-second (mks) units, eo ——1

for Gaussian units, and eo ——8.85 &(10 ' farad m
in rationalized mks units. The components of C are
given by

Ckt =(4~n) g dkt
r —r

where Bkl is a second derivative operator on r ' with
respect to Cartesian components k and I, and the
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double prime on the summation indicates that the
sum extends over all positions r ' of dipoles inside
the crystal, omitting terms for which r '= r.

Evidently, C depends on both the microscopic
parameters, i.e., the crystal structure, and the mac-
roscopic ones, i.e., the shape. The essence of the
formalism of depolarization and Lorentz tensors is
the decomposition of C into a linear sum of two
tensors, denoted D and L. The depolarization ten-

sor D depends only on the macroscopic parameters
and the location of r in the crystal, while the
Lorentz tensor L depends only on the microscopic
parameters and the position of r in the unit cell. In
terms of the depolarization and Lorentz tensor
components, the components of the dipole sum ten-

sor are expressed as'

Ckl(r) Lkl(r) Dkl(r) ' (3)

The choice of B to represent the depolarization
tensor follows the notation of Colpa. ' However, it
is sometimes denoted by E or N/4m. in the litera-
ture. The principal values of D are known as the
depolarization factors, and those of L as the
Lorentz factors. The following sum rules apply:

C~(r)+C~~(r)+C (r}=0,
D (r)+D~~(r)+D~(r)=1,

L (r)+L~~(r)+L (r)=l,
(4)

from Ref. 1, Refs. 1 —3, and Refs. 1 and 8, respec-
tively.

It is well known that if the crystal is taken to be
ellipsoidal, with its principal axes along x, y, and z,
the depolarization tensor is diagonal and indepen-
dent of position. This is equivalent to the statement
that a uniformly polarized ellipsoid produces a uni-

form depolarizing field. Depolarization factors for
ellipsoids have been tabulated by Stoner and by Os-
born. In the calculation of Lorentz tensor com-
ponents, the fact that one or two of the depolariza-
tion factors are zero for the limiting "needle" and
"coin" shaped ellipsoids of revolution is used.

The Lorentz tensor components are independent
of the overall crystal shape and the direction of po-

I

FIG. 1. Orthorhombic unit-cell coordinates and lat-
tice spacings, with field observation point indicated.

larization'; they depend only on the relative lattice
spacings and the location of r in the unit cell. Thus
it is possible to consider a different crystal shape,
orientation, and polarization direction for each
combination of (k, l) in Eq. (3). With appropriate
choices of these macroscopic parameters, Dk~ can be
made equal to zero for any given (k, l). Then the
Lorentz tensor component can be calculated directly
from the appropriate dipole sum. Because ap-
propriate shapes for setting Dkk ——0 involve letting
one or two of the crystal dimensions become ma-
croscopically small (although they must remain mi-
croscopically large}, it is necessary to transform the
slowly convergent dipole sums into ones which con-
verge rapidly.

The method is most easily illustrated by example.
The coordinate system chosen is illustrated in Fig.
1. The origin is at a lattice site of a simple
orthorhombic lattice with lattice spacings c,a, b in
x,y,z, respectively. The observation point is
r=(x,y, z). To calculate the Lorentz factor L~
(=L„),one imagines a needle-shaped crystal with
its long axis and polarization both in the x direc-
tion. The point dipoles are . located at
r '=(jcx+kay+lbz ). Because of the needle shape,
the index j ranges from minus to plus infinity while
k and I have finite range, but are at least several
tens. The lattice has been stipulated to be simple, so
there is only one dipole per unit cell and
n =(abc) ' The depolari. zation factor D~ equals
zero for this needle-shaped crystal, so

abc 3(x —jc)
4~ k ( J „[(x—jc) +(y ka) +(z Ib) ] ~— —

—[(x jc) +(y —ka) +(z ——lb) ]
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Analogous expressions for the other two Lorentz factors are obtained by imagining needle-shaped crystals
with long axes and polarization along y and z.

Because the off-diagonal elements of D are zero for any ellipsoid, the choice of shape for calculation of off-
diagonal Lorentz tensor components is not critical. The symmetry of L is most clearly seen by choosing a
disc shape or "coin." For example, to compute L„s(=L«), a disc lying in the x-y plane may be imagined.
Then

abc 3(x —jc)(y —ka)
4m l qk „[(x—jc) +(y —ka) +(z Ib) —]

Here the sum on 1 is finite so that a rapidly converging equivalent to the j and k sum is needed. The symme-

try of the Lorentz tensor is evident from Eq. (6); clearly L« L„.E——~ressions for L,t, and L,b are derived

similarly.
Transformation of the dipole sums in Eqs. (5) and (6) into rapidly convergent sums is carried out in the next

section. Before proceeding, however, it is useful to make a few observations. First, although the Lorentz ten-

sor components have been evaluated by imagining particular crystal shapes, they are particular only to the lat-

tice structure and observation point within the unit cell, and are thus quite generally applicable. Second,
Lorentz tensor components for more complex lattice structures can be found by superposition. For example,

at a lattice site of a body-centered (bc) orthorhombic lattice,

Lkl 2 [Lki'(0, 0,0)+Lkl'(c/2, a/2, b/2)],

where the (s) superscript indicates the simple orthorhombic lattice, and lattice spacings c,a, b in x,y,z, re-

spectively, have been assumed. The factor of —, arises because there are now two dipoles per unit cell. It will

turn out for this case that the Lorentz tensor is diagonal.

