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The phonon dispersion curves for graphite intercalation compounds (GIC s) are calculat-

ed for the case of potassium, rubidium, and cesium intercalates. The model is based on the

staging periodicity in these compounds in that it assumes that the symmetry of the graphite

crystal is preserved upon intercalation. The effect of intercalation is, therefore, taken into

account by a k,-axis zone folding of the graphite dynamical matrix. The resulting phonon

dispersion curves yield results in agreement with all the reported data on GIC s, derived

from neutron scattering and specific-heat measurements, and first- and second-order Ra-
man scattering experiments.

I. INTRODUCTION

Graphite intercalation compounds (GIC's) are
formed by introducing atomic or molecular layers
of a different chemical species, the intercalate, be-

tween the carbon layers of graphite. Such a process
results in a c-axis ordering called the staging
phenomenon whereby for stage n, there are n con-
secutive graphite layers followed by an intercalate
layer. GIC's can be classified as donors (electrons
transferred to carbon layers) or acceptors (holes
transferred to carbon layers).

Recently, there has been an increase in experi-
mental activity in connection with the lattice prop-
erties of the GIC. Dispersion curves are now avail-

able through neutron and Raman scattering experi-
ments' for [001] longitudinal phonons (i.e., Ai
symmetry modes) for different stages with inter-
calates K, Rb, and Cs, as well as some planar vibra-

tional modes (i.e., E symmetry modes) connected
with the intercalate atoms. Also, it is found that
the high-frequency E2g and E&„modes are split

into graphite bounding- and interior-layer
modes. ' First-order Raman spectra show that
the E2g Raman-active mode frequency is stage

dependent. This mode is downshifted for donor
compounds and upshifted for acceptor compounds
as a function of increasing intercalate concentra-
tion. ' ' Raman scattering has been the principal

experimental technique that yields information on
the phonon dispersion relations for frequencies
above -500 cm

Recently, Raman scattering experiments have
been carried out ' ' to probe the phonon modes in
the frequency range 10—50 cm ', yielding a split-
ting of these shear phonons into bounding- and
interior-layer modes. With increasing stage, the in-

terior shear-mode frequencies are found to ap-
proach 42 cm ', which is the zone-center shear
phonon frequency in pristine graphite, whereas the
bounding-layer modes are shifted to lower frequen-
cies.

Second-order Raman scattering experiments with

frequency shifts in the range 1600 &to & 3200 cm
on graphite-rubidium intercalation compounds
show a definite stage dependence of the position of
the peaks for n &3, in which the peak position
shifts upward with increasing stage n. ' However,
no peaks were observed in the second-order spectra
of stages 1 and 2, where there are only graphite
bounding layers and no interior layers; on the other
hand, peaks were observed in the first-order Raman
spectrum for these compounds. In stage-2 donor
GIC's, a sharp peak is observed in the first-order
Raman spectrum at co-1600 cm ', while a broad
Breit-Wigner line peaking near 1500 cm ' is ob-
served in stage 1.' ' This feature in stage 1 was

explained by Eklund and Subbaswammy' in terms
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of a strong coupling between a discrete graphite
mode at frequency ~-1585 cm ' to a frequency-
dependent phonon continuum, while Miyazaki
et al. interpreted this broad feature as a coupling
between three discrete phonon modes and a continu-
um in the electronic states. Finally, specific-heat
measurements ' showed an anomalous behavior
in stage-1, -2, -3, and -4 graphite-Rb compounds
and in C8Cs, whereas no anomalies were observed
for the case of graphite-K compounds in the tem-
perature range of 0& T&90 K. The specific heat
anomalies in CsRb and CsCs were identified with
an Einstein temperature.

Lattice-dynamical calculations for GIC's have
been sparse. The first calculation was done by
Horie et al. , who performed a lattice-dynamical
calculation for first-stage C8K and CsRb com-
pounds based on the Maeda model for the lattice
dynamics of pristine graphite. The Horie calcula-
tion gives 54 modes mainly due to zone folding of
the in-plane (2X2)RO superlattice. More recently,

Leung et al. developed an approach in which the
dispersion curves for all GIC stages can be obtained
from those of pristine graphite by carrying out a

k, -axis zone folding of the graphite dynamical ma-

trix and replacing the appropriate carbon layers
with intercalate layers. This technique will be used

in this work to construct a lattice dynamical model

for donor GIC's, which accounts for all the infor-

mation obtained from the above-mentioned experi-
ments. In particular, the model wi11 relate the
charge transferred from the intercalate to the car-
bon bounding layers with the observed features in

the first- and second-order Raman spectra.
The calculation of the phonon-dispersion rela-

tions is thus motiviated by the need to explain a
large variety of phenomena observed by Raman and

infrared spectroscopy ' and inelastic neutron

scattering. ' The results of the calculation can
then be used to explain anomalies observed in the
heat capacity, ' to model electron-phonon

scattering, which dominates electrical transport phe-

nomena, and to model phonon-phonon and
phonon-defect scattering, which are also important
in thermal transport phenomena. In this work, a
calculation of the second-order Raman spectrum is

presented. The results of this calculation are needed
to identify the phonon mode frequencies observed
in the second-order spectra ' with specific loca-
tions in the Brillouin zone. This calculation of the
second-order Raman spectrum is also of intrinsic
interest in explaining the suppression of the
second-order features in the graphite bounding

layers of the alkali-metal donor compounds. ""
The model can furthermore be extended and ap-

plied to the interpretation of phase transitions in the
intercalate layer that have recently been observed in
the graphite-Br& (Ref. 30) and graphite-Rb (Ref. 7)
systems. The transition from an incommensurate to
a commensurate phase introduces additional in-
plane superlattice periodicities that result in the
zone folding of specific zone-edge phonon modes
into the Brillouin-zone center. Thus Raman
scattering experiments can serve to detect such tran-
sitions. A detailed knowledge of the phonon-
dispersion curves can be used to identify the super-
lattice structure. The extension of the present
model to treat in-plane superlattice structures would
involve an in-plane zone folding of the phonon-
dispersion relations calculated in this paper for the
staged compounds followed by the introduction of a
perturbation with the in-plane superlattice syrnme-
try to produce a splitting of the folded modes at the
high-symmetry points and axes.

