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Surface spin relaxation of stabilized atomic hydrogen
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We present a distorted-wave calculation of the spin relaxation of hydrogen atoms adsorbed at

a superfluid helium surface, due to H-H collisions. Both the interatomic triplet potential and the

dipole-dipole interactions are averaged over the bound state at the surface. The result is com-

pared with experiment and with some alternate methods.

In recent years important progress has been made
in stabilizing atomic hydrogen against molecular
recombination by polarizing the electron spins. '
Several papers' have been published, which throw
further light on the problems to be overcome on the
way to the higher densities necessary for Bose-
Einstein condensation. One of these problems is a
relaxation mechanism, 5 consisting of transitions
between the lowest two hyperfine levels b = j i and
a = j$ —et ) ( J electron and $ proton spins) for a
magnetic field 8 AO, taking place in H-H collisions
both in the gas phase and at the helium surface.
Both the volume and surface relaxation rates, T~ ',
have recently been measured by Cline et al. The
rather large value of T~ makes the achievement of
higher densities, and possibly the Bose condensed
state, feasible. Due to the importance of this prob-
lem, in this paper we reexamine the theory, relaxing
some of the restrictions of earlier models.

The gas-phase relaxation rate was calculated using
the distorted-wave and several other approximations
by Statt and Berlinsky, 5 and in the plane-wave ap-
proximation by Siggia and Ruckenstein. ' In a forth-
coming publication we shall present a more accurate
calculation of the differential cross section for transi-
tions between a and b, relaxing various approxima-
tions in Ref. 5. This calculation confirms the validity
of the approximations up to the 10 ' level of accura-
cy. In addition we shall go into the discrepancy of al-
most a factor of 2 between the relaxation times T j of
Refs. 5 and 7.

The relaxation of H atoms at the helium surface
due to binary collisions and diffusion has recently
been studied by Lagendijk in the plane-wave approx-
imation, excluding in the Born integral a volume cor-
responding to a hard-core radius a =3.67 A. The
collisions of the H atoms are treated as a purely two-
dimensional problem, the interatomic radius vector in
the magnetic dipole-dipole interactions being taken
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FIG. 1. Choice of coordinate frame. Initial and final rela-
tive H-H momenta k, and kf are indicated. Magnitudes

parallel to the surface. For the binary collisions the
same excluded volume plane-wave approximation has
been considered by Ruckenstein and Siggia. ' The
dipole-dipole interactions, however, are averaged
over the uncoupled probability distributions in the z
direction perpendicular to the surface. In this paper
we present a more satisfactory calculation of the sur-
face relaxation rate due to binary collisions, based on
the distorted-wave approximation.

The three-dimensional nature of the H-H collision
process is taken into account in a rudimentary way by
z averaging both the central and the dipole-dipole in-
teractions. This procedure can be considered as a
first step in a more systematic approach in which
more than one state in the z direction is included.
We thus restrict ourselves to the open-channel part
of the collision problem. The spin states are treated
three dimensionally with the homogeneous magnetic
field as a quantization axis. The choice of the coordi-
nate frame is illustrated in Fig. 1.

As in the gas phase the relevant inelastic processes'
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are a p= bb ab and aa ab. The differential
cross length A. (analog of the three-dimensional cross
section) for each of these is

2

& -p(kf, k;)=, IT+-p(kr, kI) I',
2mb kl

where p, is the reduced mass. Taking antisymmetri-
zation into account, "we have in the distorted-wave
approximation

T p(kg, k;)

U = V1 —tsar, aB

The potential V is the interatomic potential for the
same partition:

V =Po Vo+P1V1+Hss+ Hsr

+gsp, st '(St+Sz) B

(3)

(4)

= (xs~k 4's( v —U)(l —Pt2) (1 Pgs) l—xtklv )

(2)

The functions 4 indicate normalized spin functions
aa, etc. The partition of electrons 1,2 and protons
A, B into two H atoms is identical for bra and ket vec-
tors, say 1A +2B, with two-dimensional relative vec-
tor p 1~ 2p. Electron and proton permutation opera-
tors are indicated by P12 and P&~, respectively.
The distorted waves X +' and X ', in customary
notation, contain plane waves exp(i ki p t& zs) and
exp(i kr p» zs), respectively, distorted by the triplet
potential and the triplet spin-down Zeeman energy:

Vo denoting the singlet potential and Po(P~) standing
for the projection operators on electron singlet (trip-
let) states.

