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Ab initio treatment of silicon defect clusters. The unrelaxed, neutral monovacancy
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An embedding cluster theory is used to treat the neutral-vacancy defect in silicon by
ab initio methods. Low-lying multiplets associated with the defect electrons are
calculated by using accurate configuration-interaction expansions of the many-electron
wave functions that include coupling to virtual (unoccupied) and bulk valence orbitals. It
is found that for the nuclei in their unrelaxed positions, correlation effects are necessary
to give the correct ordering among the fully covalent states: 'E(0.0 eV) &'T&(0.1 eV)
&'A2(0.7 eV). The partially ionic states 'T2(3.6 eV) & 'A ~(5.0 eV) are, in contrast, not

sensitive to correlation corrections relative to the lower states.

I. INTRODUCTION

The single, isolated vacancy in an ideal silicon
crystal has been treated by various formalisms for
calculating the electronic properties of defects with
strongly l.ocalized potentials. Within the last three
years a number of sophisticated calculations based
on the Green's-function method' have given a
tangible picture of the defect orbitals. The
strength of the Green's-function method lies in its
ability to reference the defect energy levels to the
underlying electronic band structure of the solid.
It is, therefore, essentially an effective one-electron
theory subject to the same approximations used in
constructing an effective one-electron Hamiltonian
for the band.

Baraff, Schliiter, and collaborators have provided
what is perhaps the most extensive analysis of the
silicon vacancy, both as to the stability of the dif-
ferent charge states, and more recently as to
which competing effect dominates the ground
state: electronic correlation or Jahn-Teller distor-
tion. They have resolved the multiplet splittings
of given defect orbital configurations in terms of a
few energy parameters that involve an exchange-
correlation potential and conclude that the splitting
is not negligible but is dominated by the Jahn-
Teller effect. There is, however, no explicit in-

clusion of many-body effects via excitations to
unoccupied spin orbitals, i.e., configuration interac-
tion.

In early work Coulson and Kearsley introduced
the concept of a "defect molecule" to describe the
electronic structure of the neutral vacancy in dia-

mond to which they attributed the observed ab-
sorption line below the main absorption edge in ir-
radiated diamond. The model relates the electronic
properties of the vacancy to the interaction of four
unsaturated hybrid orbitals that obtrude into the
vacancy in what amounts to four electrons embed-
ded in the fixed field of the crystal. An extension
of this model to silicon by Surratt and Goddard
employs ab initio methods in evaluating the low-

lying energy spectrum of the vacancy represented

by a cluster of four silicon and twelve hydrogen
atoms. The calculation unequivocably shows that
correlation is an important factor in determining
the correct multiplet ordering.

It has also been suggested in other one-electron
studies that defect orbitals delocalize beyond the
extent allowed by a small cluster model and that
this delocalization leads to a reduction in the mag-
nitude of the multiplet splitting ' '; furthermore,
it is argued in the latter studies that correlations
are overestimated in the ab initio cluster calcula-
tions.

The purpose of this paper is to examine quanti-
tatively the problem of correlation in the unre-
laxed, neutral vacancy with the use of an embed-
ded cluster model that permits delocalization over
the twelve nearest-neighbor atoms of the four atom
plus vacancy complex. Emphasis is placed on two
questions: how the multiplet structure depends on
the level of sophistication of the many-electron
treatment and how strongly bulk orbitals are polar-
ized by the particular multiplet states of the vacan-
cy electrons. The analysis in this work is essential-
ly an adaptation of the localization concepts and
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methods developed by %hitten and Pakkanen in
discussing the chemisorption of gas molecules on a
metal surface. " A new method is proposed for
treating the boundary of the cluster that employs
silicon atoms as saturators as opposed to the more
customary practice of using hydrogen atoms. '

The paper is organized as follows: Section II re-
views the theory of Ref. 11. Section III reports
calculations on the silicon atom to establish limits
on the accuracy of the treatment. Section IV gives
an account of the cluster boundary model. Section
V is devoted to an analysis of the unrelaxed, neu-

tral silicon vacancy at both the self-consistent-field
(SCF) and configuration-interaction (CI) levels. Fi-
nally, Sec. VI compares the present results with

other theoretical studies and reports general con-
clusions.
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II. THEORY AND COMPUTATIONAL
METHODS

The basic assumption is that the main chemical
and physical changes associated with the defect in-

volve the nearest-neighbor silicon atoms and that
the influence of the more distant neighbors is per-
turbative. The defect is then simulated by a finite
cluster of atoms where the defect site is surrounded

by all the neighboring atoms of the host lattice,
while the second or more distant neighbors are
modeled to reflect the coupling of the cluster to
the rest of the crystal. The present formulation in-

volves conventional ab initio theory in developing a
many-body approach for the electronic description
of the defect, but at the same time introduces ap-
proximations that render a large cluster calculation
tractable. Advantageous use is made of the local-
ized form of the defect orbitals in constructing CI
wave functions.
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The valence orbitals are expanded iri terms of
valence basis functions XP, which are orthogonal to
core orbitals on the same center and Gramm-
Schmidt orthogonalized to those on other centers
to give

A. Core-projected self-consistent-field theory
The coefficients Cz, in Eq. (5a) are obtained by

solving the eigenvalue equation

Hartree-Fock theory' ' is a convenient starting
point for the analysis. Assuming that the 1s, 2s,
and 2p core electrons are inert and representable by
the atomic cores I Q I, the problem is then re-

duced to a study of the valence interactions in the
presence of the Coulomb and exchange field of the
frozen core, provided orthogonality to the core is
maintained.

