
PHYSICAL REVIEW 8 VOLUME 26, NUMBER 8 15 OCTOBER 1982

Lattice-dynamical model for graphite
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The lattice dynamics of pristine graphite is presented with the use of a Born —von

Karman model. With the consideration of interactions to fourth neighbor both intraplane

and interplane, good agreement is simultaneously obtained with ir, Raman, and inelastic
neutron scattering measurements of lattice modes and with the measured elastic constants.
The second-order Raman spectrum is also calculated and compared with experiment.

I. INTRODUCTION

The recent interest in graphite and its intercala-
tion compounds has led us to reexamine the lattice
dynamics for pristine graphite. Our investigation
was motivated by a desire to explain the recently re-

ported second-order Ram an spectra in pristine
graphite' and by the fact that the lattice-
dynamical models for the intercalation compounds
are based on that for pristine graphite. A number
of lattice-dynamical models have been published
over the past several years. These models re-

quire additional terms or interactions in order to fit
all the recent experimental data. In particular, the
most frequently used model for graphite by Maeda
et al. does not fit the experimental data for the
elastic constants or the low-frequency M-point
modes as given in Table I. This table also lists ex-

perimental values for the first-order high- and low-

frequency Raman-active Ez modes, the infrared-
active E&„and Az„modes, and the low frequency
I - and M-point modes determined from inelastic
neutron scattering experiments, in addition to the
measured elastic constants. ' " It is the objective of
this paper to develop a model that simultaneously
fits all the experimental values in Table I and to use
this model to calculate the second-order Raman
spectrum for pristine graphite.

The staging superlattice associated with intercala-
tion compounds suggests that an understanding of
the modes in intercalated graphite could lead to im-

proved models for calculating dispersion curves for
pristine graphite, particularly for the low- and
high-frequency branches away from k=0. Such an

approach was used by Feldman et al. ' for the lay-
ered material SiC on which they carried out Raman
experiments and used the polytypes to establish a
superlattice and to infer the optical phonon
branches.

.The Born —von Karman model presented here
makes use of the lowest-order interaction terms re-

quired to fit the experimental data. In this connec-
tion, it was necessary to extend the Maeda model to
include up to fourth-neighbor in-plane and out-of-
plane interactions. The density of states calculated
from this model has peak shifts as large as —150
cm ' relative to the Maeda model for some of the
low-frequency features. A calculation of the
second-order Raman spectrum was carried out as-
suming the electron —LA-phonon coupling is the
dominant light-scattering mechanism. The result-

ing calculation yields good agreement with the ob-
served second-order Raman spectrum, though the
force constants of our model were not adjusted to
fit the second-order Raman spectrum.

II. MODEL FOR PHONON-DISPERSION
RELATIONS

Graphite is a hexagonal crystal with four atoms
per primitive cell. The unit cell has four atoms, la-
beled 1, 2, 3, and 4 in Fig. 1; the second, third, and
fourth in-plane neighbors are denoted by 5, 6, and

7, respectively, whereas labels 8 and 9 refer to the
third and fourth out-of-plane neighbors, respective-
ly. The primitive lattice vectors are given by
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TABLE I. Experimental lattice mode frequencies (cm ') and elastic constants (10"
dyn/cm ) in graphite and comparison to model calculations by Maeda et al. (Ref. 5) and the

present work.

co(Egg )

co(E)„)
co(A2u )

co(Egg, )

co(B)g )

~T&(M point)

uTo(M point)

Observed

1582

1587'
868
42'

127'

-465
-480

Maeda'

1575

1574
850
44

127

-290
-300

Present
calculation

1582

1587
867
42

127

465
478

Cii =C22

C

Css =C44

106.0~

44.0~

3.65~

1.50~

0.40~

0.40

145.0
44.0
3.65

—0.06
0.06
0.35

106.0
45.0

3.69
1.50
0.42
0.42

'Calculated from the constants of Ref. 5.
References 27—29.

'References 29 and 30.
Reference 29.

'Reference 16.
Reference 6.