It is found experimentally that the in-plane inter-
calate structure has only a minor effect on the ob-
served in-plane Raman spectra. ' For this reason,
the present calculation does not explictly treat in-
plane zone folding. In this way, it is possible to
keep the calculation general and applicable to
alkali-metal donor compounds with different in-
plane orderings.

II. PHONON-DISPERSION CURVES
IN GIC's

In this work, the dynamical matrix for GIC's is
based on that for pristine graphite developed previ-
ously by the authors. ' In that model for pristine
graphite, interactions up to the fourth-nearest intra-
and interplane neighbors were considered. All data
obtained from neutron and Ram an scattering,
sound-velocity, and infrared-absorption experiments
are in good agreement with the results calculated on
the basis of the model. Moreover, the second-order
Raman spectrum is calculated, and all main
features in the observed spectrum can be explained
as overtones. In Table I, the force constants for
pristine graphite are given, where P„'"', P',"', and P'„"'

denote, respectively, the in-plane radial, tangential,
and out-of-plane tangential force constants between
nth nearest intraplane neighbors. The radial and
tangential force constants between nth-nearest inter-
plane neighbors are denoted by P„" and P',", respec-
tively.
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TABLE I. Values of the force-constant parameters in dyn/cm for pristine graphite.

Radial

P'„"= 312520.0

120 920.0

P'„"= 27978.0

0'„'= —25 508.0

P„= 2746.9

P, = 595.52

$, = —473.88

267 480.0

NRQ = —63 731.0

19000.0

= 9488.0

= —5934.1

1271.2

= 473.9

Tangential

P,',"= 86545.0

P,',
' = —9312.2

12 695.0

P,', '= 5498.4

P, = 200.0 = —927.8

In calculating the dynamical matrix for GIC's,
the layers stacking AXAX. . . is assumed for stage
1, ABXABX. . . for stage 2, ABAXABAX. . . for
stage 3, and ABABXABABX. . . for stage 4, where A

and B are graphite carbon layers and X is an in-

tercalate layer. For the even stages, a stacking
ABXBAXAB. . . was assumed previously, resulting
in a further folding of the k, -axis dispersion curves.
This additional folding complicates the calculation
considerably and leads to only minor changes in the
dispersion relations and density of states. In the
present calculation for a stage-n GIC, the unit cell
is taken to include n carbon layers with two distinct
carbon atoms in each layer and one intercalate layer
containing a single unit of mass. In order to model

a C„~X compound the atom of the intercalate layer
X is considered to be distributed over the graphite
unit cells with 2/g of an X atom taken as the mass

per unit cell. In odd-stage compounds, the inter-

calate atoms are placed over the center of every gra-
phite hexagon, whereas in even-stage GIC's, the in-

tercalate atoms are placed at the midpoint of the
line, normal to the carbon layers, that connects two
carbon atoms, one in an A layer and the other in a B
layer, as shown in Fig. 1, which illustrates the layer
stacking assumed in this model. To keep the
correct intercalate concentration, the mass of the in-

tercalate unit is taken as —the intercalate atomic4
I

weight in stage-1 compounds and —, of that for

n)2 in accordance with the commonly reported
stoichiometries of these compounds; CsX for stage 1

and C~2„X for n )2. With these assumptions rela-
tively high-stage compounds can be modeled
without use of excessive computer time.

It is to be noted that the Cz X intercalate struc-

Stages

-~-----~--- X

—~-—-~--- XA

A o~-o-o—o A

----~---- X

o-~-o-c~ A

~~—o~ 8
~-o-o—o A

-----~---- X

--~-----~-—- X~B

o~~~~ A

0~A-~ A

FIG. 1. Schematic diagrams illustrating the atomic ar-

rangements considered in this work for stages 1(n (4.
The intercalate atoms are denoted by solid circles in a
layer X. Carbon atoms are indicated by open circles in 3
and 8 graphite layers.

ture does not correspond to any known GIC. The
observed Raman spectra, however, are not, in gen-
eral, senstive to the in-plane structure. ' Thus the
in-plane C2„X structure was chosen for the calcula-
tion on the basis of computation simplicity and for
general applicability to alkali-metal GIC's.

The e-axis periodicity, imposed by the staging su-

perlattice, is taken into account by zone folding the
pristine graphite dynamical matrix along k, to ob-
tain the dynamical matrix of the intercalation com-
pound. We use k, -axis zone folding because the c-
axis superlattice resulting from staging is well docu-
mented, whereas experimental lattice spectra do
not show, except for a few isolated systems, 7 9' 3 a
dependence on the in-plane structure. ' In accor-
dance with the k, -axis zone folding scheme, the
Brillouin zone is (n + I j/2 times smaller than that
of graphite for a stage-n intercalation compound.
This inverse scaling relation also applies to the t, -

axis reciprocal-lattice vectors.
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The zone-folded dynamical matrix is then
transformed into the layer representation through a
unitary transformation. In this representation,
each layer can be identified with a specific row and
column in the dynamical matrix. A graphite layer
is then replaced by an intercalate layer, thereby ex-

plicitly taking the effect of intercalation into ac-
count.