B. Transformation of sums

To obtain useful expressions for the I.orentz tensor components, rapidly convergent equivalents to the di-

pole sums in Eqs. (5) and (6) are needed. The method chosen is similar to those of Van der Hoff and Benson
and of Tripathy et al. and proceeds by evaluation of three generalized sums for n & 0. These are

~(n) y [ 2+ ( d)2] —n/2 (7a)

g( ) (s —md)
(P,»d) = g

[ 2+(s md)2]
—nl2

(s —md)(s' —m'd')
(P~»&'~d~d') 2

[ 2+( d)2+( r id')2] —n/2

(7b)

(7c)

where 0 &s & d, 0 &s' & d', and the indices m and m' take on all integer values (0, + 1,+2, . . . ).
Evaluation of each sum proceeds by use of a representation of the gamma function,

I'(z)=)M' f t' 'e "'dt (Rez&0, Re@, &0),

the Poisson summation formula,

g f(m)= g J e "' f(x)dx,
m h

and an integral representation of the modified Bessel function of the second kind of order v,
' v/2

E„(2VPy) =—1
2

t" 'e '~ " '%t (ReP&0, Rey&0) .
0

(10)

Let us first consider the general case in which p y 0, and return later to consider the p=0 case.
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I E. valuation of P' "

By use of Eq. (8), P'") may be cast into the form

~(n) [(n/2) —1] —p t ~ —(s —md) tdt

n m

2

The sum in large parentheses is evaluated by use of Eq. (9):

—(s —md) t ~ 27rihx —(s —xd) t~

Nf h
0

=—f e «"dy+ —g'e ' f e ""cos dy

—i/2 Mir i 2ttihs/d —1/2 tt h2/d2tt + e t e
h

where the prime on the summation sign indicates that the term with 5=0 is excluded. Substitution back into
Eq. (11) yields

(n)
(p, s,d)

t(n —3)/2e P2tdt—
0dr-n

2

mh+ g e 2n'ihs/d t(n —3)/2

h
0

dI
2

The first integral in this expression is just I [(n —1)/2])p '" " for n &1, while the second has the form
given in Eq. (10). Thus, for n & 1,

V ~r[(a —i)n]

d I —p" ' d I
2 2

' n/2

y. 2nths/d I" I It- 2tr
I

I)
I I3

h Pd
(12)

2. Evaluation ofS(")

Evaluation of S'"' proceeds similarly as follows:

(e P t g (g tt—td)2e —(s
0

n m

2

g (s ted)2e —(s ntd) t g f— (s &d)2e2ttihxe —(s xd) td3t-
m h

ye« tdy+ go e2t ihs/d f e«cos. dy
2, 2, 8 2mb

d o d Bt o d

2 2 2 2
t —3/2 ~ir ~ I 2nihs/d —3/2 2)r h —5/2

„

t + „~~e t —,t exp
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whence

t(." 5)/2e P dt+ g'e2ttihs/d I t " 5)/2ex —2t—
0 0 p p d2

2d I
2

The integrals can be done as before to yield, for n & 3,

V mI[(n. —3)I2] m'"
r

h2dr —" q"-' dr —"

2 2

' (n —3)/2

+(n —3)/2
pd

2m fh fp
d

' (n —1)/2

—2&p +(n —5)/2
pd

3. Evaluation of X "(p,s,s', d, d')

2m.
/

h /p
d

(13)

~(n)
~(p, s,s', d, d')

nI
2

'e p ' g (s —md)(s' —m'd')
0

m, m'

&& exp [—(s —md) t]exp [—(s' —m'd') t] dt . (14)

In this form the double sum can be separated into two single sums which can be evaluated separately:

t
m, m

md)e
—(s md) t(s —m~d~)e (s' m'd') t ——g (s md)e

—(s md) ty (s~ m—id')e (s' m'd')2t— —
m'

Now,

md)e
—(s md) t g— f e2nihx(s xd)e —(s xd) td&-

m h

s md)
—(s —md)2t

~ 3/2 ~ t 2nihs/d s —3/2 Qh 2/d 2l~e nt e
d

=—g'eh' — I e P"-»dy
I BA

where A=(2mih)Id , The integ. ral is just (m It)'/ exp(A, l4t), so the sum on m becomes

As' —3/2 A2/4t.e t e
m h

2a 3/2~ . 2nhs3/2 oo

t sin e
d
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The sum over m is identical, and the double sum is just the product, i.e.,

g (s —md)(s' —m'd')exp[ —(s md—) t (s'—m'd—') t]
m, m'

4' "
3hh, . 2nhs . 2rrh's'

t hh 'sin sin exp(""')' s, s =(

Substitution of this expression into Eq. (14) and integration over t yields

3 (n —6)/2
(n) 8K

~(p, s,s', d, d')

I —(dd')
2

+h

d

h'

d

2mhs . 2mh 's'
X hh'sin sin

h, h'=1

'2

X — +h h'
' 2 (n —6)/2 T 2 (1/2 t

h
I

(n —6)/2 p d
+ (15)

The sums in Eqs. (12), (13), and (15) will con-
verge rapidly because of the presence of the Bessel
functions. The leading terms (with h =0) in the ex-
pressions for P'") and S(") do not converge rapidly
for small n as p increases, but these will be seen to
cancel conveniently when the sums are used to
evaluate the I.orentz factors.