The core and valence one-electron density ma-
trices can be expressed as sums over occupied spin
orbitals
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Equation (6a) follows by variation of Eq. (3) with
respect to coefficient C~; subject to the constraint

&P;
~ f~ & =5;J. Two key assumptions are now

made that require inertness of the core orbitals:

(7a)

(7b)

The core eigenvalue e need not be the atomic
value, but may incorporate a shift due to the
molecular environment. Introducing Eqs. (7a) and
(7b) into (6a) leads to

&&p
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In Eq. (8a) the second term on the right-hand
side is effectively repulsive since e~ &0. The first
term, or Fock field, still depends on a valence
Coulomb and exchange field constructed from the
core-oithogonalized orbitals, but multicenter core-
valence overlaps are small and thus these fields are
constructed by projection onto the valence space.
In Table I, typical numerical values of matrix ele-
ments of the type appearing in Eqs. (8a) and (8b)
are tabulated.

The eigenvalue problem has the final (Phillips-
Kleinman) form'

g(X P E; —g{e —e;{{g—){Q {
X jC;

m

=0 . (9)

B. Localization transformation
and many-body treatment

The separation of molecular orbitals in a defect
cluster calculation into bulk and defect orbitals is

conceptually useful and, as will be shown, qualita-
tively realistic. In a band-theoretic description, de-
fect levels are found within a sizable fraction of
the band-gap width away from either the conduc-
tion or valence edge. They becoxne isolated from
the bulk orbitals in the sense that different multi-
plet configurations of the defect state give rise to
only small polarizations of the bulk orbitals.
There is then an effective decoupling of these lev-

els from bulk orbitals so that correlation studies of
defect-level electrons can be done independently of
the rest of the crystal. It is thus possible as a first
approximation to have excited states of the vacan-
cy while the bulk remains in its ground-state con-
figuration. This is the essence of the Coulson-
Kearsley defect-molecule model. Nevertheless,
configurational excitations from the bulk to empty
defect levels and from the defect to the bulk can
impart subtle relaxational many-body effects, and
inclusion of such weak-coupling effects in this
work is of interest.

A many-electron treatment of the defect levels
can be developed by expanding the solution 4
[the Hamiltonian of Eq. (2)] as a linear combina-
tion of Slater determinants

4 =gDp%~, (loa)

The coefficients D& in Eq. (10a) are obtained by
energy minimization of

i
H„

i
@ &

=8 &
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The molecular orbital set Ig&I in Eq. (10b) is de-
rived from the SCF solution and includes both oc-
cupied and virtual orbitals. The size of this set
may be such as to make a full CI expansion com-
putationally prohibitive.

where

q „=(x„.) '"det y„i(1)&„2(2). . g„~ (&„)
~

.
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TABLE I. Typical matrix elements in Si~q. Energies are in atomic units (1 a.u. =27.21
eV). Subscripts 1 and 2 refer to different nuclei, 4.44 a.u. internuclear distance. Summa-
tions are over all core orbitals on all nuclei of Si~7, one-center contributions are zero due to
orthogonality.

~a), ~b) (a)F~b) —ye (a ~Q )(Q (b) (a ~b) y(a (Q )(Q )b)

3$» 3$1

3p» 3p&

3$» 3$2

3si, 3p2

—0.625
—0.395
—0.219
—0.162

0.0251
0.082
0.224' 10-'
0.885 y 10-'

1.00
1.00
0.235
0.227

0.0041
0.0126
0.333X 10-'
0.147X 10-'
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R(1,2)=gf;(1)$;(2) . (12)

A new set of orbitals is then formed by a linear
transformation of the occupied and virtual spaces
separately:

4' =QApA~p
P

1 l —g Apl~a
JP

(13a)

(13b)

Coefficients AfJ are obtained by maximizing the
positive-definite exchange integral

A,, '"=(f," '"(l)g,' '"(2)
~

ri2'
~

R(1,2)})0.

Since it is the correlation among the defect-level
electrons that is of interest, these levels can be sin-

gled out as the chief source of excitations. Dif-
ferent classes of excitations that have a bearing on
the CI expansion, arranged in order of importance,
are as follows:

(a) Spin and orbital-occupation changes among
the defect levels (to describe multiplet energy split-
tings).

(b) Excitations from defect levels to virtual levels
(to introduce spatial correlations and especially the
proper ionic-covalent character in bonds).

(c) Excitations from deep valence levels to empty
defect levels (to permit further relaxation of the de-
fect and bulk}.

To aid in the selection of orbitals for correlation
purposes, a localization transformation is per-
formed. Defect orbitals are arranged into a refer
ence density matrix

q scF=(N„!) ' det
~ g, (1) .

pN (N„)
~

(15)

are invariant. Upon transformation

VscF (N )
' det

~

g'i (1) P~ (m}

xi~+i(M+ I) P~ (Nu)
l

where gi, . . . , i)'j~ represent the active CI basis;
and 1(' +i, . . . , 1(~, the occupied CI core orbitals.

This transformed wave function is used as a start-
ing point for CI excitations between the active oc-
cupied and virtual set. Configurations ip& are gen-
erated via single and double excitations from the
active subspace of +s&F and retained if they satisfy
the interaction criterion

I & +p I
HU I +scF} (

& 10-' .
Ep —EscF

The eigenstates are then obtained by diagonaliza-
tion of the Hamiltonian. If any of the configura-
tions %z have coefficients D& & 10 ', these are
then included as reference configurations from
which additional excitations are carried out thereby
enlarging the scope of the expansion. In this work
the low-lying states are expanded with up to -700
configurations. The diagonalization is done recur-
sively as described in Ref. 16.

III. BASIS SET

The resulting matrix-eigenvalue problem yields a
spectrum A, &'"&A,z'"& . . - &A&'" that corresponds
to the exchange between the orbitals P,'

'" and
those of the reference density matrix. " The ex-
change between two-electron distributions is a mea-
sure of their interpenetration. By taking the rela-
tive magnitude of different eigenvalues as a mea-
sure of the coupling of P

'" to the defect orbital
density Eq. (12), we can use the eigenvalues as a
criterion to select orbitals to be included in the CI
expansion. Occupied orbitals excluded from exci-
tation become part of the CI core, and virtual orbi-
tals with "small" exchange eigenvalues are discard-
ed. The remaining orbitals are part of an "active"
CI basis.