~References 10 and 11.

a, =(ao,o,o),
a2 ——(ao/2, aors 3/2, 0),
a3=(0,0,cp)

where ao ——2.46 A and co ——6.70 A.
The }2&12 dynamical matrix is constructed

using the site representation and is written as

D(q, ll) D(q, 12) D(q, 13) D(q, 14)

D(q, 21) D(q, 22) D(q, 23) D(q, 24)

D(q, 31) D(q, 32) D(q, 33) D(q, 34)

D(q41) , D(q, 42) D(q, 43) D(q, 44)

(2)

co

Oo

FIG. 1. Lattice sites in graphite showing distinct

atoms in the graphite unit cell labeled by dark balls and

the numbers 1, 2, 3, and 4. The other in-plane sites are
numbered 5, 6, and 7 in order of their distance from site

1, while the third and fourth out-of-plane sites are

denoted by 8 and 9.

where each block Dp~(q, kk) is a 3X3 matrix. ' '
Two forms for D~~(q, kk') appear in the literature. '

We make use of both forms (see pp. 327 and 328 of
Ref. 14) and denote the corresponding dynamical

matrices by D(q) and D(q). A general formula for
the force-constant matrices for any pair of atoms is
derived in Ref. 15. In this paper we follow the no-

tation previously used by Maeda et a/. in which
P„'"', P„'"', and P„'"' represent, respectively, the ra-

dial, in-plane tangential, and out-of-plane tangential
force constants between the nth nearest in-plane

neighbors. The radial and tangential force con-

stants for interaction between the nth out-of-plane
nearest neighbors are denoted by P„'"' and P, '"',
respectively.

The calculation for the phonon-dispersion rela-

tions utilizes a Born —von Karman model in which
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the force constants are determined from the experi-
mental data listed in Table I. Such a model ignores
effects arising from the redistribution of the elec-
tronic charge when the carbon atoms vibrate. These
effects are considered in the shell model, where as a
result, faster convergence of the neighbor expansion
is obtained in fitting the experimental data. Be-
cause of the lack of inelastic neutron scattering data
in the range above SOO cm ', there is not yet
enough experimental information available to
develop a good shell model for pristine graphite.

At both the I and M points in the Brillouin zone
we make use of explicit analytic expressions for the
mode frequencies in terms of the force constants
given in Appendix A. Thus, the force constants are
constrained to fit the zone-center frequencies exact-
ly. We further find, in agreement with previous
work of Nemanich et al.,' that in order to fit the
experimental observation co(Ei„))co(Ez& ), it is

necessary to include second-nearest-neighbor out-
of-plane interactions, independent of the number of
in-plane interactions that are considered. We also
find that in order to reproduce the neutron data
along the IM direction, interactions up to the
fourth-nearest in-plane neighbor must be con-
sidered. All the elastic constants (see Table I) are
expressed in terms of the dynamical matrix ele-
ments in Appendix B and thereby can be used in the
evaluation of the force constants. We find that if
interactions up to the fourth-nearest in-plane neigh-
bor and the second- nearest out-of-plane neighbor
are considered, all available data, except C~3, can be
fitted. Though second-neighbor out-of-plane in-
teractions are sufficient to fit C(3, one cannot
simultaneously fit the splitting between the E&„and
Eqg modes without the addition of fourth-nearest
out-of-plane neighbor terms. In Appendixes A and
B the analytic expressions are given for the eigen-

values at the I point in terms of the dynamical ma-
trix elements as well as the frequencies at the M
point and the elastic constants. Thus, we solve for
the values for the force-constant parameters that
give an accurate fit to the zone-center and M-point
low-lying frequencies and to the elastic constants.

The model, which includes up to fourth-neighbor
in-plane and interplane interactions, has a total of
20 force constants. Not all 20 force constant
parameters are uniquely determined by the experi-
mental constraints. Out of the four parameters P„,w(3)

w(4) w(4)
(t, , P„, and P, , which were introduced to ac-
count for the experimental value of C(3, only one is
really needed, either P„or (Ii, , or a combination of(4) (4)

them. Thus with the experimental data set in Table
I, there is some ambiguity in choosing some of the
values for the force-constant parameters. Taking
these ambiguities into account, the convergent set of
values given in Table II was selected.