4. Special cases: p=o

2d —(n —2)g( (16b)

where g(n) is the Riemann zeta function of n.
(b) Case 2: p=O, s+0. For this case the m=O

term in each sum is retained (the observation point
is not a lattice site). We have

In transforming the sums in Eq. (7) into the ex-
pressions in Eqs. (12), (13), and (15),p was assumed
greater than zero. However, the terms with p=O
will be needed to evaluate the Lorentz tensor corn-
ponents. For P'"' and S'"' there are two possibili-
ties if )()=0: either s=0 or s+0. For X("' there are
also two distinct possibilities if' p=O: Either s
and/or s' equals zero, or neither s nor s' equals
zero. These four cases are considered separately in

the following.
(a) Case 1: p=O, s=0. In this case the m=O

term must be excluded from each of the sums P'"'
and S'"'. In the context of the dipole model, this is
equivalent to excluding the dipole at the observation
point. Because p=O this case is equivalent to sum-
ming along an infinite chain of dipoles. Thus,

P(p&d)= g ~s —md
~

=-d "g m+-
p

—n

+ m+ 1—s
d

S(p, d) ——d g n —2, —(n) —(n —2) s

+g n —2, 1 ——s
d

2'I() d)=d "
g n, +g n, l ——

( —n

(17a)

(17b)

~(ppd)= g (md
~

=2d "gm
m=1

=2d "g(n), (16a)

with g(n, s/d) the generalized Riemann zeta func-
tion. Note that, since g(n, 1)=g(n), cases 1 and 2
may be combined if g(n, O) is interpreted as g(n) by
stipulating that the m=0 term is excluded from the
sum if S=O.

(c) Case 3: p=O, s and/or s'=0. Inspection of



DIPOLE-FIELD SUMS AND LORENTZ FACTORS FOR. . . 4553

Eqs. (7c) and (15) indicates that X'"'=0 if one or
both of s and s' is zero, whether or not p=O, pro-
vided that the term m =m'=0 is excluded from the
sum if s =s'=0. This will mean that the Lorentz
tensor at a lattice site is diagonal.

(d) Case 4: p=O, s+0, s'+0. Equation (15) im-

plies that X(")=0 if s and/or s' is equal to —,,

whether or not p=O. If neither s nor s' is equal to
either 0 or —,, the evident symmetry in Eq. (15)
must be sacrificed in order to obtain a rapidly con-

verging expression, i.e., only one of the indices may
be summed over. Thus, for p=0, and neither s nor
s' is equal to zero

(n)
~(0,s,s', d, d')—

nr—
2

g (s m d ) I(tt/2) (e—(s —m' 'd—') t g (s md)e
—(s —tttd)2t

0m' m

4 3/2
r

d I Pl

2

g(s' —m'd') g h sin
m' A=1

r

exp —(s' —m'd') t — dt

4 3/2

dr-)i

2

g(s' —m'd') g h sin
m h=1

r

2mhs mh

d d Is' —m'd'I

(n —3)/2

+(n —3)/2
2nhl s' —'m'd'

I

d

This may be rewritten as

~(n)
~(0,s,s', d, d')—

4 3/2 00

(d )( n —3)/2—,

d r &=1

2

' (n —3)/2
2mhs m.h

d d

m'=0

I

m +
—(n —5)/2

2trhd'
+(n —3)/2

I

m'+ —,

' (n —5)/2
S

m +1- +(n —3)/2 ' m'+1 ——,5

5. Dipole sums

The dipole sums required to evaluate the Lorentz tensor components are special cases of the generalized
sums considered above. Reference to Eqs. (5) and (6) indicates that the required sums are P' ', S' ', and X( '.
Equations (12), (16a), and (17a) give for P' ',

~(3) d
—3 /- 3

s /- 3 1
s

g
2 4~ ~ 2ttihrs/d lh I & 2')rlh Ip

(p, s, d) — s d
+s —

d p, 0+d 2+ d ~ d 1

P h . P
(19a)

where 5& o is the Kronecker delta function and the stipulation is made that g(3,0) is to be interpreted as g(3).
Similarly, Eqs. (13), (16b), and (17b) give S' ' as follows:

S(,s)
——d g 3,—+g 31—— |)p,o+

3dp
r

4~ 2 ta/~ (19b)
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with the same stipulation on the meaning of g(3,0).
Two different expressions for X' ' must be given. The more general one, which can be used in all cases ex-

cept special case 4 above, is obtained from Eq. (15) as follows:

32H iraq +, . 2rrhs . 2nh's'
& p ~ hh slI1 s111

h, h'=0

+h
K1/2 27TP

h

d

2 2 1/2 '

I t

+
d

(20a)

where the fact that K,(z)=K„(z)has been used. For the special case in which p=0 and neither s nor s'

equals zero, Eq. (18) gives

2 . 2~hz ~ 2mhd' , s'

3d h =1 m'=0

2~hd'
1

5m'+i ——,
d

J

(20b)

C. Lorentz tensor components

Obtaining expressions for the Lorentz tensor components is now a simple matter of associating the argu-
ments of the dipole sums with the appropriate arguments of a desired tensor component. For example, Eq. (5)
indicates that, to obtain the Lorentz factor L„,the infinite sum is over the index j, which is associated with
lattice spacing c and observation point coordinate x. Comparison of Eqs. (5) and (7) then allows L« to be
written

k, l

with p,b ——[(y —ka) +(z —lb) ] 'i . Here the full functional dependence of L„hasbeen indicated explicitly,
to emphasize that the Lorentz factors depend on both the lattice spacings and the observation point coordi-
nates. With Eqs. (19a) and (19b), the expression for L„becomes