Since the transformation [Eqs. (13a) and (13b)] is
unitary, the total energy and wave function of the
SCF solution

A Silicon atom and diatom

Expansion of atomic orbitals as a sum of
weighted gaussians of different decay constants are
widely used in molecular and band-type solid cal-
culations. Dunning and Hay' review some of the
technical aspects of Gaussian expansions appropri-
ate to molecular calculations as well as include an
extensive bibliography of various. basis sets of near
Hartree-Fock quality for the first three rows of the
Periodic Table.

The atomic orbital expansions used in this work
have the radial form

—CX PX(r)=g C;(2a;/n. ) e

and the angular dependence is introduced via the
Gaussian lobe method. ' For the description of the
silicon atom, we have used the basis set derived by
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Roos and Siegbahn. ' Their expansion uses ten s-

type and six p-type Gaussians optimized for the P
ground state with the shell structure
1s 2s 2p 3s 3p .

A practical advantage is gained by fitting the
valence orbitals with smaller expansions in which

spatially contracted Gaussians are utilized to
achieve orthogonality to the core, and the diffuse
tail is reproduced accurately. Accurate expansions
for the 1s, 2s, and 2p orbitals that are needed to
compute the valence-core overlap matrix elements

[see Eqs. (8a) and 8(b)] are retained. Valence orbi-

tals 3s and 3p are fitted by a five- or four-term ex-

ponent, respectively, with a least-squares pro-
cedure. Small adjustments to the more contracted
Gaussians in this fit are made in order to maintain
strict orthogonality to the core ( —10 ). In Table
II the different bases are compared as to eigen-
values and total energy. The core eigenvalues are
well reproduced, but the fitting procedure has in-

troduced an error of ~0.01 a.u. to the valence
eigenvalues and 0.05 a.u. to the total energy.

To restore flexibility to the valence space, an
auxiliary basis (double zeta) is introduced, consist-

ing of a three-term s-type and two-term p-type or-
bital (3s', 3p') in which the most diffuse com-

ponent of the fitted 3s and 3p is retained and
orthogonalized to the core. A valence-only calcu-
lation is performed, including one where the exact
core density is replaced by a simplified expansion
of the form of Eq. (18). These results are in Table

The valence configuration 3s 3p gives rise to
three closely spaced multiplets P, 'D, and 'S, with
representative 'components of the minimal configu-
rational representation as follows:

TABLE II. Atomic eigenvalues and total energy for
silicon.

Orbital Energies (a.u. )
Basis' Basis" Basis'

2( Ip Py &+
I p.p, &),

1
(19a)

1~(lp.p &
—Ip.p, &), (19b)

1

3
(

I p.p. &+
I p,p, &+

I p,p, &) . (19c)

The splittings at the Hartree-Fock level calculated
from properties of the Slater determinants, assum-

ing a common set of orbitals, are '

~('D 'P)=(p.-p" IIp.p. ) (p P. I—Ipypy) (20a)

=2(pxpy
I lpxpy ) ~ (20b)

~('S 'P) =5(p-„p (20c)

where the equivalent expression for b('D P) is a-
consequence of rotational symmetry; (I I) denotes

the electron order 11,22. Experimental values
and calculated SCF values (in parentheses), ex-

pressed in a.u. are as follows:

6('D- P) =0.028(0.0410), (21a)

b,('S P) =0.070(0.1025-) . (21b)

CI calculations were carried out using the
double-zeta valence basis and in a separate series

by including single Gaussian d orbitals (a =0.12).
The CI lowering favors the 'S description, which
interacts strongly with configurations derived by
double excitations from the 3s to the empty 3p lev-

el. Inclusion of the d orbitals, on the other hand,
favors the P and 'D, with the 'D gaining only
0.003 a.u. over the P. This level of treatment has

Core

Valence

Total energy

1$

2$

2p

3$

3p

—68.811
—6.155
—4.255

—68.792
—6.136
—4.228

—68.798
—6.137
—4.225

—0.539
—0.296

—0.526
—0.284

—0.515
—0.271

—288.854 —288.773 —288.724

3$

3p
Valence energy

—0.526
—0.284
—3.665

—0.526
—0.279
—3.619

—0.518
—0.275
—3.620

TABLE III. Valence eigenvalues and energies.

Orbital energies (a.u. )
Basis' Basis" Basis'

'Hartree-Fock quality (Ref. 20).
"Roos-Siegbahn (Ref. 19).
'Fitted valence and core from Roos-Siegbahn (Ref. 19).

'Roos-Siegbahn basis (Ref. 19).
Double-zeta.

'Approximate core expansion.
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therefore given the splitting

5('D-3P) =0.038, 0.041, (22a)

b, ('S-3P) =0.081, 0.070, (22b)

B. Diatomic calculations —molecule optimized basis

Calculations on Si2 employing a double-zeta
basis were analyzed in order to derive a more op-
timal minimal basis for use on cluster atoms out-
side the vacancy region. Atomic orbitals derived
from an sp state of the Si atom were found to
reproduce the double-zeta Si2 results as shown in
Table IV.

IV. BOUNDARY MODEL—
APPLICATIONS TO THE Sii7 CLUSTER

with and without d-orbital excitations, respectively.
Thus, use of additional diffuse s and p-like orbi-

tals together with the d orbitals led to a consider-
able improvement in the 6('S P) sp-litting, but did
not affect the 5('D P) spl-itting. This indicates
that the 'S contains some Rydberg character.

orbitals. One convenient representation of the as-
sumed sp -hybrid structure is depicted in Fig. 1.
The boundary model is then constructed as fol-
lows:

(a) The hybrid h ~ is directed along a tetrahedral
bond axis into the interior of the cluster (Fig. 1).
The s-p ratio is kept fixed, but the hybrid combina-
tion is otherwise free to mix variationally with in-
terior orbitals.