The only term in Eq. (4) contributing to the
relevant inelastic processes are the spin-dependent
electron-electron and electron-proton dipole-dipole
interactions Hss and Hsi. Taking into account the
large distance of closest approach at the collision en-
ergies involved, '8 their combination takes effectively
the form

' 1/2

Hss +Hsi ll yg yp
12m

!
'|

M 1 tVp
3

in the notation of Ref. 5, R standing for the three-
dimensional relative vector R1& 2~ and M being the
angular momentum transfer along the direction of B.
Brackets ( ) z indicate an average over the probabili-

ty distribution F(Z) for the relative distance Z of the
atoms in the z direction. We approximate F(Z) to
be of Gaussian form. The averaging procedure is of
special importance for the m = 0 m' = 0 transition
between partial waves m and m' relative to the z axis.
We take the value F(0) = 0.095 A ' from Edwards
and Mantz. ' Furthermore, we note that in the
above-mentioned large-distance approximation only
the P12P~~ exchange term has to be taken into ac-
count. The initial aa and bb states having I = S, an-
tisymmetrization for electrons and protons requires m

values to be even. We thus find

T -s(kf, k;) =+6ii y, y~ 1+a ' k t /exp(im'qh„— imp„)f t
m'm

&&sin8[+8 , r, cos8+8, ——r,(1+cos8)1 1—

+g, , 4r, ( 1+cos8)]-
t

(6)

In this expression the radial integrals are defined by

r ~
= „u (p)(3p R —28 ')zu~(p) dp, r ~

= „' u, (p)(p'8 )zu~(p) dp

where the u functions are normalized as cosine functions asymptotically. The upper (lower) signs in Eq. (6) refer
to the bb ab (aa ab) process, whereas m' and m run through even values only. The integrated cross lengths,
averaged over initial directions of relative motion, turn out to be equal and are

A,,rr=9p, y, y~ 1+a ' k sin 8 $ [8, lr, l cos 8+ 4 (5 i +5 i )lr, l (1+cosz8)] . (8)
t P, m m

The surface relaxation rate T1 =2n, G„where n, is the surface coverage, is characterized by the intrinsic factor

G, = (2p, ) 'i'p „dEX,ff(E) E' 'exp( —pE ) (9)
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where P = 1/ksT. Using Eq. (8), we find the final
expression

G, = G, o(T) sin 28+G,, q(T) sin e(1+cos ti)

(10)

in which for high fields we have approximately (in
10 "m's ')

16.68 ~

Gg, o(T) = (0.96 —0.82T+0.74T ) 1+

G,, p(T) = (0.019+0.139T) 1+

in the temperature range 0.2 ( T (0.4 K (B in tes-
la). To derive Eq. (11) we have described the
behavior of the ) r ( and

~
r ) quantities in a limited

energy range by a quadratic and linear function of en-
ergy, respectively. Note, furthermore, that the tem-
perature dependence of G„on which the analysis of
Cline et al. is based, does not seem to be consistent
with our theoretical results: Instead of being dom-
inantly proportional to T, the theoretical value of G,
shows a weak temperature dependence. Taking into
account the strong temperature dependence due to
the wall-binding Boltzmann factor, the experimental
data in Ref. 6, however, are not inconsistent with a
different dependence on temperature. We have
reanalyzed the data of Cline et at. assuming G, to be
temperature independent and find a value of
(0.4+0.1) && 10 ' m s '.