L (cabxyz)= 0 3 +g 31— 5,o 2' gg—e ih Ko'c ' c k, l h

2~[h ip.b

c
(21a)

where the sum over k and l excludes the term having k =1=0 if y and z are both zero, and includes it other-
wise. The other two Lorentz factors L„andLl,l, will be of the same form, with appropriate interchanges of
lattice spacings and observation point coordinates. It can be seen from Eq. (21a) that the Lorentz factors do
not depend on the absolute magnitudes of the lattice spacings and observation point coordinates, but rather on
ratios among c, a, and b and ratios x/c, y/a, and z/b. This is more evident if the argument of the Bessel
function is rewritten as follows:

2m fh [p,b

c
——k
a

2 2
a z+ ——I
c b

2 2 1/2
b
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Thus the Lorentz factors are completely specified by two ratios among the lattice spacings and the fractional
distance of the obse~ation point from a lattice site. It will be convenient to define an ordered triplet
f =(f„f„fb)whose components are the fractional observation point distances, i.e., f, =xlc, f, =yla,

fb zl——b. Then Eq. (21a) may be written

L„(c,a, b,f„f„fb)= [g(3,f, )+g(3, 1 —f, )j5 2n —g g'e 'h'K

(21b)

Another symmetry is evident from these expressions: The Lorentz factor associated with a particular axis
is symmetric with respect to interchanges of all variables associated with the other two axes. For example, L„
is unchanged if a is interchanged with b and f, with fb as follows:

L«(c,a,b)f„f„fb) =L«(c,b, a,f„fb)f,) .

(22a)

Expressions for the off-diagonal Lorentz tensor components are obtained in a similar fashion, by identifying
appropriate lattice spacings and observation point coordinates with the arguments of X' '. For example, Eq.
(6) indicates that to obtain L«, the infinite sums are over indices j and k, associated with lattice spacings c
and a. Comparison of Eqs. (6) and (7c) then indicates that L«can be written in terms of
X' '(

I
z Ib I,x—,y, c,a). The most general expression for L„is given by

L„(c,a, b,x y,z)= 5, 0X' '(O, xy, c,a)++X' '( Iz lb I,x —y, c,a)

where 6, o is the Kronecker delta function, and the sum over 1 excludes the term 1 =0 if z is equal to zero. The
expression for X' '(O,x,y, c,a) is obtained from Eq. (20b) while that for X' '(

I
z 1b I,x,y, c—,a) is obtained from

Eq. (20a). Like the Lorentz factors, the off-diagonal components of the tensor are functions of ratios among
the lattice spacings and the f; defined above. Then, if z@0,L„is given by

L„(c,a, b,f„fofb)

24m.b 00

I fb —1
I

' g hh'sin(2mhf, )sin(2mh'f, )
2c

A, A'=1

2
hb h'b

2 ' ' 2 1/4
hb h'b

+ +I/2 2~
I fb 1—

c a

' 2 1/2

and if z =0, it is

(22b)

L«(cab f„f„O)= g h sin(2nhf, ) g I):& (m+f, ) —K& (m+1 f,)—
6=1 m 0 c c

24~b+ g'
I

1
I

' g hh'sin(2m'hf, )sin(2mh'f, )ac h, h'=1

2
hb +
C

X&ir~ 2~1fb

' 2 —1/4
h'b

a
'2

hb h'b
+

' 2 1/2

(22c)

Similar expressions may be obtained for the other off-diagonal elements. The fact that X' '(p, s,s', d, d') =0 if
either s and/or s' is zero or —, means that the Lorentz tensor is diagonal if any two off„f„fbhave any com-
bination of these values.
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D. Derivatives of Lorentz factors

Derivatives of the Lorentz factors with respect to the lattice spacings are of interest because they will arise
in theories describing physical processes in which small deformations of the lattice occur such as piezoelectri-
city and pyroelectricity. They can be readily obtained from Eqs. (5) and (21), and the analogous expressions
for L&a and Lbb. The resulting expressions provide some useful relationships among the derivatives, provided
that f is held constant.

From the sum rule for the Lorentz factors in Eq. (4), i.e.,

L„(c,a,b, f )+L„(c,a, b, f )+Lbb(c, a, b, f ) =1,
in which f stands for the ordered triplet (f„f„fb),it follows that

as.
„ +

bc f

aL.. aLbb
+ =0,

b, , g aa b, , f

+
ab

as.
„

ab
+

aLbb =0,
ab

(23)

aL„ aL..+ — +
a . ,

-
. a

aLbb =0,
ac

where the subscripts outside the parentheses indicate the variables being held constant and the arguments of
the Lorentz factors have been suppressed for notational simplicity.

A second sum rule applies for each Lorentz factor, i.e.,

ll+ +
B(lna) b, 7 B(lnb), , f B(inc)

=0, (24)

where ll may take on values aa, bb,cc Because. all three Lorentz factors are of the same form, Eq. (24) is

proved for all three if demonstrated for one. This is done below using Eq. (21b) for L«. The derivatives are

aLcc 1 ah
, lP»f. )+P»1—f.) j& Io—

8 111a ha
r

& 'bf, 2~
I

b IS .b I) ~
I

h
I p.b+a Ep

j,k h c aa c

B(lna) b, -,

aLcc

B(lnb)

C kl h c

c

(25a)

(25b)

aLcc 4 b 2 'hf

C a, b, f C

2~ Ib IP,b
(25c)

Adding these three equations yields

aL„aL„aLcc
B(lna) b, f B(lnb), , f B(inc)

+ +

4 b

C kl h c
=0,
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the term in braces vanishing by definition of p, b

This proves Eq. (24).