In Fig. 2 we show the calculated dispersion
curves based on this model. The most significant
difference between these results and those of the
Maeda model lies in the low-frequency region
along the I M axis. This difference is most clearly
seen in the phonon density of states G(co) vs co

spectrum shown in Fig. 3, which was calculated
using the Gilat-Raubenheimer method. ' The main
features of the density-of-states spectrum corre-
spond to peaks at co=1624, 1535, 1365, 1345, 1260,
850, 575, 470, and 130 cm '. The dominant peak
at -1350 cm ' is responsible for the disorder-
induced Raman line in imperfectly ordered
graphite. ' The peaks at 1624 and 1345 cm ' result
from extrema in the phonon-dispersion curve along
the I E direction. The peaks at 1S3S, 1365, 850,
575, and 470 cm ' are due to M-point zone-edge
phonons, whereas the peak at 1260 cm ' is due to
E-point phonons and that at 130 cm ' results from

TABLE II. Values of the force constant parameters in dyn/cm.

Radial

P,"'=312520.0

P(„'= 120920.0

P'„'= 27978.0

P„( '= —25 508.0 ((("=(4) 9488.0

P'„"= 267480.0

P(„'= —63 731.0

19000.0

Tangential

(((,."= 86545.0

P'„'= —9312.2

P((,"= 12695.0

IP(,
' —5498.4——

w(f)

~(2)
T

w(4)

2746.9

595.52

—473.88

200.0

w(3)

m(4)

1271.2

473.9

—927.8
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through the electron-photon and electron-phonon
interaction. The second-order Raman cross-section
is given by'

2

= g W( q,i )6(ro ro—' 2r—o( q,i ) ),
i,q

400
Egg)

0
A r M K r

Vjove vector

FIG. 2. Phonon dispersion curves in graphite calcu-
lated along certain high-symmetry axes.

zone-center phonons. These assignments are in gen-
eral agreement with those made previously by
Nemanich and Solin' based on their calculated pho-
non density of states It .should be noted that no
discernible peak results from zone-center phonons
at —1580 cm

III. SECOND-ORDER RAMAN SPECTRUM

A critical test for our phonon-dispersion model is
a comparison of the predicted and observed
second-order Rarnan spectrum. Since light scatter-
ing by phonons takes place via electrons, the Raman
cross section is determined by both the electron-

phonon coupling and the phonon density of states.
The electron-phonon interaction in turn depends on
both wave vector and polarization of the phonon
branch. Furthermore, phonons with different wave

vectors (+q) and belonging to different branches
can also contribute to the second-order Raman
cross section.

In second-order Raman scattering, the incident
photon is annihilated, a scattered photon is created,
and two phonons are emitted or absorbed or one is
emitted and the other is absorbed. This is expressed

where q, i, and ro( q,i ) denote the phonon wave vec-
tor, branch, and frequency, respectively. The
scattering cross section is thus a weighted density of
states in which the weight function 8'(q, i) is pro-
portional to the square of the second-order Raman
tensor. To obtain W(q, i), we examine the types of
processes involved in second-order Raman scatter-
ing in graphite. The processes illustrated in Figs.
4(a) and 4(b) are important for the calculations
presented here. Other higher-order processes in-
clude iterations of the first-order process, giving rise
to zone-center contributions to the second-order Ra-
man transitions as well as processes involving inter-
band electron-phonon scattering; processes with two
decoupled loops involve a higher order in perturba-
tion theory and can be neglected, ' whereas process-
es 4(a) and 4(b) give a continuous spectrum. Pro-
cesses where the electron (or the hole) scatters a
phonon twice are incorporated into processes of
type 4(a) through a renormalization of the
electron —two-phonon vertex.

In our calculation we assume that the dependence
of the second-order Ram an transitions on the
electron-phonon interaction is the same whether the
two phonons are emitted simultaneously [process
4(a)] or sequentially [process 4(b)]. Although this
approximation is adopted in order to simplify the
calculation, we expect that the magnitude of the in-

teraction is correctly estimated. Consequently, we
explicitly consider process 4(b) only. The Raman
tensor is proportional to the product of one-

phonon —electron interaction matrix elements in the
valence and conduction bands G(c)G(U). ' Since

1.0
E

E
C3

o 0.5
bl

O

3
0

1600

p R / ~ I

l, i

~o+ 0 ~

/4 ++to

1 I I „,„
0 400 800 1200 2000

Frequency (cm ~j

FIG. 3. Phonon density of states for graphite corre-
sponding to the dispersion curves in Fig. 2. The energy
resolution is 6 cm

(o)
--&-- = Photon propogators

= Electron propagators~ = Phonon propagators

FIG. 4. Diagrams for some of the important process-
es which contribute to the second-order Raman cross
section.
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the Raman cross section is proportional to the
square of the Raman tensor, the Raman cross sec-
tion will be proportional to the fourth power of the
one-phonon —electron interaction matrix element.
It should be noted that in our work we have neglect-
ed the dependence of the electron-phonon interac-
tion matrix element on the band index and wave
vector of the electronic states.