(b) The back bond ht is maintained invariant
and provides a Coulomb and exchange field
equivalent to that of a single electron with an aver-
aged spin. Interior orbitals are orthogonalized to
h2, but otherwise no further mixing occurs.

(c) Hybrids h 3 and h4 are replaced by an effec-
tive potential which conserves charge (2 electrons)
and maintains the correct polarity of the bond in-

volving h
&

and the interior atoms.
The potential on the boundary atoms is chosen

to make the Si—Si bond nonpolar at the bulk lat-
tice distance. Table V gives eigenvalues and Mul-
liken populations on the 3s and 3p basis orbitals
for two sets of calculations. In (a) only h~, and
h ~b (see Fig. 2) are allowed to mix; other hybrids
are constrained to be singly occupied (spin aver-
aged). The o~ and o.

~ bonds correspond to the
linear combinations

A number of silicon-cluster calculations have
been reported in the literature. ' ' Boundary
conditions have been simulated by surrounding the
cluster with hydrogen atoms so as to saturate the
bonding. This approach is appealing due to its
simplicity and the fact that the electronegativities
for hydrogen and sp silicon are similar.

An alternative formulation of boundary condi-
tions is considered here that is generalizable to oth-
er covalent monatomic or compound clusters. The
"boundary model" assumes an sp'-hybridized
valence shell in which the four electrons are distri-
buted equally among the s, p„, p„, and p, valence

TABLE IV. Si&-basis comparison.

h~
- 2s+ 2 p~~

"2 2 2 &g

C luster
~&terior

I

&g m' ~I'a+ &y
+ &&~

0'&

02
77]y 7T2

Total energy

Double-zeta

—0.662
—0.455
—0.253
—6.423

—0.662
—0.457
—0.253
—6.424

Energies (a.u. )

Optimized
minimal

I

hp = fp ~&z Py &z~

FIG. 1. sp hybrid model for the boundary. h
&

mixes
with interior orbitals, hq invariant, and h3 and h4 re-
placed by an effective potential.
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TABLE V. Hybrid bond model orbital eigenvalues

and Mulliken populations.

Energies (a.u. )

Constrained Effective
occupancy' potential'

0~

0]
Populations

(3s)
(3p)

—0.498
0.222

0.945
1.055

—0.470
0.235

0.945
1.055

'Mixing of h &, and h&q only; other hybrids singly occu-
pied (Fig. 2).
"Mixing of h ~, and h &q only; hybrids h3q and h4q re-

placed by an effective density.

o') ——(ht, +h~b)(2+2S b)

o )
——(h (,—h )b)(2 —2S,b)

(23a)

(23b)

In (b) the hybrids h3b and h4b were replaced by the
density

FIG. 3. Cluster model. 0, center atom (missing in

vacancy calculation); IN, neighboring atom; , boundary
atom.

p=0.019 83 exp( —0.145r ), (24)

h30

la
hlb

h3b

h2b

Sig Sib

FIG. 2. Si2 model to check bond polarity. h3~ and

64b are replaced by an effective potential so that charge
is equally shared by h ~, and h ~b.

which integrates to two electrons, and as seen from
the results this gives an accurate reproduction of
the bonding and antibonding orbital eigenvalue
splitting as well as preserves the proper 3s-3p pop-
ulation balance.

The boundary model was also tested in a 17-Si-
atom minimal basis cluster calculation. The
geometry is tetrahedral and the distances are those
of bulk of silicon; the cluster is depicted in Fig. 3.
Each of five central atoms has 3s, 3p~, 3p~, and

3p, valence orbitals, the twelve surrounding silicon
atoms are modeled as described above —a 3s and

3pii (along the bond axis) orbital, plus an effective
density.

The eigenvalue spectrum is shown in Fig. 4
along with the Mulliken populations of the central
(c), nearest-neighbor (NN), and boundary (b)

atoms. It is seen that there is a slight departure in
the interior atoms from the ideal sp distribution,
and a net loss of -0.05 electrons per boundary
atom that probably enhances the s population in
the interior. In part, these shifts are due to the
cluster itself since the interior atoms are in a
deeper potential well than the boundary atoms.
The charge shifts in any case are small and are
within the uncertainty of the Mulliken partition-
ing.

Kane and Lane have variationally determined
Wannier representations for the silicon valence
bands using simple parametrized potentials.
Summations over a specified number of neighbor
shells and inequivalent bonds are carried out to
check convergence of Wannier energy sums to the
Bloch eigenvalues. In the Bloch representation the
I

~
and I 2q symmetry points correspond to the

lowest and the highest energies, respectively, in the
valence band. In our calculation these would cor-
respond to the la~ and 3t2 energy levels which are
primarily s type for la

&
and primarily p type for

3t2 just as in the band case. Assuming this
correspondence, we find their value at these two
symmetry points to be —0.760 and —0.313 a.u. ,
respectively, when they sum over three neighbor
shells and eight inequivalent bonds. This summa-
tion coincides with the size of the Si&7 cluster, and
as we see from Fig. 4 the energies match very
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—0.10

— 0.20

— 0.30

- 0.40

- 0.50

- 0.60

- 0.70

Mulliken Population

3s - 1.224
C

3p — 0.963
C

NN — 1.176

3p — 0.979

3sb —0.936

3pb 1.017

2
3t

le

2
2t

2a1

lt
2

Equation (25a) is equivalent to that of an excited
electron interacting with its hole. In our calcula-
tions J„„+~——0.175 a.u. so that AE =0.282 a.u. , or
7.67 eV, i.e., more than twice the experimental
value. Examination of the 4t2 orbital shows that
over 30%%uo of its charge density comes from the
boundary as opposed to 8% for the 3t2 orbital.
The 4t2 is thus spatially extended, and its optimi-
zation would require a larger cluster and a more
extended basis description.