Equations (23) and (24) are in a sense the same
statement, because the derivatives of the Lorentz
factors are interrelated by

BL„
B(lna) b, ,, r

B(lnb)

M,
„

B(inc), b r

~Lbb

B(inc), b r
(26)

~Lll

a(ink)
—L )0 k 1

(27)

L 0
a(lni)

where k and I take on values a, b, c, and the partial
derivatives are taken holding all variables except the
lattice spacing indicated in the denominator con-
stant, as in Eq. (26). The condition f =0 applies
when the Lorentz factor is computed for a lattice
site of a simple orthorhombic lattice.

E. Application to orthorhombic lattices

~Lbb

B(lnb), , r B(lna) $ f

This is shown in the most straightforward fashion
by taking derivatives on Eq. (5) and its analogs for
L„and Lbb, and comparing appropriate pairs of
derivatives.

Evidently, if f, =O, the sums appearing in Eqs.
(25a) —(25c) are positive definite. The analogous
sums in the expressions for the derivatives of L«
and Lss will be positive definite if f, =0 and f&

——0,
respectively. Because of this, the relations in Eq.
(26), and the sum rule for the Lorentz factors in Eq.
(4), if f, =f& f, =O, ——

where use has been made of the fact that the depo-
larization tensor is constant throughout the volume
of a uniformly polarized ellipsoid. The field at a
lattice site of a body- or base-centered orthorhombic
crystal can be found by superimposing the fields
from two identical interlocking sublattices such as
those illustrated in Fig. 2. The Lorentz tensor com-
ponents desired are those appropriate to a lattice
site of the A sublattice. The total diple field at such
a site is

Edq, (Og ) =Ed;egg (0)+Edq,gg( r„~),
where (Oq) indicates that this is the field at an A

sublattice site, Ed;~zz(0) is the field due to the di-
poles on the 3 sublattice at its own 1attice site,
Ed;~zz(rq~) is the field due to dipoles on the 8 sub-
lattice at an A lattice site, and rzz is a vector locat-
ing the 2 lattice site in the unit cell of the 8 sublat-
tice. The sublattices have lattice spacings c,a, b in
x,y,z, respectively. With fez defined as rzz nor-
malized to the lattice spacings as before,

Edi~„~(0)= [L(c,a, b, 0) D]P„,—
Ep

Ed;„zz( rzz ) = [L (c,a, b, fwa ) DIPB-
6p

where D is the same in both cases because the two
imagined sublattices are macroscopically identical.
If Pz ——P~, the total polarization is
P=Pq+P~ ——2P~, whence

Ed;„(Oz)= I —,[L(c,a, b, O)
6'p

+L(c,a, b, fgg)] D)P . —
(29)

Comparison of this expression to Eq. (28) indicates
that the Lorentz tensor for the whole lattice is

In this section the expressions developed in the
foregoing are used to examine the dependence of
Lorentz factors at lattice sites on lattice spacing for
the cases of body-centered and base-centered
orthorhombic lattices. These may be obtained by
envisioning the lattice to be composed of two inter-
locking simple sublattices and superimposing the
dipole fields.

Equations (1) and (3) indicate the dipole field at
point r inside an ellipsoidal crystal with uniform
polarization P is given by

(a) BODY CENTERED

(b) BASE CENTERED

0 4 E:~'c
—-Ql

0

O. A SUBLATT!CE
0 B SUBLATTICE

~l
—~l

b

Ed;z(r)= [L(r)—D]P,
Fp

(28)

FIG. 2. Identical interlocking sublattice used to find
I.orentz factors for orthorhombic lattices. (a) Body cen-
tered. (b) Base centered.
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(30)L = [I—.(c,a, b, 0)+L(c,a, b, faa)] .—
2

The ie a a
' ' rP PB isgivenbyThe field at an A lattice site for

(0 )= [L(c,a, b, O)P&
ao

EdI

—+

+L(c,a, b, fgs)Ps D—

(Label +Lanai
1 (body)

)l (31a)

and those orh f the base-centered case by

e (base))(L~~i+L~ail (31b)

b candwhere l takes on the values a, b,

«(» 0

Lg(c,a, b, —ABl
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sim lify the notation.have been defined to simp
'

onl on ra-the Lorentz factors depend on y
th d d otios among the lattic p

'
rice s acings, eir

n be examined by speci ying astructure can e
r s functions ofutin the Lorentz actors asand computing e

from zero to one.bla and clb as thesethese ratios vary rom
f r the base-a &b &c means that, or eThe choice of a &

zero shift between su ablattices is incentered case, the ze
axis. This choice was motiva e

'
ated by in-the short

ppa lications o e
the ex ressions in q. , i c

both ase- anb - and body-centered cases ue o

ex
' '

1 r that, even for theex ression it is c ear
b

'
hhan antiferroelectric su s an

e ld t lattice site is not, m——P the dipole fie at a a
hh .1,.1--- ~general, zero, even thou t e o

orthorhombic structures depicted in ig.
tional offsets are

1 1f (base)
AB

e
' f h (or c) direction in the

n is oint, arbitrary. For
thechoiceo t ex o

' '
e

base-cenntered case is, to t is poin,
the oren zL t tensor is diagonal,these values of fqs,

fied b the threef' ld is completely speci ie yand the iie is
under consideration.factors for each case un er c

e or the body-centered latticeThe Lorentz factors for t e o y-
are given by

'c/b
(a) LAAa(lonp axis) i,0

0 0.6
-0.5

-0.5
-0.4

2.5

2.0-

c (short oxis)
and

b {intermediate
axis )

c/b
-0.5

~x

-(.5-
O
V0
~ -2.0-
C
~I
0

-2.5-

-0.3
0.5-

0

-0.5—

0.6 LAAc~ -0.7
-0.8
-$.9
-0.9
;0.8.'0.?
0.6

-0.5
AAb

-0.4

-3.5- -l.5 .