The force constants between in-plane carbon
atoms are assumed to be stage dependent in general.
In order to fit the stage dependence of the Raman
data, it is necessary to introduce stage-dependent
force constants defined below. In the graphite
layers bounding the intercalate layers, the force con-
stants are taken as

p=pp(1 04 .0 0—4/n. ),

stage-dependent carbon —carbon bond length,

dc—c~ given by

dc c=—xo+lo/n (3)

in which the nearest neighbor C-C distance in pris-
tine graphite is xo ——1,4203 A and Io=0.013 A.
The final situation is thus one in which the C—C
bond in bounding carbon layers expands less than
what it would normally in order to lie at the poten-
tial minimum, the C—C bond in the interior layers
expands more than would be expected from the
charge transfer to bonds in the graphite interior
layers. Both bounding and interior graphite layers
are therefore strained for a stage index n )3.

Expanding the bonding energy in a Taylor series
about the minimum gives

whereas in the graphite interior layers, the corre-
sponding relation is taken as

V(x) =a(x xp) —b(x ——xp)

+c(x —xp) (4)

/=go(1 —0. 052 /n), n &3. (2)

In Eqs. (1) and (2), Pp represents the force constant
between two atoms in the plane of the carbon layers
of pristine graphite. Such a dependence of the force
constants on stage index may be explained as fol-
lows. Figure 2 shows a qualitative plot of the bond-

ing energy between two atoms in a solid as a func-
tion of the bond length. As the two atoms are
brought closer, the charge overlap increases, causing
a decrease in the energy. At a certain separation,
the energy is minimum, beyond which the Coulomb
repulsion between the nuclei takes over making the
energy increase rapidly. In the case of GIC's, the
charge transfer to the carbon bounding layers
causes the bond length to expand in order to mini-
mize the free energy. The expansion, however, is
shared with the carbon interior layers, giving a

For n) 3, the bounding layer dc c expands by
lp/n to become xp+lp/n instead of xo+Ip/2. By
assuming that the curvature at the strained equili-
brium position xp+ tp/n is the same as that at this
same point in the bonding energy curve whose
minimum is at xo+Io /2, the force constant be-
comes

8 V(x —I /2)

Bx x =xo+ Io/n
(6a)

or

where xo is the equilibrium bond length and a, b,
and c are taken to be positive. Then the force con-
stant between the two atoms is given by

1BVa=-
Ox

Binding „
energy

t)) =a+3blp/2+ —,clp (3blp+6clp—)/n

+6clo/n (6b)

x

Bond
length

FIG. 2. Diagram illustrating qualitatively the depen-
dence of the energy binding two atoms in a solid on the
bond length. The minimum in the potential defines the
equilibrium bond length xo.

For large n, the last term in Eq. (6b) becomes negli-
gible, and the same form as in Eq. (1) is obtained.
Similar considerations can be applied to the interior
layer, giving Eq. (2).

The interlayer force constants between carbon
atoms in adjacent carbon layers are taken to be the
same as in the case of pristine graphite except for
P, . Comparison to experiment shows that the shear
force constants between the layers are reduced by
donor intercalation. This is reflected in an increase
in P, . Comparison to experimentally measured
low-frequency shear modes' ' imply that for
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TABLE II. Additional force-constant parameters in dyn/cm for K GIC's.

yX-X

yX-X

yX-C

yX-C

Stage 1

1400.0
50.0

1660.0
—120.0

100.0

Stage 2

650.0
50.0

5600.0
85.0

250.0

Stage 3

650.0
50.0

1020.0
—67.0
250.0

Stage 4

650.0
50.0

5600.0
70.0

250.0

stage-2 GIC's, P, is —1.07 times larger than that in
Table I and 1.02 times larger in stage-3 GIC. Thus
the shear force constants between graphite layers
are weaker than in pristine graphite but approach
the graphite value with increasing stage.

For this lattice-dynamical model, it is necessary
to introduce some additional parameters. These are
(a) the radial and tangential components of the
intercalate-intercalate force constants P„and P,
(b) the radial and tangential components of the
intercalate-graphite force constants, P„and P,
and (c) a force constant, p3 3 related to the motion
in the z direction of a pair of atoms in the unit cell

belonging to the two bounding layers between which
the intercalant is sandwiched.

The values of the intercalate-intercalate force
constants for stage-1 GIC's are adjusted to repro-
duce the reported frequencies of the intercalate
modes corresponding to planar vibrations of the in-
tercalate atoms. These force constants are taken to
be less for n )2 than in stage 1 because of the lower
in-plane intercalate concentration for alkali-metal
compounds with stage index n & 2.

The intercalate-graphite force constants are
chosen such that the longitudinal and shear force
constants between the intercalate and the bounding
carbon layers are approximately the same for all

stages n &2. Larger force constants are chosen for
stage 1 because of the higher in-plane intercalate
concentration for stage 1. The force constant p3 3 is
expected to be the same for all stages n &2. It is
further expected that this force constant in these
stages would be larger than in stage 1 because of the
higher intercalate concentration in stage 1. These
additional parameters are given in Tables II—IV

for stages 1, 2, 3, and 4, for K, Rb, and Cs GIC's.
These parameters can be used to deduce the values
of the force constants for motion of rigid layers in
the z direction as well as the shear force constants.
In Table V, the c-axis force constants are given for
stages for which experimental results were reported.
In this table, we introduce an effective interplanar
force constant 4(X Cb ), obt-ained from the observed
stiffness p(X Cb), t-he c-axis force constant between
the intercalate layer and the graphite bounding
layer. Values of 4(X Cb) are o-btained by first di-
viding p(X Cb) by t-he pristine graphite stiffness
P(C;-C;) and then normalizing by division by the
relative areal density of the intercalant, 1/g, where

g =g/6.
For stage-1 alkali-metal GIC's, g= —, for the as-

sumed atom placements, whereas /=2 for n & 2. In
the notation of Table V, p(Cb-Cb) is the c-axis force
constant between the two graphite layers between
which the intercalate layer is sandwiched. In Table
VI, the shear force constants are given for K GIC.
The notation in this table is the same as that in
Table V except that the force constants in Table VI
are shear force constants rather than c-axis force
constants.