Kenton and Ribarsky use the hydrogen satura-
tor model in calculating energy levels for a Si&H&2
cluster. Their results give the same ordering of
levels and energy width between the la

&
and 3t2,

which suggests that this width is largely deter-
mined by the nearest-neighbor interaction. There
are, however, discrepancies of as much as 0.05 a.u.
in the magnitude of the eigenvalues, with their lev-
els tending to be lower. In particular, their 3t2 lev-
el merges with the 1t& and 1e level when they use
hydrogen at the Si-Si distance, a feature not shown
by our calculations. Since no p orbitals are present
in the hydrogen saturator model, there is no direct-
ed bond. This may affect the energy, even though
it has little effect on the electron density in the in-
terior of the cluster.

- 0.80

1la V. UNRELAXED VACANCY

A. SCF calculations

FIG. 4. Si)7 eigenvalue spectrum of occupied orbi-
tals (a.u. ) and Mulliken populations of central (c),
nearest-neighbor (NN) and boundary atoms (b).

closely (—0.759 and —0.313 a.u. for la& and 3tq,
respectively).

The valence-band width as determined by the
difference between the same eigenvalues is 0.45
a.u. , or 12.2 eV. This compares very well with the
value reported by pseudopotential band calcula-
tions. ' Optical transitions I 25-I &5 and L3 -L )

are both of the order of 3.5 eV. We can obtain
an estimate of the energy of the 3t2 4t2 excitation-
by assuming that the calculated levels are rigid to
an electronic transition. If this is the case, then
the energy of transition is given by

The geometry of the unrelaxed vacancy is identi-
cal to that of the Si» cluster, but the central atom
is now missing. The double-zeta basis described in
Sec. IV is used to span the four atoms neighboring
the vacancy. There are, in addition, four one-term
Gaussians of s and p symmetry at the vacancy site
with exponent a =0.1. The surrounding twelve
atoms are described as in the Si» calculation. The
valence potential used for these boundary atoms
has also been shown to give the proper mixing of
the double-zeta basis for Si2.

Removal of the center atom leaves four partially
occupied orbitals (dangling bonds) labeled
h„. . . , hq in Fig. 5. Transformed orbitals be-
longing to the A

&
and T2 irreducible representa-

tions of the tetrahedral group are as follows:

AE =e„+)—e„—J„„+), (25a) a~ ——(h, +hb+h, +h~)(4+12S) '~2), (26a)

where

~tl, 5+1= ( etl (1w'N (1 )
I
r 12 i en+1( 2)

XQ„+)(2)) . (25b)

t2„=(h, —hb —h, +hg)(4 4S)—
t2y

——(h, —hs+h, —hg)(4 —4S)

t2, ——(h~ +hb —h, —hq )(4—4S)

(26b)

(26c)

(26d)
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a4L

, g

FIG. 5. Dangling bonds around vacancy site. The s-

p ratio is calculated self-consistently.

(27a)

1 aiait ty &+
l
aial t„ty &),

2
(27b)

'T2. (
~
aiait„tz &

—
~
aiait„t„&),v'2 (27c)

aiait„t„&+
I aiaityty &v'3

+
~

a a iitr&) . (27d)

The A2 state is derived from a (2a i 3t2) configu-
ration:

'A2. (
~
a, t, t~t, &+

~
ait„t~t, &v'6

+
~
air~tyrz &+

~
ait„tytg &

+
~

a
~ t„tz t, & +

~

a i t„tz t, & ) . (27e)

In addition, an averaged configuration occupancy
(the same as in Ref. 5) is defined by assigning one
third of an electron to each of the six 3t2 spin or-
bitals. The resulting symmetric field provides a
convenient reference for the analysis of the dif-
ferent CI expansions. Converged SCF solutions
were obtained for the T~, 'T2, and A2 states as
well as for the averaged configuration occupancy.
Figure 6 shows the calculated energy levels for
each case and also levels of Sii7 for comparison.

where hybrid orbitals, which can differ in A i and

T2, are to be determined self-consistently.
The (a i t2) configuration gives rise to the multi-

plet sequence 'E, T&, 'T2, and 'A&. The S,=O
components have the form

The most evident shifts are associated with the
lai, 2a&, and 3t2 orbitals, which in Si&7 contain an
appreciable population on the central atom. The
la i orbital spreads outward toward the boundary,
while the 2a i and 3t2 orbitals have densities con-
centrated on nearest neighbors of the vacancy. We
refer to the latter orbitals, 2a i and 3t2, as the de-
fect orbitals. The other orbitals experience only
minor shifts ranging from 0.15 eV for the lti, le,
and 2t2 orbitals to 0.70 eV for the 1t2 orbital, or
& 5% of the bandwidth (these orbitals together
with la i will be referred to as bulk orbitals).
Though significant charge rearrangement takes
place within each orbital, the total valence popula-
tion per atom remains unchanged from the bulk
result of four valence electrons per atom.

The T~ and 'T2 calculations converged rapidly
when the converged field from the averaged con-
figuration was used as a starting iterative field.
There were no discernible shifts in the eigenvalue
spectrum of the bulk and 2a~ orbitals for the Ti
optimization. Uniform downward eigenvalue
shifts of the order of 0.08 eV occurred in the same
orbitals in the case of the T2 optimization, which
is evidence of polarization effects due to specific
open-shell structure in the vacancy region. The de-
fect 3t2 level of the averaged configuration occurs
high in the eigenvalue spectrum due to the physi-
cally incorrect averaged field.