Now let us compare with theory, taking B = 11 T
and T =0.3 K. The experimental geometry essential-
ly has 8=90' for all surfaces, where 8 characterizes
the macroscopic surface normal. In this case G,
equals G, z

——0.38 x 10-Is ms s-i in very poor agree
ment with experiment. However, the surfaces of the
copper cell probably have a roughness of order
0.1—1 p, m. This roughness is not leveled by the sat-
urated helium film with a thickness of order 200 A.
Since the microscopic angle 8 does not significantly
vary over many atomic wavelengths the H-atom
motions do not motionally average the surface nor-
mal to give 8. Thus the angular factors in Eq. (11)
must be averaged over the rough surface. We as-
sume a simple model in which the surface normal has

. a spherical probability for 8 & 45', so that the surface
looks like a muffin tin. The surface area becomes a
factor cx = 1.17 times the projected area; the experi-
mental value of G, is reduced by o.. By averaging
about any angle 8 we find that G, 0 dominates G, q.

For 8=90' we find G, =0.23x10 "m's ', which is
an order of magnitude smaller than experiment. We
note that for an atomically flat surface the maximum
value of G, is 0.52 x 10 "m s ' at 8= 45' and the
minimum value is G, =0 at 8=0'. Compare the

TABLE I. Comparison of relative magnitudes of G, 0 for
two-dimensional (2D) approach (no z average, i.e., Z =0),
2—D approach (only dipole-dipole interactions averaged),

2
&

D approach (all interactions z averaged), for both triplet

and hard-sphere potentials.

Averaging option Triplet potential Hard sphere

2—D
1

2

2—D
i
4

2D 3.5

0.37

0.37

0.80

latter case with a rough surface with 8=0'. Averag-
ing as above we then find G, =0.36 x 10 "m's '.
We conclude that, unless surfaces are atomically flat,
the geometry of an experimental cell is unimportant
with respect to Ti.

It is interesting to compare also with other theoreti-
cal methods. We restrict ourselves to the G, o term,
which is apparently the dominant term. Starting from
the approach of the present paper (see Table 1: 2 —,D

i

model), let us first study the effect of leaving out the
z averaging of the triplet potential. It turns out that
this effect is negligible (2—,D model). A significant

effect is probably restricted to higher energies where
the relative wavelength becomes comparable to the
radial displacement of the classical turning point from
0- to smaller radii due to z averaging. Next, let us
also leave out the z average of the dipole-dipole in-
teractions. This does have an appreciable effect: an
increase by a factor of about 3.5 (2D model), due to
the increase of the dipole-dipole coupling at small
distances. In order to compare with previous work
based on hard-sphere scattering, it is also of interest
to study the three above-mentioned averaging op-
tions in combination with a hard-sphere potential
with radius o. =3.67 A. We have used the exact
hard-sphere radial wave functions, consisting of
Bessel and Neumann functions. In this case the
2 —,D and 2

4 D models coincide and lead to a G, 0
1 1

value lower than our most exact result by a factor of
approximately 2.7. Subsequently, leaving out the z
averaging leads to a net decrease by about 1.25.
Lagendijk's approach can be considered as a modifi-
cation of this last method. He uses only the Bessel
part of the radial wave function which has a finite
value at the hard-core radius and he excludes the
hard-core volume from the Born integral. One
should expect an increase of G, o from this modifica-
tion. From our own calculations we conclude that
this approximation is bad: It modifies the final G, 0
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value by a factor of 18 to 21 in the temperature range
from 0.2 to 0.4 K. We note, furthermore, that the
omission of the Neumann function part enables
Lagendijk to express his final binary collision results
as expansions in a dimensionless parameter e propor-
tional to T' '. Such an expansion is not possible for
the exact hard-sphere case. Our formulas (11)
should not be considered as low-energy expansions,
but as best-fit polynomials in the above-mentioned
temperature interval. If we use Lagendijk's approxi-
mation and compare to the triplet potential 2—D

model we thus find a factor of approximately 16,
compared to a value of 5 found if we extrapolate

Lagendijk's formula to our temperature range. Ruck-
enstein and Siggia also use the hard-sphere model
and apparently introduce the same approximation as
Lagendijk. Although this approximation tends to
lead to better agreement with experiment, our more
exact calculation indicates that a major discrepancy
still exists.
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