It is of interest to note that the Raman scattering
results for the low-frequency shear modes' ' imply
that the shear force constants between adjacent gra-
phite bounding layers are much weaker than for
pristine graphite (see Table VI). For the stage n = 3

compound, the shear force constant between a gra-
phite bounding and graphite interior layer is also re-

duced but to a lesser degree, and by stage 4, the
shear force constant p(Cb-C;) approaches that of
graphite. It is also of interest to note in Table VI

TABLE III. Additional force-constant parameters in dyn/cm for Rb GIC's.

yX-X

yX-X

yX-C

yX-C

Stage 1

1300.0
—50.0
1600.0

—100.0
0.0

Stage 2

600.0
—50.0
4800.0

85.0
220.0

Stage 3

600.0
—50.0
900.0
70.0

220.0

Stage 4

600.0
—50.0
4800.0

85.0
220.0
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TABLE IV. Additional force-constant parameters in dyn/cm, for Cs GIC's.

yX-X

yX-X

yX-C

yX-C

Stage 1

1300.0
—50.0
1600.0

—100.0
0.0

Stage 2

600.0
—50.0
4800.0

85.0
220.0

Stage 3

600.0
—50.0
900.0

—70.0
220.0

Stage 4

600.0
—50.0
4800.0

85.0
220.0

that the shear between the intercalant and graphite
layers is almost independent of stage.

In Fig. 3 we show the calculated phonon-
dispersion curves, along high-symmetry directions
for stages 1 —4 Rb GIC's, based on this model. The
calculated dispersion curves for the corresponding
K and Cs compounds for stages 1 & n & 4 are quali-
tatively similar, the similarity being much greater
for the high-frequency modes than for the low-

frequency modes, which are highly sensitive to the
interactions with the intercalant. For stages 1 and 2
there are no graphite interior layers; nevertheless, a
small splitting of the nearly degenerate graphite
bounding-layer modes is found away from the
zone-center. The dominant mode splitting in the
dispersion curves for n=3 is due to the distinction
between the graphite bounding and interior layers,
causing a tracking of pairs of phonon branches
throughout the Brillouin zone. In this connection it
is of interest to note additional small splittings in
the dispersion relations for n =4 associated with the
graphite interior layers away from the zone center.
Additional small splittings are also found in the
graphite interior-layer modes for higher-stage com-
pounds.

In Fig. 4 we show a plot of the calculated fre-
quencies of the Raman-active E2g modes identified

g2

with the carbon bounding and interior layers as a

function of I/n, the reciprocal stage index. This
figure shows the good agreement with the experi-
mentally observed values' for Rb GIC's of various
stages. The model thus accounts for the general
downshift of the E2s modes with I/n and also the

smaller downshift for the interior-layer mode rela-
tive to the bounding-layer mode.

The set of force constants for K GIC's given in
Table II reproduces the measured low frequencies
of the shear phonons. ' The calculated phonon fre-
quencies along the I 3 direction are compared with
the observed values in Fig. 5 for stages n = 1 and 2
of Rb GIC's, where the agreement is seen to be very
good. The same force constants as for stage n=2
were used in the calculations for stages 3 and 4 in
Fig. 5.

It should be noted that the excellent agreement
between the model calculation and the experimental
results is due in part to the use of an accurate model
for the phonon-dispersion relations for pristine gra-
phite. Most of the force-constant parameters of
the present model are fixed by those of pristine gra-
phite and the symmetry of the crystal structure.
Further confirmation of the model is provided by
the stage independence of the force constants.

The phonon density of states based on these
dispersion relations is calculated for different stages
of GIC's using the Gilat-Raubenheimer method,

TABLE V. c-axis force constants for the longitudinal modes in K, Rb, and Cs GIC's.
The force constants are norma1ized to those for pristine graphite. A C+ structure is as-
sumed for the stage-1 compounds and a C~2„X structure for the stage-n compounds.

Intercalant

Potassium

Stage 4(X-Cb)

1.95
1.95
1.80

$(Cb C;)-
1.0
1.0

P(C;-C;)

1.0
1.0
1.0

$(Cb Cb)'-
0.07
0.17
0.17

Rubidium 1.87
1.68 1.0

1.0
1,0

0.0
0.15

Cesium 1.87
1.68 1.0

1.0
1.0

0.0
0.15

'This interaction is between bounding layers across the intercalate layer.
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Stage e{x-Cb)

0.19
0.25
0.28
0.22

(()(Cb-C; )

0.37
0.83
1.0

(()(C;-C;)

1.0

TABLE VI. Shear force constants for K GIC's of
various stages. The force constants are normalized to
those for pristine graphite.

I550'
1

I I

I 1 1 1

5 4
1/n

I630—
l620—
i6iO~

E ~ &~o
o 1600
o I590—
~~ 1580'L~g

Li l570—
I560—

and the results are shown in Fig. 6 for graphite-Rb
stages 1&n &4. The density of states of GIC's is
found to be similar to that of graphite ' except
for three very sharp peaks in the low-frequency
range that arise from intercalate modes. These
modes occur at higher frequencies for the graphite-
K compounds and at lower frequencies for the
graphite-Cs compounds, relative to graphite Rb as
expected. The high density of states at co=45 cm
in stage-1 Rb GIC's suggest that there is an anoma-

ly in the lattice specific heat at a temperature of
-65 K, while for n & 2, the high density of states at
co=35 cm ' predicts an anomalous behavior in the
specific heat at T-50 K. These predictions are in

good agreement with the experimentally observed
temperature dependence of the lattice specific heat
in graphite-Rb compounds. '

It should be noted that the results of this work
differ in many respects from those of Leung et al.
Their calculation was based on the Maeda model
for pristine graphite and was carried out before
many of the GIC data used in the present calcula-
tion were known; consequently, the [001] longitudi-
nal and shear phonon frequencies in their calcula-