The energy splitting of the optimized T& and
'T2 states is calculated to be 2.79 eV at the SCF
level. With the use of the defect orbitals from the
averaged configuration, the splitting given by
2(tz'„'t'z~

~ ~

t&„'t&~') is essentially the same numerical-

ly, 2.82 eV. It is noted, however, that the differ-
ence in 3t2 eigenvalues e('T2) —e('Ti ) is 2.61 eV;
if all orbitals were unchanged from those of the
averaged configuration, the energy splitting and the
eigenvalue difference would be the same. Since the
discrepancy is very small, these results suggest that
a CI expansion for the total energy can be carried
out using the averaged configuration as a reference
basis.

Optimized orbitals for the A2 state lead to up-
ward shifts of 0.13 and 0.05 eV for the lan and
1t2, respectively; other bulk orbitals were also
shifted upward on the average by 0.02 eV with
respect to those of the averaged configuration.
Both defect orbitals are lowered in energy due to
the redistribution of electrons. The total energy
difference between the optimized A2 and the ener-

gy of the same state using the orbitals from the
averaged configuration is 0.33 eV. The same com-
parison for the T~ and 'T2 states gives a differ-
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FIG. 6. Eigenvalue spectra of Si~6 vacancy states and Si~7. Values in parentheses are total Mulliken populations of
basis functions in the vacancy (or the central atom in Si~7) and on the four neighboring atoms.

ence of only 0.03 eV, so the possibility exists that a
CI expansion for the 'A2 in terms of the basis of
averaged configuration orbitals will converge more
slowly. The present SCF calculations show some
bulk orbital polarization especially for the T& and

A2 states; these small relaxations are included in
the CI treatments by allowing excitations from the
bulk orbitals.

B. Localization transformation

The purpose of the localization transformation is
to reorder orbitals defining the occupied and virtu-
al spaces, separately, according to the magnitude of
the exchange with the defect reference density (see
Sec. III 8). Transformed orbitals with a large ex-
change will penetrate significantly into the vacancy
region, while those with small exchange will lie
principally outside the vacancy region. This dis-
tinction is operationally useful if one is interested

in refining mainly the description of the vacancy
region.

The vacancy reference density is defined with
the use of the defect orbitals 2a

&
and 3t2 as com-

ponents. The transformation is carried out
separately for the occupied and virtual spaces. In
the occupied-space transformation the partially
filled 3t2 orbitals are excluded. The resulting ex-
change energy spectrum is given in Fig. 7 along
with a symmetry classification of the orbitals and
a tabulation of the vacancy region populations.
The localized orbitals fall into three groups. The
largest exchange eigenvalues are associated with
the 3tq (A, &t2) and 2a

~ (A, ~a~, which actually con-
tains a 1% la~ admixture) orbitals. The second
group has an eigenvalue range of 0.025 —0.005 a.u. ;
it includes four occupied and twelve virtual orbi-
tals involving the four atoms bordering the vacan-
cy. Orbitals in the third group all have eigenvalues
less than 0.005 a.u. Active orbitals for the CI ex-
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FIG. 7. Orbital exchange eigenvalue spectrum and
total Mulliken population on the four atoms neighboring
the vacancy and on basis functions in the vacancy.

Thus, the Az state is lowest in energy followed by
Ti, 'E, 'T2, and 'A

) states. If excitations among
only the defect levels are allowed, the 'E and 3Ti
are inverted and both drop below the A2 state.
Two additional stages of configuration interaction
are carried out: first, inclusion of excitations to all
virtual levels from the defect orbitals and second,
inclusion of excitations from bulk orbitals to unoc-
cupied defect orbitals. In the latter calculations,
excited configurations are generated from the
determinants that contribute significantly to the
defect-orbital-only CI expansion. For example, in
the determination of the T~ and 'T2 states a total
of four parent configurations was used to generate
a total of 766 configurations.

The CI results are tabulated in Table VI. The
reported values are relative to the SCF energy of
the 'E state. The evolution of the energy splitting
of the various states for the different stages of CI
treatment is depicted in Fig. 8. Energy lowerings
of the 'E and T] are greater than the lowering of
the 'T2 and 'A

&
states by almost 0.9 eV. The A2

state has been treated differently. Since the aver-
aged configuration orbitals do not provide a good
starting point for representation of the A2 state in
Fig. 8 the A2 state is shifted downward by 0.33
eV, which is the error at the SCF stage on use of
the average configuration orbitals. The effect of
this is to overestimate slightly the stability of the
A2 state.

pansion are taken to include all members of the
first two groups plus occupied orbitals in the third

group with symmetry e and t& included so as to al-
low excitations from these symmetries.

D. Analysis of the Tj-'T2 energy splitting

C. CI results

Multiplet splittings (in a.u.) for the states [Eqs.
(27)] calculated using the averaged configuration
orbitals and a minimal determinantal representa-
tion are as follows:

E('E)—E('Ti ) =(t„t„iit„t„)—(t„t„iit„t, )

=0.0010,

E('T, ) —E('T, ) =2(t„t~
i ~t„t„)

=0.1026,

E('A i) E('E)=3(—t„t~
~
~t„t~)

=0.1539,

E( Ag) —E( T, )=—0.0400.

In this section we examine the electronic distri-
bution of the Ti and 'T2 states and relate the
electronic structure to the magnitude of the split-
ting of these states. Although the main com-
ponents of the triplet and singlet states differ only
in sign between the spin-complement determinant
pairs, the states exhibit markedly different charac-
teristics of electronic correlation. The T& state
derives 80%%uo of the calculated correlation energy
via excitations among defect orbitals. In contrast
the 'T2 state derived 60% of its correlation from
defect orbital excitations and about 25% from in-
teractions with virtual orbitals.