-4.0 0.2 0.4 0.6 0.8 I.O
b/a

.2.0 0.2 0.4 0.6 08 LO
b/a

ntz factors for lattice site of simple
L (long axis)ortrthorhom &c a icrt '

1 tt'ce (sublattice 3). (a
d L (intermedi'. te axis).(b) I.», (short axis) an

the same. They are just the Lorentz
at a lattice site of a simp e o o

b 1 tedb Col .' Th ital which havebeen ta u acrys a,
usin the expressions derived

Results agree wi

lues were computed g
he receding section. R

accuracy of the present calculationColpa s to the

e as a and c must be inter-
These results are plot

for comparison to contri u i
'

ns of the Lorentz fac-
'

tervals of 0.1 in b/a and c
h 8 sublattice. Calculations o t e ore

t s were made at interva s oor
h the oints. n ean ecd th curves drawn throug p

'

ts the three Lorentz factors are showown as unc-

for various values o t e s o
( /b) The .termtice-constant ratio c

is" in the figure captions ts orr

sco ic shape, ut onypy y o op p
corres onding to a particu ar a

h d'Thus the long axis is t e y
()h be lar est lattice spacing a as

(c) directions are thesumed here. The z (b) and x c
short axes, respectively.

r the long and intermediate axesLorentz factors fo
for substantial ranges oare negative or

de before ' but isrvation has been ma e eThis observa
'

it im lies that the inter-
'c field in these directions will ten tonal electric ie in

les in the lattice rath-ce the moments of molecu es m ereduce e
Th t

'
negative Lorentzer than enhance them. a is,

1 de olarizing interna iepy p
he Lorentz factor or eponents. The

in Fi . 3(b), is alwayshown as broken lines in Fig.AAct S OW



26 DIPOLE-FIELD SUUMS AND LORENTZ FACTORS FOR. . . 4559

ositive (polarizing) and becommes strongly so for
f c b and b/a .The lines labeledsmall values of c b an a.

rs for aFi . 3 give the Lorentz factors or

sions are shorter than the third. Along this line in

»g 3(h) I-AAb =LAAc.
tice is cu ic anb' d each Lorentz factor as e
—as is required by symmetry.

4
3

' ' y' are lotted in Fig.The Lorentz factors Lz&I a p
sublattice factors, these are a-In contrast to the A su a ', a-

s positive and in the rang e0(L &I
y &1. us,ways

s a de olarizing fieh B lattice never contributes a pt e
in the body-centered lattice. How ever for sma

a or c/b, the field due to dipoles on the
A sublattice will dominate. %hen a =c

'
h L' ' is calculated has cubicthe point at whicn LzzI is c

symmetry, so t at ah 11 three Lorentz factors are
1

equal to —,.
bicLorentz actors orf f body-centered orthorhom

'

~ ~E . (31a) are shown in Ftg.lattices, calculated using Eq. ,
f5. As anticipated, the range o gof eometries or

ion and inter-which the Lorentz factors for the g
ive is smaller than for themediate axes are negative is sm

fsimple orthorhombic lattice. But a glar e range o
(b/a, c/b) values sti yie n'll '

ld negative Lorentz factors,
~ ~

i.e. de olarizing ie s.f ld This is illustrated in the d-
a

' '
. ,

' h' h the signs of the Lorentza rams in Fig. 6, in w ic e s'
~ ~

d intermediate axes are in i-factors in the long an in erm
/b b/a space -for simple andcated as regions in c - a

1.0

0 Q)D g

N

C
Cl

0

c/b
0.2
0.6«7 LABa-

~0.8-0.9

( body
(a) LABa

a
(body

LABc —I.Q
~-09

' "ABc,0.7
'

==i-0.5
0.4 0.6 0.8 1.0O'2

&D
D Kl

0
O
O

N
c
O

0,8

(b) intermediate axis0.6-

0.4-

0.2-

c/b.0.2-0,6-0.8-0.9- I.o

b d - tered orthorhombic lattices.body-cen ere
L (b'") for theFigure s owF' 7 shows the I-orentz factors

'f '
the short axis. The magnitud decaseof zeros atm es

one as was t eo t ese acf h f ctors range from zero to o
for the body-centered B sublattice factors.case or te o

e the short axisHowever, oH for the base-centered case, e s
or allfactor Lzz& is ess1 than or equal to zero fo

0,2 0.4 0.6 0.8 1.0
b/a

FIG. 4. Lorentz factors at lattice
'

e site of A due to di-
"' (lon axis) andpoes o1 of 8 body-centered case. (a) L», g

"'
( hort axis). (b) Intermediate axis,s 0

0.5-

-0.5-
0

-I.O-
L0
O0 -1.5-
N
4

0 -20-

(a) La {Iong axis)( body)
c/b
1.0

/o. s
- 0.6-0.5
-0.4

0.2

2.5—

1.5-

0.5-

0

0.5-

I

2.0 — ~

,
i

c/b
0.4
0 5 (body)
0.6 ~ Lc
0.7
0.8
0.9
1.0 ~,

0.9
0.8
06 ( body)~ —0.5

—0.4

-0.5

-2.5—
1.0-

-3.0-
-1.5- hart axis )

termediate axis)
-2.0

00.2 0.4 0.6 0.8 I.0 0.2 0.4 0.6 0.8 I.0
b/a

0
b/a

a) L' y' (long axis). (b) L, (shoh rt
'

e of bod -centered orthorhombic lattice. (aFIG. 5. Lorentz factors for lattice site o o y-cen er
axles~ an d L' "' (intermediate axis).