Graphite-Rb

FIG. 4. Raman-active E&g mode frequencies in Rb
GIC's plotted as a function of 1/n, the reciprocal of the
stage idex. The open circles are the calculated values and
the error bars indicate experimental values taken from
Ref. 14.

tion were in large error. The frequencies of the
modes identified with the intercalate-atom vibra-
tions were calculated to be -600 cm ', approxi-
mately an order of magnitude larger than the exper-
imentally reported values. This difference is mani-
fested in the phonon density of states calculation,
where in contrast we here predict three sharp peaks
in the range 0 & iu & 100 cm

III. RAMAN SCATTERING IN GIC's

A. General considerations

Raman scattering experiments provide a major
source of information about the phonon modes for
crystals in general and for GIC's in particular. Ra-
man spectra yield the frequencies of the zone-center
Raman-active modes as well as the positions of the
peaks in the phonon density of states. In first-order
Raman scattering, a single zone-center phonon is

Stage 1 Stage 2

200—

Stages

(500—

E—IOOQ-

N'

~ 500-

Q r

)
Stage 3

M K
Wave vector

I 50'
E

IOQ

(D 5Q
lx

0
r A I" A I" A

Wave vector
I A

FIG. 3. Phonon-dispersion curves in Rb GIC's for
stages 1, 2, 3, and 4, calculated along certain high-
symmetry directions using the force constants in Tables I
and III {see discussion in text).

FIG. 5. Phonon-dispersion curves along the I A direc-
tion in stages 1, 2, 3 and 4 Rb GIC's. The open circles
represent the experimental points taken from Ref. 4 and
7.
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Graphite —Rb
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I

1000 1500
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3
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i
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I
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FIG. 6. Phonon density of states for Rb GIC stages n= 1, 2, 3, and 4 corresponding to the dispersion curves in Fig. 3.
Above —100 cm, the phonon density-of-states curves are very similar to pristine graphite. The three sharp features at
low frequency arise from low-frequency in-plane shear modes, which sensitively depend on the intercalate layer.

emitted, whereas in second-order Raman processes,
two phonons from the same branch (overtones) or
from different branches (combination) of opposite
wave vectors are emitted.

First- and second-order Raman scattering experi-

ments have been carried out, and particular atten-

tion has been given to probe the high-frequency

phonon modes in donor GIC's. ' First-order Ra-
man peaks were observed for all stages with a split-

ting into two closely spaced peaks for n) 3.
On the other hand, peaks in the second-order Ra-
man spectra in the vicinity of co=2450, 2720, and

3230 cm ' were reported' for n )3 and none for
stages 1 and 2; however, no mode splittings are ob-

served in the second-order spectra in contrast to the
case of the first-order Raman spectra. In this sec-

tion we explain these observations by considering

the effect of the charge transfer from the donor

layers to the bounding graphite layers on the Ra-
man spectra. By calculating the imaginary part of
the phonon self-energy, we shall show that for
disordered intercalant layers the phonon bandwidth

for the graphite bounding layers is too broad to be
observed.

We start by considering the problem of phonon
renormalization due to electron-phonon interaction.
In terms of the annihilation and creation operators
of an electron with wave vector k, denoted by Ck

and Ck, and the corresponding phonon operators

bq and bq, the electron-phonon interaction Hamil-

tonian is given by

Hint P gaa'Ck+q, a'Ck, a(bq+b —q ) ~

k, q

where g, the matrix element of the interaction, is
taken to be wave-vector independent, and a and n'
are electron pocket indices. The Dyson equation
for the renormalized phonon propagator is illustrat-
ed in Fig. 7, which also expresses the phonon self-

energy Xq in terms of the electron polarization. If
we take the Coulomb interaction between electrons
into account, then Fig. 7 implies that

Xq
————g f G (k)G (k —q),. e' q (2m. )'

where G (k) is the propagator for an electron with

+

phonon propagator

renormalized phonon propagator

electron propagator

screened Coulumb interact ion

~ = electron-phonon interaction

FIG. 7. Renormalized phonon propagator due to
electron-phonon interaction. The figure also expresses
the phonon self-energy in terms of the electronic polari-
zation.
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four-momentum k=(k, co), and E(q) is the dielec-

tric constant which in the static limit e(q) =e(q, 0)
is approximated by

k,
e(q) =1+ ', u (

~ q ~
/2kp) (9)

and depends only on the magnitude of the phonon
wave vector. In Eq. (9), k, represents the screening

wave vector and kz the Fermi wave vector, and the
I

kernel is given by

u(x)= —+ ln
1 1 —x 1+x
2 4x 1 —x

(10)

The real part of Xq is proportional to a phonon-
frequency shift, whereas its imaginary part gives
rise to an increase in the phonon bandwidth. From
Eq. (8) the imaginary part of the self-energy at zero
temperature is given by

2

1m', = y
-' f d k8(k, —k)8( k+q —Q, ~

—kz)5(e (k) —e, ,(k+q —Q, )+Pm),
(2ir }' ~(q)

where Q« is the vector connecting the centers of
pockets a and a' in the Brillouin zone, and

T

(12)

denotes the step function. Equation (11) is propor-
tional to the probability of transferring an electron

from below the Fermi surface in electron pocket a
to above the Fermi surface in pocket a' by a pho-

non absorption. The 6 function expresses energy

conservation in this process.
To evaluate ImXq, we assume that the electronic

Fermi surface is cylindrical about the z axis, yield-

ing the following dispersion relation:

e (k)= (k„+ky) . (13)

In the case of the stage-1 compounds, a single-layer

f

model for the graphite with a linear dispersion rela-

tion should be used. ' This was done in the calcula-
tion of the phonon-dispersion relations and the pho-

non density of states presented in Sec. II. For the
application of the model to the Raman spectra, we

are only interested in identifying the location of Ra-
man structure with specific points in the Brillouin
zone and in explaining the origin of certain physical
characteristics of the observed first- and second-

order Raman spectra. It is thus possible to make a
number of simplifying approximations in the calcu-
lations relating to the intensity of the first- and

second-order Raman spectra that are not critical to
the calculated intensities [e.g., the calculated Ra-
man cross sections are not sensitive to the exact
form or parameters of Eq. (13)]. Using this as-

sumption, and denoting q —Q ~ by q ', we obtain

three possibilities for ImXq.