The assumption that the electron-phonon cou-
pling is constant throughout the Brillouin zone
yields a second-order Raman spectrum proportional
to thy, phonon density of states. To fit the experi-
ment@ features observed in the second-order Ra-
man spectrum we relaxed the assumption of a con-
stant electron-phonon coupling term and took the
value of the electron —LA-phonon coupling con-
stant to be 3.5 times larger than the
electron —optic-phonon interaction coupling param-
eter in order to obtain a best fit to the observed Ra-

man spectrum of graphite.
In general, the phonon modes are not purely optic

or acoustic, transverse or longitudinal, but rather
they have a mixed character. To proceed with the
calculation, we determine the 12-component eigen-
vector V(q, i), 1 & i & 12, at many points in the Bril-
louin zone (see, e.g., Table III for results at the I
point) and then project these eigenvectors along the
eigenvectors for the longitudinal-acoustic mode.
This projection, denoted by Pi( q, i), is given by

PI(q i) =T(q i) q/I q I
(4)

where the three-component vector T(q, i) is related
to components of the 12-component normal mode
vector V( q, i) by (see Table III)

Tj( q, i) = g VJ+3„(q, i)/2 .
n =0,3

The probability that the phonon is an optic phonon

TABLE III. The eigenvectors at the I" point. Here the subscript a on the E]u, and A2ua
modes refers to acoustic. The following parameters are defined by

—=[mao (E2g ) —Di, i(0)+D&,7(0)]/[D|,4(0)—D&, &o(0)] i
p

—= [mco (Big )—D3 3(0)+D3 9(0)]/[D3 6(0) D3 |p(0)],

6 =[mt—o (B,g )—D3 3(0)+D3 9(0)]/[D3 6(0) D3 ]2(0)],

=[mt@ (E2g ) —Di 1(0)+Di 7(0)]/[Di, 4(0)—Di io(0)],

and the eigenvectors are normalized by

E1u E1u E2g2 'E2g2 ~1g ~ 2u ~ 1g E2g1 ~2g1 ~1ua ~1ua ~ 2ua

X1

Y1

1

2
1

2

p
0

0 0 0 0

0 0 0

7l

0

1

2
0 0
1

2

Z1 0 0 0 1

2
0 0 1

2
1

X2 2
0
1

Y2 0
2

0 0 0

0 0

1

2
0 0
1

2

Z3

Z2 0 0 0
1

X3 — 0 —P

Y3 0 — 01

0 0 0

i3
1

2
5 0 0 0 1

2

0 0 0 0

0 0 0
1

2

0 0
1

2

1

2

0
1

2
0 0 0 0

1

X4 —— 0
2

1
Y4 0

2

0 0 0 0

0 0 0

1

2

0 —g 0

0 0

Z4 0 0 1i3—
2

0 0 0 1

2
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is given by

P, (q, i)=1—g TJ (q, i) (6)
j=1,3

so that the proposed weight function will take the
orm

W(q i)=[P (q i)+3 5PI(q i)l (7)

With these assumptions, a good fit to the experi-
mentally observed second-order Raman spectrum'
is obtained. A somewhat better fit is achieved if the
weight function contains, in addition, a wave-

F( q ) =(1+Faro+2.65F20 —3.5F2] ) (9)

and the wave-vector —dependent symmetrized func-
tions are

vector —dependent term that refiects the symmetry
of the crystal. The form thus obtained for the
weight function is

W( q, i) =F(q)[P, (q, i)+3.5P( (q, i)]

in which

F&0
——[ cos(2m k

&
/3) +cos [2m ( k q +k2 )/3] +cos(2n k 2/3 ) I /3,

F20 =
I cos(477k ] /3 ) +cos[4m (k & +k 2 ) /3 ]+cos( 4m k 2 /3 ) J /3,

Fq~
——

I cos[2n (2k
& +k2 )/3]+ cos[2n (k

& +2k2 )/3]+ cos[2n (k
~

—k2) /3] I /3,

(10a)

(lob)

(10c)

and the coefficients in Eq. (9) are obtained by fit-
ting the observed second-order Raman spectrum.
The function F(q), as given in Eq. (9), transforms
as a scalar, which implies that only the A ~~ symme-
try scattering is considered. For polarized incident
and scattered light both A~g and E2g symmetries
should be considered.