4560

1.0

p.8—

' c/b
il 0
. 09
~0. 7~y0.6

' 0.5
0.4

I

(a) Lo
( b4s+

(iong Qxls )p5-

p3-

pURyIS AND P. I . TAY 26

5 (
( b) L ( short axis )

(bake)

) 0.51'
$ JL (p

~ L07)
& ~ b

pxess)06

I.5-

Q.4—

p.2-
(a ) L ( Ion g ax Is )

I I I

0 02 04 06
b/a

I.O

0.8

I

0.8
Z L~p, both cases
ii Lap, si~))e»'

Lo, p body centered

Hr L&0, both cases

05-
4l

-I.O-
4a
EJo -1.5-

-2.5

I.O-

p5"

00.2

-0.5-

-I.p-

- I.5

I .0

—p7—p. 6—0.5
—p. 4

—0.3

0.6
Cl

Q4- -3.5-
I I I

p2 04 p6 08 -2.0 0'2 0.4 0.6 0.8
b/o

I0.2
(b) Lb(intermediate axis

I I

4 06 p8 l 0
b/a

es ielding polarizing (
~ L 0) andFIG. 6. Geometries y

d bogy-centeredepolarizing (L &
(l is). (b) Lb (inter-

0) fields for simple an
orthorhombic lattices. (a) L, (long axis.
mediate axis).

tions. The A lattice site at which

f
tors in this case.

d orthorhombicrs for base-centere oto
according to

8. The factors L, "' anted in Fig.
for the body-centeredto their counterparts or

(base)
similar o

Lorentz factor L,case (Fig.. 5). The short-axis o
d d n by the negativehas been shi ted own

(base)L' "' d i 1 h Lcontributions from Lzsc, an"' for a range of (b/a, c v u'L'"dLwh'1 L' ' & Lb

b/o

ctors for lattice site of base-

centered ort or om
various values of c/ . L onb. (a) L, on

L' "' (intermediate axis).(short axis) and Lb in

&L~, for any particular (b/a, cac/b) value, this is
e base-centered lattice.

tives of the Lorentz factors wi

1 tti dimensions
'

p
nses of strained crystals. ue e s

h h tol ti ff t'm ortance to t e p odiscussed their imp
f r the deriva-stals. He gives values or

b 1'""d'fdL foracuic ations of L, an
them to valuestion, and compares e

'ff fmderivations di ereng
ts he uotes are given in a

wi v
'

the method described here,with values found using the met o

f he derivatives withthe variation o t e
the nine logarit mic e

'
lattice geometry,

't of a simplethe Lorentz factors at a lattice si e
orthorhombic lattice (sublattice A), i.e.,

0

Lay'~L0.8 - ( base)
LABa (to

0.6—
40

om
0.4—

( bose)
.- L~Bb (in

o 020

c/b

.09
.8
.7

0.6
0.2

0C

0
-0.2

-0.4-

0.5—

0.8( base)
(short axisIS

I.O

I II

0.2 0.4 0.6 0.8 I.O
b/a

at lattice site of 3 due to di-FIG. 7. Lorentz factors at a
' '

e to di-
-b lane.poles o, af B base-centered in a-b p

AA!

B(ink )

uted. These logarithmic derivatives of
th 1z factors, like t e ac or

h 1 tt' '
d

11

of ratios among t e a i

pbe dis layed in e
i.e. as functions o

b with a&b&c. ac o

the relations given in qs.

p t' s were made at in-
26) to four places beyon t e

ase. Computations wer
b h litervals o . inf 01 in b/a and 0.2 in c



26 DiPOLE-FIELD SUMS AND LORENTZ FACTORS FOR. . . 4561

TABLE i. Derivatives of Lorentz factors for a cubic
lattice strained in z (b) direction.

BL,
Bb

0.499
0.501
0.5045
0.5049

BLb

Bb

—1.000
—1.01
—1.0090
—1.0098

Source

Mueller, ' his own method
Herzfeld, quoted by Mueller'

Mueller, using Banerjee's method'
Present method

'Reference 8.

shown in Fig. 9 were drawn through the points to
illustrate the variation of the derivatives with lattice
geometry. From Fig. 9 it can be seen that the
derivative of a Lorentz factor with respect to the
lattice parameter whose axis is associated with it,
e.g., (dl.&z, /Gina), is always negative while those
with respect to the other lattice parameters may be
of either sign. At least one must be positive, in

consequence of Eq. (24).
It is clear from the foregoing that both the

Lorentz factors and their derivatives for
orthorhombic lattices are strongly dependent on lat-
tice structure. They may take on any value, positive
or negative. Therefore, use of the usual classical
theory of dielectrics, which assumes the validity of
the Lorentz field approximation, effectively setting

1

each of the I orentz factors equal to —, and their

derivatives equal to zero can lead to large errors for
noncubic crystals.

III. POLARIZABLE MOLECULES

The internal electric field at a lattice site of a
crystal of point dipoles is a strong function of lat-
tice geometry. If the dipoles are associated with po-
larizable molecules, the polarization state of the
crystal will be structure dependent. Thus if there is
some dipole moment associated with a "bare" mole-
cule, this moment will be modified in the crystalline
environment by an amount which is structure
dependent. If the molecules have no permanent
moment, the structure will influence the polariza-
tion developed under a given applied field. When
the crystal is strained, the internal field changes,
and the polarization, if any, changes also.