ImX~ =( mk, /2' —ir ) g (k~i/q')[g ./E(q)][1 (mco/fig'kFj q'/2—k~~) ]'—
a,a'

if q'& 2k+~ and +(Rq' +2fiq'k~z)/2m & co & (fiq' 2fiq'k~z)/2m-

or 'q2&Fk~ and (fiq' +2''k~~)/2m & co & (2fiq'k~~ Rq' )/2m, —

ImX~=( mk, /2' —ir ) g (kzi/q')[g /e(1)] f [1 (mco/fiq'kzi —q'/2kF&) ]'—
a,a

—[1 (mco/fig'kpq+q'—/2k~i ) ]'~ ]

(14a)

if ' q2&zkajnd 0&co &(2fiq'kpJ Rg )/2m, (14b)

or

ImXq ——0 otherwise . (14c}

In the above equation, k, is the length of the Fer-
mi surface along the k, axis and kzz is the radial
Fermi wave vector. As seen in Eq. (14c), the ima-

ginary part of the self-energy vanishes for a phonon
whose wave vector q =Q« . We thus conclude that
the electron-phonon interaction does not give rise to
any decrease in the lifetime of zone-center phonons

(Q =0), a result which directly follows from the
requirement that both wave vector and energy must
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be conserved. On the other hand, for phonons with
large wave vectors [Eq. (14a)], the dielectric con-
stant becomes e(q)-1, giving a negligible screening
of the electron-phonon interaction due to electronic
polarization. The imaginary gart of the self-energy
is negligible as long as

~ q —Q« ~
&&2k~i, a situa-

tion that applies in pristine graphite to phonon
modes away from the zone-center except for those
in the immediate vicinity of the E point where

ImX& vanishes anyway, as seen in Eq. (14c). If the
electronic density is sufficiently large so that
2kFi-

~ q —Q ~, then ImX~ will assume a value
mainly determined by g~~, the unscreened interac-
tion matrix element for both intrapocket and inter-
pocket scattering of electrons by phonon absorption.
In such a case, the phonon lifetime could be suffi-
ciently short so that the width of a second-order
Raman line, which is an overtone of such a phonon
mode, would be sufficiently large to make the
Lorentzian peak amplitude of the phonon too small
to be detected.

Upon intercalation, the electronic density in the
carbon layers bounding the intercalate layers is
several hundred times larger than that before inter-
calation. On the other hand, the electronic density
is only slightly modified in the graphite interior
layers. According to the above discussion, this
large increase in the density of electrons in the gra-
phite bounding layers leads to negligible damping
effects for zone-center phonons. Thus, the above
discussion shows why it is possible to observe the
first-order Raman spectrum for all stages of donor
GIC's. The graphite bounding-layer phonon modes
away from the zone-center, however, are highly
damped, and thus it is hard to observe any features
in the second-order Raman spectrum that arise
from such phonons. Assuming that kF&-3&10
cm ', we see from Eqs. (14a) and (14b) that pho-
nons along the I K direction giving rise to peaks in
the density of states at —1620 and -1350 cm ' ac-
quire bandwidths of few hundred cm ' for an
electron-phonon matrix element g«of —1.0 eV
normalized to a unit-cell volume. In the situation
where we have cylindrical electron pockets at the
equivalent K points in the Brillouin zone, however,
the M-point phonons are not damped, and a peak in
the second-order Raman spectrum at -2720 cm
should be observable. The M-point phonons are
probably damped by electron-phonon scattering in
which electrons in the cylindrical pockets are scat-
tered into the spherical pocket centered at the I
point and which results from the s electrons of the
intercalate layer, as well as intra-s pocket electron

scattering through phonon absorption. According-
ly, the absence of a peak in the second-order spec-
trum of stage-2 alkali-metal compounds is an indi-
cation of an occupation of the s band for that stage.
The disordered intercalate layer also provides a
mechanism for damping the second-order Raman
modes associated with the bounding layer.

An appreciable filling of the electronic conduc-
tion bands imposes phase-space limitations on
electron-hole creation through photon absorption
and electron scattering in the conduction band with
phonon emission. Since both virtual processes oc-
cur in a second-order Raman scattering event, a
resultant decrease in the cross section of the scat-
tered light is predicted.

Summarizing our results so far, we note that
while the first-order Raman spectrum may be ob-
served for light scattering from phonons identified
with carbon-atom vibrations in graphite interior
layers, or those bounding the intercalate, second-
order Raman features can only be observed from
phonons that describe the atomic vibrations in the
graphite interior layers in the case of donor inter-
calants such as K, Rb, or Cs; the contributions to
the second-order spectra from the graphite bound-
ing layers are too heavily damped to be observable.