In Fig. 5 we plot the second-order Raman cross
section calculated from Eq. (3) using the approxi-
mation of Eqs. (8) and (9) for the weight function.
The experimental spectrum taken by Elman is from
Fig. 3 in Ref. 2. The calculation assumes that the
two phonons have equal and opposite wave vectors
and are on the same branch of the dispersion
curves. It is seen in Fig. 5 that all the experimental-

ly observed peaks are reproduced, suggesting that
the observed peaks are overtones rather than a com-
bination of two phonons with different frequencies

Theory

Experimental

and wave vectors. This conclusion is in agreement
with the earlier assignment of modes by Nemanich
and Solin, ' who carried out a detailed comparison
between the observed second-order Raman spec-
trum and their calculated phonon density of states.
It should also be noted that this calculation ac-
counts for the shoulder on the dominant second-
order feature, yielding peaks at both -2700 and
-2730 cm ' and associated with contributions
from regions near the E and M points, respectively.
Likewise the calculation accounts for the doublet
structure at 2435 and 2468 cm '. Moreover, the
two peaks at 2435 and 2468 cm ' are not repro-
duced in the correct position in other lattice-
dynamics models for graphite. In the dispersion
curves shown in Fig. 2, the longitudinal-acoustic
branch and the optic branch along the I M direction
couple strongly at a frequency of —1230 cm ', and

along the I E direction a strong coupling occurs
near —1270 cm '. In the region of strong cou-

pling, a bending of the dispersion curves occurs,
giving rise to a minimum in the upper branch and a
maximum in the lower branch. These midzone ex-
trema contribute appreciably to the second-order
Raman cross section because the phonon modes in
the region of strong coupling have large contribu-
tions from the longitudinal-acoustic phonon branch,
which couples strongly to the electronic states.

l600 2000 2400 2800 5200
Roman shift (cm-t)

FIG. 5. Calculated and observed second-order Ra-
man spectra for graphite. Calculations follow from the
phonon dispersion curves in Fig. 2 (see text). The sharp
experimental peak at 2335 cm ' has not been reported

by other workers and may not be associated with Ra-
man scattering from graphite.

IV. CONCLUSIONS

The model for the phonon-dispersion relations
presented here is consistent with all the currently
available experimental data on the zone-center
modes, the low-frequency phonon dispersion rela-
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tions along the I M and I 3 directions, the elastic
constants, and the dominant features observed in

the second-order Raman spectrum. The analytic
expressions derived for the frequencies at the M
point provide important constraints for the evalua-

tion of the force-constant parameters, as new exper-
imental information becomes available. This model
represents an excellent basis for our calculation of
the lattice dynamics for intercalated graphite.

mco (E)g, )=0,
mco (E)„)=2[D) )(0)+D) 7(0)],

mco (E2s) =[C)(0)+H((0)]/2,

mco (8)s)= [C3(0)+H3(0)]/2,

mco (A3g, )=0,
mco (A3„)=2[D3 3(0)+D3 9(0)],

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)
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D;+3;—+9(q), (AS)

H;(q)= [D;;(q) D;—;+6(q) D;+—3 +3( q')'

+D;+3,;+9(q)]'

where C;(0) and H;(0) are obtained at q=0 from

D;J{q)by

C;(q) = D;;(q) —D;;+6(q)+D;~3 +3(q)

+4[D;;+3(q)—D;,;+9(q)] (A6)

APPENDIX A: I - AND M-POINT MODES
OF THE GRAPHITE CRYSTAL

H S
D'q'= S* H* (A 1)

Hexagonal graphite with AB stacking has D6~
symmetry. A consequence of this is that at both I
and M points, the group of the wave vector has the
inversion operation I as a symmetry element. Thus
a factorization of the dynamical matrix results, '

which can be expressed as

M7 2M) + +2M2+ +2M3 + +2M2

+2M3 +2M4 (A7)

where the notation of Ref. 25 is followed in making
the symmetry assignments. The eigenvalues of the
dynamical matrix at the M point are given by

m~'(M /+ ) = [C3(qM )+H3(qM )]/2, (A8a)

for i =1,2, 3. The eigenvectors at the zone center
are given in Table III.