In this section a uniformly polarized crystal of
polarizable point dipoles on an orthorhombic lattice
is considered. To simplify the notation, the crystal
is imagined to be an ellipsoid with at least one of its
principal axes coinciding with a lattice vector
(Lorentz direction). The applied field due to exter-
nal sources and any permanent moment of the mol-
ecules in the lattice are presumed to be in the same
direction as this common axis. With these assump-
tions, the tensor notation may be suppressed. The
local electric field Ei„acting on a molecule (at a
lattice site) is given by

Qp
Eloc =Eappl+

E'p

2.0 .

l.5-

IQ i.O-

I0 05-

I I $
I g ~

0.6

0.8
I .0-
0.8

c/b
0.6

0.8
I 0-

C
~r0
~ -050

0
~LAAa"' ai. i

0.6

0.4

&LAAb

8 Init

.~ 06

LAAc
a ini

-I 0-
0

~~
Cl
& -is-

-20-

i,o
0.8
0.6

0.4

I

0 0.2 0.4 0.6 0.8 I,O 0
b/a

0.4

0.2 0.4 0.6 0.8 1.0 0
b/a

legend
~e~ it g a

it ~ b
mme g Q c

I

0.2

i.0-

/
/

/
/

/
/ ~& 06

/

0.4 0.6 O.I I.O
b/a

FIG. 9. Logarithmic derivatives of Lorentz factors for simple orthorhombic lattice. (a) BL», /Bink. (b)
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where E,pp] is the applied field due to external
sources and L is the Lorentz factor for the common
axis. It is convenient to define a macroscopic field
in the medium E,d as the sum of the applied and
depolarization fields, '

ap
Emed =Eapp] DP

6p

6pP=[1+L(»—1)]Pp+ (» —1)E~,d .
Qp

Then, if it is arranged to have E,d
——0,

P=[1+L(»—1)]Pp

(36)

(37)

whence

ap
E] ——E,d+ LP .

Cp
(32)

ap
P =Tla Emed + LP

&o
(33)

We first suppose the molecules to have no per-
manent dipole moment, but to have molecular po-
larizability a. The induced dipole moment p is re-

lated to a by

p QE]oc

and, if all the molecules are the same, the polariza-
tion is just P =np, with n the number of dipoles per
unit volume. Then, from Eq. (32),

which, for L= —, becomes P=( —, )(»+2)Pp, the

enhancement due to self-polarization found using

the Lorentz field approximation. It may be noted
that Eqs. (36) and (37) hold for each component of
P and E,d if all the tensors (L, », and a) are diago-
nal. The appropriate dielectric constant ~ is the
electronic or high-frequency one, sometimes called

~„andassociated with the index of refraction.
In Sec. II it was found that many choices of lat-

tice dimensions result in one or two negative
Lorentz factors. Because» & 1 in all cases, Eq. (37)
implies that the "enhancement" due to self-

polarization will actually be a reduction in these
directions, i.e., P will be less than Pp for crystal axes

having negative Lorentz factors.
Equation (34) may be solved for (»—1) to find

Qp

The polarization is related to the macroscopic field

E,d through the dielectric constant ~ by

P &o
(»—1),

Emed Qp

(» —1)= Fp

Qp
1 — nQL

6'p

(3&)

which, with Eq. (33), allows na to be expressed in
terms of» as

na= &o ~ —1

ap 1+(»—1)
(34)

Note that for the case of cubic symmetry, i.e., when
1L = —,, this reduces to the usual Clausius-Mossotti

relation,

ep 3(» —1)
ala =

ap x'+2

P =Po+ nQE] (35)

where Pp ——npp. With E~„asdefined in Eq. (32),
and Eq. (34) relating na to» and L, Eq. (35) be-
comes

Now suppose the molecules to have permanent
rnornents po. Then the moment of each molecule is

I =po+QE]oc ~

or, in terms of the polarization,

This indicates that if the molecular polarizability a
is isotropic, the dielectric constant ~ will be aniso-

tropic for noncubic crystals. Equation (38) also im-

plies the possibility of a structure-dependent "polar-
ization catastrophe, " i.e., a finite value of P with

Pp ——E,d
——-0, or equivalently, ~~ ce, when

L =apl(apna).

IV. CONCLUSION

The electric field internal to a crystal of molecu-
lar dipoles depends on the lattice structure through
the Lorentz tensor. While this tensor is in general
different from the dipole sum tensor which depends
on the shape of the crystal as well as the lattice
structure, the two can be equated for suitably
chosen shapes. A method for transforming these
dipole sums into rapidly convergent sums of Bessel
functions has been demonstrated. The rapid con-
vergence of these sums assures the required shape
independence of the Lorentz tensor components.

Computation of the Lorentz factors and their
derivatives for othorhornbic lattices has shown that
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the internal fields are quite sensitive to lattice struc-
ture. Thus the assumption L = —, commonly used

in dielectric theory can lead to large errors if the
lattice is not cubic.

For lattices whose Lorentz tensors are diagonal, it
is straightforward to include the effects of noncubic
structure in the classical theory of macroscopic po-
larization in response to an applied field in the form
of a modified Clausius-Mossotti relation, and to
derive from this a structure-dependent "enhance-
ment" factor for crystals containing polarizable
molecules with a fixed permanent moment. For
many crystal structures, this enhancement of I'o
turns out to be a reduction in consequence of nega-

tive Lorentz factors in one or two of the lattice
directions.

Even for cubic crystals, changes of the Lorentz
factors in response to small strains result in aniso-

tropic response. Derivatives of the Lorentz factors
have been shown to be as sensitive to crystal struc-
ture as are the Lorentz factors themselves, and
should be accounted for in any theory involving

changes in lattice dimensions.
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