B. Calculations of the second-order
Raman spectra

In second-order Raman scattering, the incident
photon is annihilated, a scattered photon is created,
and two phonons are emitted or absorbed, or one is
emitted and the other is absorbed. The photon-
phonon interaction takes place via the electron-
photon and electron-phonon interactions. The
second-order Raman cross section for Stokes pro-
cesses (two phonons are emitted) is given by

(15)

where q, i, and co;( q) denote the phonon wave vec-
tor, branch, and frequency, respectively, and co and
co' are, respectively, the frequencies of the incident
and scattered photons. The scattering cross section
is thus a weighted density of states in which the
weight function W( q, i) is proportional to the
square of the second-order Raman tensor. We fol-
low the same assumptions as in the case of pristine
graphite, ' so that the weight function is taken to
be proportional to the fourth power of electron-
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phonon interaction matrix element, and the
electron —LA-phonon coupling constant is taken to
be 3.5 times larger than the electron —optic-phonon
coupling constant. These assumptions were shown
to yield a calculated second-order Raman spectrum
for pristine graphite that reproduced all the main
features in the experimentally observed spectrum:
the peak positions as well as their relative intensi-
ties. Since in the case of alkali-metal GIC's, con-
tributions to the second-order Raman spectrum
come only from graphite interior layers, which to a
good approximation are unaffected by the intercala-
tion process, it is expected that the same assump-
tions concerning the electron-phonon interactions in

pristine graphite will hold in the case of alkali-

metal GIC's. It should be noted that the electron
scattering by phonon emission or absorption that is
discussed here in connection with the second-order
Raman spectrum is not the same as that giving rise
to phonon damping. While the processes that lead
to the broadening of the phonon bandwidth are real
absorption or emission processes that involve free

carriers and which are energy conserving, those
determining the Raman cross section are virtual
processes in which no free carriers participate.

In general, the phonon modes at general points in
the Brillouin zone are not purely optic or acoustic,
transverse or longitudinal, but rather have a mixed
character. In stage-3 GIC's, we determine the 21-
component normalized eigenvector V(q, i),
1 &i (21, at many points in the Brillouin zone, and
then project these eigenvectors along those for the
zone-center phonon modes. According to the dis-
cussion in Sec. IIIA, the bounding-layer phonon
contributions to the second-order Raman scattering
cannot be observed because of strong damping ef-
fects; thus the calculated eigenvectors are projected
along the eigenvectors for the phonons associated
with the graphite interior layer only. The probabili-
ties PI and P, that the phonon is either a graphite
interior layer longitudinal-acoustic or an optical
phonon corresponding to atomic in-plane vibrations
of the graphite layer are given by

P& ( q, i ) = t [V, ( q, i) + V4( q, i ) ]qx + [V3( q, i) + Vs( q,i ) ]q3, ] /2 q

P, (q, i)=[
I

Vi(q ') V4(q ')
I

+
I

V2(q, i) —V3(q,i)
I

]/2,

(16)

where the first six rows and columns of the 21X21 dynamical matrix are identified with the two distinct
atoms in the graphite interior layer. For stage-4 GIC s, we identify the first 12 rows and columns of the
27&27 dynamical matrix with the four distinct carbon atoms in the two graphite interior layers. The corre-
sponding probabilities for a phonon to be an in-plane interior-layer longitudinal-acoustic or an optic phonon
are, respectively, given by

(18)

and

P, (q, i)= —, g [ V, (q, i)+ V, +3(q, i) —Vj+6(q, i) Vj+9(q, ')
I

—'
j=1,2

+
I V, ( q, O —V, +3( q, i) —Vj+6(q, i)+ Vj+9('q

+
I

V (q, i) —VJ+3(q, i)+ VJ+6(q, i) —VJ+9(q, i) ], (19)

where the three-component vector T(q, i) is related to components of the 27-component normal mode vector
V(q, i) by

TJ(q, i)= g Vj+3 (q, i)/2, j=1,2, 3 .
n =0,3

As in the case of the calculation of the second-order Raman spectrum in pristine graphite, ' the weight
function W(q, i) is chosen to contain an additional wave-vector —dependent term that reflects the symmetry
of the crystal. The form thus obtained for the weight function is

8'{q i)=F(q)[P (q i)+3 5Pj(q i

in which F( q ) has the same functional form as in the pristine graphite calculation, so that
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F(q) =(I+F»+2.65F,p —3.5F»)'

and the wave-vector —dependent symmetrized functions are

F
& p I

c—o—s(2~k
&
l3) +cos[2n (k

& +kz )/3]+ cos(2m k& l3) I /3,

Fpp =
I cos( 477k ] l3 ) +cos[4m ( k ~ +k q ) l3 ]+cos( 41rk q l3 ) I l3

Fz& ——I cos[2m(2k
& + k& )/3]+ cos[2n (k

& + 2k& )/3]+ cos[2~(k
&

—
k& )/3] I /3 .

(22)

(23)

Finally, we take into account the phonon band-
width in the calculation of the second-order Raman
spectrum. The 5 function in Eq. (15) implies that
the phonon mode has zero bandwidth and thus an
infinite lifetime. To incorporate into the calcula-
tion the finiteness of phonon lifetimes, the 5 func-
tion is replaced by a Lorentzian distribution cen-
tered at the phonon frequency co;(q). Consequent-

ly, the Raman scattering cross section that we cal-
culate has the form

d o ~ 8'(qi)
dc@'dQ; 4I [(~—~')/2 —~, (q)]~+I'~I

(24)

2704

I

where I is taken to be 6 cm, and 8'(q, i) is given
in Eq. (21). We note that the expression for the
cross section as given in Eqs. (15) and (24) assumes
that the two emitted phonons have equal and oppo-
site wave vectors and are on the same branch of the
dispersion curves. In Fig. 8 we plot the second-
order Raman intensity of a stage-3 and a stage-4 Rb
GICs as calculated from Eq. (24) according to the
assumptions made in Eq. (21). These plots show

good agreement between the calculated peak posi-
tions and the experimentally reported ones. '

The main features in the calculated spectra for
both stage-3 and stage-4 Rb GIC's at frequencies
m=3220 and 2700 cm ', respectively, arise from
the maximum in the phonon-dispersion curves

along the I K direction and the region near the M
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FIG. 8. Calculated second-order Raman spectra for (a)
stage-3 Rb GIC's and (b) stage-4 Rb GIC's according to
Eq. (24). The calculated spectra explain the main
features observed experimentally.