At the M point, the normal modes have sym-
metries

where H and S are 6&6 Hermitian and symmetric
matrices, respectively. Since D (q ) is real at both I
and M points, it follows that H* =H and S*=S.

A unitary transformation will transform the ma-
trix D(q) in the form of Eq. (Al) into

H+S 0
D(q)= 0 H S (A2)

and the diagonalization of the dynamical matrix at
the I and M points is reduced to diagonalizing two
6)& 6 matrices.

The zone-center normal modes have the sym-
metries given by

mN (M3+ ) = [C](qM)+H](qM)]/2,

vflco (M3+ ) = [C3(qM )+H ( q )]/2

m~'(M2- ) = [A3(qM )+&3(qM )]/2

mco (M3 ) = [A, ( qM )+B,( qM )]/2

m~'(M4 )=[A2(qM)+&3(qM)]/2,

in which A;(qM) and 8;(qM ) are found from

A;(q) =D;;{q)+D;;+6(q)+D;+3 '+3{q)

+D;+3,;+9(q)

(A8b)

(ASc)

(ASd)

(ASe)

(A8f)

(A9)

7 2Elu +2E2g +W2u +2B (A3)

The I'-point eigenvalues and eigenvectors for the
Raman and infrared-active modes were previously
calculated by Maradudin. Using the notation of
the present work, the eigenvalues of the dynamical
matrix obtained analytically and are given by

8;(q)= [D;;(q) +D;; +(sq) —D;; (q)
—D;+3, +9(q)l'

+4[D;;+3(q)+D;;+9(q)]' (A10)

for q=qM, and C;(qM) and H;{qM) are obtained
from Eqs. (A5) and (A6) at q = qM.
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APPENDIX B: ELASTIC CONSTANTS where:

The elastic constants to be fitted are C$] C33,
C44, C66, and C~3 along with the relation C44 ——C»,
which is equivalent to requiring that the square-
bracket matrix elements in Refs. 13 and 14 satisfy
the identity [33,11]=[11,33], the only one among
the Huang relations that is not automatically satis-
fied in the case of the graphite crystal.

The relations expressing the elastic constants in
terms of the dynamical matrix elements are given

by

Q33 2[2D3 3( q )+2Ds 6( q ) +D3 9( q )

+2D3, 12( q ) +D6, 12 ( q ) ]/v

Qss ——2[2Dz z( q )+2Dz, s( q )+De,s(q )

+2D&, ]](q)+Ds ]](q)]/v,

Q44 Q33 ~

Q]3 —2[ReDz ]~( q )+ReDs ]~( q )]/v

(85)

(86)

(Bj)

(88)

1 ~'Qss
C33 —[33,33]=-

Bg q =0

1 ~'Qss
Css ——[11,33]=-

Bg q=0

1 ~'Q44
C~ ——[33,11]=-

Bqy qy
=0

C]s ——2[13,13]—[33,11]

a'Q»=2 C44
Bg&Bg q =q =0

(81)

(82)

(83)

(84)

and u is the volume of a unit cell given by
v 3aoco/2.

In writing C~~ and C66, perturbation theory is
used, and the eigenvectors at the I point are need-

ed. We make the approximation that the nonzero
quantities given in Table III are replaced by ——, or

+ —, depending on the sign of the quantity under

consideration. This approximation gives rise to a
negligible error in evaluating C&~ and C66, which, as
a matter of fact, is much smaller than the error in
the experimental measurements. Thus C» and C66
are then given by

ma] (Ezz )

a2
C66 ———

z [2D»(q)+2D, 4(q)+D] 7(q)+2D»o(q)+D~ ]o(q)]q
Bgy

[21mD4, ](q)+imD4 ]o(q)+ImD7](q)1, & =o

'2

[2imD] ]p(q)+ImD4 ]p(q)+1]nD7 ](q)]& p Etio] (Eps )

C]] is given by the same expression as C6s except that every matrix element D~ „(q ) in the above expression is

replaced by D +] „+](q).
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