An essential difference between the T~ and 'T2
states can be demonstrated by expansion of the two
determinant pairs, Eqs. (27b) and (27c), and expres-
sion of the open shell contributions in terms of hy-
brid orbitals h„bb, h„and h~, viz. ,
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'T2

0.0000
(0.076)

—0.0760
(0.006)

—0.0817
(0.006)
(0.088)

—0.0881

—0.0010
(0.067)

—0.0681
(0.006)

—0.0740
(0.010)
(0.083)

—0.0838

0.1016
(0.033)
0.0688
(0.013)
0.0557
(0.009)
(0.055)
0.0464

0.1538
(0.037)
0.1168
(0.013)
0.1036
(0.008)
(0.058)
0.0961

—0.0411

B —0.0411
(0.004)

—0.0451
(0.005)
(0.009)

—0.0501
D
E

T). I [h, (1)—hs(1)][h, (2)—hd(2)] —[hg(2) —hs(2)][h, (1)—hd(1)]]

'E:
I [h, (1)—h„(1)][h,(2)—hd(2)]+ [h, (2)—hg(2)][h, (1)—hd(1)] ]

'T2: I [h, (1)—hs(1)][h, (2)—hg(2)] —[h, (1)—hg(1)][h, (2)—hd(2)] I

(28a)

(28b)

I

bital basis might favor the ground state. " Al-
though the T2 state is not highly excited, its ionic
character could require a more spatially extended
Rydberg-type description as is necessary for the Si
'S atomic state. Further local polarization effects
and angular correlations could be important as
well. Another possible concern is the cluster size
itself which, it might be argued, is too small to
support a proper 'T2 state.

To assess the questions of Rydberg-type contri-
butions, or delocalization of the T2 state via dif-

Evidently the open-shell electrons in the T& and
'E states occupy purely covalent distributions,
while in the 'T2 state there are equal ionic and co-
valent contributions. Figure 9 illustrates the elec-
tronic distributions. The extensive ionic character
of the 'T2 state raises questions about the adequa-

cy of small cluster calculations to account for the
proper splitting since the ionic distribution could
lead to significant polarizations of the bulk orbitals
and delocalization of the defect orbitals. ' '

In the SCF calculations there is some evidence
of polarization of the bulk orbitals, but it is too
small to have any significant effect on the energy
splitting, nor does the CI lead to a reduced 'T2
and T~ splitting. It is possible that the atomic or-

n
'~/A1

1.42
A1 (a)A11.31

1T
2 1.35 1

2
2.76

1

3T
1 2.96

A
2

3T
1

1
A

2

3T
1

1

0.21 0.58
0.12

FIG. 9. Open-shell structure of the Tl and 'Tq va-
cancy states for s, =0. The 'E state corresponds to a
plus combination of the two T~ components.

FIG. 8. Energy levels and splittings (in eV) of vacan-
cy states for different treatments; (a) SCF, (b) CI includ-
ing only defect level excitations, and (c) final CI.

TABLE VI. CI energies for low-lying vacancy states. Energies (in a.u. ) are relative to the
SCF energy of the 'E state. Changes in energy between different treatments are given in

parentheses. A, self-consistent-field energies; B, CI including excitations among (a ~ t2) levels

only; C, CI including B, plus excitations to virtual orbitals; D, total CI energy lowering; E,
CI including C, plus excitations from deep valence levels.
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A

B

C
D

1Ta
2

—2.3720
(0.026)

—2.3980
(0.027)
(0.053)

—2.4249

lTb
2

—2.3815
(0.020)

—2.4018
(0.024)
(0.044)

—2.4253

3T'
1

—2.4639
(0.062)

—2.5258
(0.027)
(0.089)

—2.5530

3Th

—2.4516
(0.044)

—2.4957
(0.052)
(0.096)

—2.5475

'6( T, —'T2) =0.128, averaged configuration.
"~('T, —'T2) =0.122, 'T2 state orbitals.

fuse functions, a four-atom-Si model was investi-
gated. The model consists of the four silicon
atoms surrounding the vacancy in their unrelaxed
geometry. The atoms are treated as effective one-
electron atoms with the remaining electrons
described in exactly the same manner as the boun-

dary atom in the 16-atom cluster model. A triple-
zeta basis is adopted by augmenting the previous
(3s,3s', 3p, 3p') basis with diffuse Gaussians
(3s",3p") with exponent a=0.05, orthogonalized
to the core, and a single Gaussian(exponent
a=0. 12) ofthed2 &typewithonelobepointing

along the bonding axis. The diffuse basis effective-
ly extends outward by two neighbors, so that its
utilization would correspond to extensive delocali-
zation. The model thus permits the electronic dis-
tribution to utilize freely the spatially contracted,
Rydberg and angular(d-orbital) components of the
basis.

Initially, calcuations with only the double-zeta
basis are carried out to compare with the cluster
results. The calculated T~-'T2 energy difference
by SCF optimization is 0.121 a.u. compared to
0.101 a.u. for the large cluster. The discrepancy is
due in part to the restricted s-p ratio on the
minimal basis components, and the forced localiza-
tion over only four atoms.

Introducing the diffuse functions and d orbitals,
the calculated 'T2 and T& SCF energy difference
is lowered to 0.089 a.u. The contribution of the
diffuse and polarization basis is appreciable in the
t2 orbitals optimized for the 'T2 state. Two dif-
ferent CI calculations were carried out with the or-
bital basis optimized for (a) the averaged configu-
ration and(b) the'T~ state. Table VII shows that

TABLE VII. CI energies of the 'T2 and 'T~ states of
Si4. Changes in energies between different treatments
are given in parentheses. Energies are in a.u. Orbitals
in the CI treatments are from averaged configuration
and'T~ optimized(see text). [Si~66('T~ —'Tz)=0. 130.]
A, self-consistent-field energies; B, CI including excita-
tions among (a i t2) levels only, ' C, total CI energy lower-

ing; D, CI including B, plus excitations to virtual orbi-
tals.

both calculations produce essentially the same final
configuration interaction energy. Although these
results are similar to those of the cluster for the CI
lowering due to excitations among defect orbitals,
the lowerings due to excitations to the virtual space
are different due to theextensivebasis used in the
present treatment.