FIG. 9. Positions of the peaks in the second-order Ra-
man spectrum in Rb GIC's as a function of the reciprocal
of the stage index. The open circles represent the calcu-
lated values and the error bars indicate the experimental-

ly observed values according to Ref. 14.
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point. The peak at ro =3220 cm ' is identified
with optic phonons, while that at co=2700 cm
results from longitudinal-acoustic phonons (see Fig.
3). The doublet at ro =2410 and 2500 cm ' arises
from midzone minima and maxima in the phonon-
dispersion curves resulting from the coupling of the
optic and longitudinal-acoustic phonon branches.
Such a coupling gives peaks in the density of states
that are rich in longitudinal-acoustic character
which couples strongly to the electrons and holes,
causing an appreciable scattering cross section at
the corresponding frequencies.

A comparison between the peak frequencies of
the experimentally observed features and the results
of the calculation are shown in Fig. 9 for the
second-order Raman spectrum as a function of the
reciprocal of the stage index. As shown in this fig-
ure, the calculation gives a stage-dependent shift in

the positions of the peaks of the second-order Ra-
man spectrum. This results from the stage depen-
dence of the force constants for vibrations in the
graphite interior layers, given in Eq. (2). The calcu-
lation, however, does not account for the whole fre-
quency shift that is observed experimentally. One
possible explanation is that there is a small frequen-
cy shift resulting from the real part of the self-

energy. Although the charge transferred to the in-
terior graphite layers is only a small fraction of that
transferred to the bounding graphite layers, the ad-
ditional charge in the graphite interior layers could
be large enough to cause a small downward fre-
quency shift for phonons whose wave vectors are
away from the zone center [e(q)-1 for such pho-
nons]. That such a shift is downward can be
mathematically shown in some simple cases, such
as a spherical Fermi surface. We assume that the

TABLE VII. Comparison for K GIC's between various experimental values and the model

presented in this paper.

Material
Stage X

Type
of experiment

Mode
symmetry

Value (cm ')
Expt. Model Ref.

Elastic neutron
scattering'

r
A

A

-201
-120
-170

201
111
170

3
3
3

Raman (first order) r
r
r

—19
~23

—1600

19
23

1600

15
15
34

Elastic neutron
scattering"

r
r
A

A

A

-115
—180
~73
-86

-180

115
180
73
83

180

Raman (first order)

Elastic neutron
scattering'

r
r
r
r
r
A

A

A

~23
~33
-95

-105
—180
-53
-58

—120
—180

23
34
96

105
175
53
58

120
175

15
15
15
3
3
3
3
3
3

Raman (first order) r
r
I

-16
—19
-39

18
19
39

15
15
15

'The residual (g ) error of the mode to 17 points was less than 5%.
The residual ig ) error of the mode to 16 points was less than 5%.

'The residual (g~) error of the mode to 26 points was less than 5%.
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same will hold in the case of a cylindrical Fermi
surface.

IV. CONCLUSIONS

The calculation presented in this work is easily
extended to any stage index by virtue of the fact
that we only make use of the k, -axis zone-folding
technique. The results of this calculation for stage-
1, -2, -3, and -4 of Rb, K, and Cs GIC's are in good
agreement with all the reported experimental values
on the lattice properties of these compounds shown
in Tables VII—IX. The calculation reproduces
the observed high- and low-frequency Raman-active

modes as well as the dispersion curves measured by
neutron scattering from the [001] longitudinal pho-
nons (see Figs. 4 and 5). The calculations also ac-
count for the mode frequencies indentified with in-
tercalate planar atomic vibrations through neutron
scattering and specific-heat measurements (see Figs.
3 and 6). The classification of the graphite layers
into interior and bounding layers and the assump-
tion that most of the charge transferred from the
intercalate layer to the graphite layers resides on the
carbon bonding layers allow us to explain why the
second-order Raman spectrum is difficult to ob-
serve in stages n = I and 2. Graphite interior layers
exist only when n &3, for which case the second-
order Raman peaks become observable. The

TABLE VIII. Comparison for Rb compounds betwen various experimental values and
the model presented in this paper,

Material
Stage X

Type
of experiment

Mode
symmetry

Value (cm ')
Expt. Model

Elastic neutron
scattering'
Specific-heat
anomaly

-155

-49

155

46 21 —23

Rb Raman (first order) r
r
r

-17
-21

—1600

17
20

1600

7
7

14

Elastic neutron
scattering

r
A

A

-112
-120

-68
—134

112
120
72
68

132

Specific-heat anomaly -35 35 21—23

Rb Raman (first order)

Raman (second order)

Specific-heat anomaly

-1578
-1603
-2420
-2685
-3220

-35

1578
1605
2437
2704
3227

35

14
14
14
14
14
22

Rb Raman (first order)

Raman (second order)

Specific-heat anomaly

-1579
-1607
-2425
-2700
-3225

-35

1579
1608
2441
2710
3230

38

14
14
14
14
14
22

'The residual (g ) error of the mode to 13 points was less than 2%.
"The residual (g2) error of the mode to 19 points was less than 2'.
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TABLE IX. Comparison for Cs compounds between various experimental values and the
model presented in this paper.

Material
Stage X

Type
of experiment

Mode
symmetry

Value (cm ')
Expt. Model Ref.

Cs Elastic neutron
scattering'

Specific-heat
anomaly

I"
A

A

-140
-82

-120
~33

140
90

106
36

3
3
3

21

Cs Raman (first order)
Elastic neutron
scattering'

Specific-heat
anomaly

—1600
-112
-68

-120
-24

1600
112
68

121
28

34
3
3

3
21

Cs Raman (first order)
Specific-heat
anomaly

-1603
-24

1605
28

34
21

Cs Specific-heat
anomaly

'The residual (g ) error of the mode to 16 points was less than 5%.

second-order Raman cross section for GK."s is cal-
culated for stages 3 and 4, employing the same as-
sumptions as were previously applied to the case of
pristine graphite, and all the main features in the
observed spectrum are reproduced in the correct po-
sitions (see Fig. 8).
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