Nonetheless, after the final CI treatment the
splittings in both treatments are in essential agree-
ment with those obtained for the cluster. This
suggests that the omission of diffuse functions
from the basis is not a serious limitation on the ac-
curacy of the calculated states of the large cluster.

VI. DISCUSSION AND CONCLUSIONS

A. Comparison to other theoretical work

Cluster calculations on the silicon vacancy simi-
lar to the present work have been performed by
Surratt and Goddard. ' Aside from technical
differences in the methods, there are essential
differences in the models used. The Surratt and
Goddard method of cluster termination employs
hydrogen atoms at the Si—H bond distance ap-
propriate to the SiH4 molecule, and the four silicon
atoms have been slightly relaxed from the equili-
brium lattice position. They predict the three
lowest-lying states to be ordered as 'E & T~ & A2
with energy separations of 0.18 and 0.60eV above
the 'E state. These results are in good agreement
with the present results(Fig. 8) and weconcur
with their conclusion that electron correlation is
essential in determining the correct ground state.
Our 'T2 state is -0.40 eV lower than their un-
corrected value. Because of the large dipole mo-
ment they calculate for this state, a classical model
is used to estimate the lowering due to polarization
of the infinite solid. We have, however, found no
evidence in Si&7 of such substantial polarizations.

The present SCF results are in qualitative agree-
ment with the findings of Baraff and Schluter us-

ing Green's-function methods. They report two
resonance levels(defect-related orbitals embedded
within the occupiedband) of a, symmetry. The
lower level is primarily s type while the higher is
primarily p type, which matches the characteristics
of our lajI and 2a& orbitals. Their energy differ-
ence between these two levels is 7.3 eV as opposed
to the present value of 11.2 eV. They also report a
t2-symmetry bound level(i. e., embedded in the gap)
at 1.7 eV above the higher resonance level. In all

our SCF calculations the highest occupied levels
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(t„ty i it„ry ) =Ep 2E„—

(t„r„iit„r„) (r„r„iver,—t, ) =6E„',

so that using our values we find (in a.u. )

Ev =0 00017

Ep ——0.0516,

(29a)

(30a)

(30b)

while their estimated values are

were of the tz type; in particular, the 3tz levels op-
timized for the T, gave the same eigenvalue
difference. It is noted, however, that in their cal-
culation the occupancy of the bound tz level is
treated in the same fashion as the averaged config-
uration here.

Lannoo et al. have calculated multiplet splittings
for the unrelaxed silicon vacancy using a pertur-
bation expansion within the local-density formal-
ism. The splitting scheme they obtain corre-
sponds to that of our SCF results (see Sec. V B) ex-

cept in the value for the exchange interaction.
Their spectrum depends on two energy parameters
E' and E,' which can be related to conventional

Pp

Hartree-Fock integrals as

with excitations among the defect orbitals. The
'Tq state, although ionic with respect to the t
configuration, is not as significantly altered by de-

fect orbitals excitations (the leading determinant
retains a large coefficient, -0.94). Thus CI great-

ly affects the relative ordering of the low-lying de-

fect states.
Experimentally much information about the sil-

icon vacancy has been acquired by electron spin
resonance (ESR) studies, although, since the neu-

tral vacancy has no net spin, its structure is in-

ferred indirectly either from known structure about
the charged vacancy states or by its interaction
with an impurity. The evidence is interpreted to
suggest that the lowering in energy due to Jahn-
Teller distortions is more important than many-

body effects. Since we have, at present, only
treated the unrelaxed vacancy, our only contention
in this regard is that electronic correlation is im-

portant for the nuclei in their unrelaxed positions.
For small relaxations the correlation contributions
are not expected to diminish appreciably. How-
ever, more quantitative information requires actual
computations on the relaxed vacancy. These stud-
ies are underway.

E„' =0.000 12, (3 la) B. Conclusion

(3 lb)Ep ——0.012 10 .
Thus, we are at variance in the calculation of the
parameter E&, which differs by a factor of 4.26.
The evaluation of Lannoo et al. of this integral in-
volves the product of the averaged bound tz level
density and the density derivative of a Slater Xa-
type local exchange potential. It is therefore not
clear whether the discrepancy between calculated
values is due to the description of the bound tz or-
bitals or the potential used to evaluate the integral.
Since they include no correlation via many electron
excitations to correct the Hartree-Pock splittings,
they obtain a different ordering of the 'E and 'T&

levels. At the SCF level neither of these is the
ground state, but it is the 3q state which is not
considered in their formalism.

The open-shell contributions to both the 'E and

T& states correspond to covalent configurations
when viewed in terms of the proper symmetry
combination of determinants (see Fig. 9). Howev-

er, the doubly occupied a ~ orbital contributes both
ionic and covalent distributions in a fixed ratio at
the minimal configuration (SCF) level. The pri-
mary purpose of configuration interaction is to
achieve the proper ionic-covalent balance and both
the 'E and T~ states are found to interact strongly

We have examined in detail the electronic struc-
ture of the unrelaxed neutral silicon vacancy. We
confirm the basic results of Surratt and Goddard
insofar as the description of low-lying 'E, T~, and

Az states; we have, however, found no evidence in
our calculations that the T

~
-'Tq splitting is re-

duced by polarization effects. We have carefully
assessed the effects that lower these two states and
have found that the favored lowering of the T~
versus the 'T~ is not due to a deficiency in the
basis, but is a real effect due to the covalent nature
of the T& state as opposed to the covalent plus
ionic nature of the Tz state. For nuclei in their
unrelaxed positions, correlation effects are found to
be absolutely essential in sorting out the relative
ordering between the 'E and T& states.
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