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Lifetime of a quasiparticle in a two-dimensional electron gas
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We have investigated the inelastic Coulomb lifetime ~„of a quasiparticle near to the
Fermi surface of a two-dimensional electron gas. Within a perturbative approach based
upon the random-phase approximation, we find that at low temperature 1/~„behaves like
T lnT. Furthermore at small quasiparticle excitation energy, the leading contribution to
1/v„ is inversely proportional to the electronic density and does not depend upon the elec-
tric charge. Although the plasmon frequency goes to zero at long wavelength, plasmon
emission contributes to the quasiparticle decay only when the quasiparticle excitation ener-

gy exceeds a certain threshold. The threshold becomes a small fraction of the Fermi energy
in the high-density limit.

I. INTRODUCTION

The effect of Coulomb interaction on the lifetime
of the electronic states close to the Fermi surface is

a classic problem in many-body theory. For the or-
dinary three-dimensional (3D) electron gas, the in-

verse inelastic lifetime 1/r«associated with the
electron-electron interaction has been evaluated
within a perturbative approach by several authors
since the pioneering work of Landau and
Pomerantschusk. ' At zero temperature for a
quasiparticle state with wave vector p close to the
Fermi wave vector pF, it is found' that
I/r« ~ (p —pF) . Luttinger has established the va-

lidity of this result at all the orders in perturbation
theory. In a one-dimensional electron gas neutral-
ized by a rigid positive background it has been
found that 1/r« ~

~ p pF ~. ' The —corresponding
calculation for a two-dimensional (2D) electron gas
has been performed by Chaplik. The result is

I/r« ~(p —p~)'»
l p —p~ I

There has been considerable interest in recent
years in the physical properties of 2D metals. Elec-
trons confined in silicon inversion layers and to the
GaAs layer of GaAs-Al„Gai „As heterojunctions
provide a vivid realization of such peculiar sys-
tems. The inelastic broadening of the electronic
states in these conductors plays a major role in the
interpretation of magnetoconductance experi-
ments ' and its bearing upon the localization
problem. ' ' This is discussed in detail by
%heeler. Several authors have invesitgated the
Coulomb inelastic lifetime of the electronic states of
a 2D metal in the presence of a finite concentration
of impurities. ' ' Their analysis, however, is re-
stricted to the diffusive regime and the results can-

not be extrapolated to the pure-metal limit. The
aim of this work is to present a detailed and
comprehensive investigation of the temperature-
dependent Coulomb inelastic broadening in the sim-

ple case of a pure 2D electron gas. An interesting
feature of the 2D situation is the possibility of plas-
ma modes affecting the Coulomb broadening of the
electronic states. In the usual 3D case this
phenomenon is inhibited by the large energy associ-
ated with plasma oscillations. For a 2D metal how-

ever, the plasma frequency goes to zero in the long-
wavelength limit' and plasmon emission can in
principle become an available decay channel also for
thermal or low-energy electronic excited states.

The paper is organized as follows. In Sec. II the
microscopic theory of the Coulomb inelastic life-
time of a quasiparticle is revisited and specialized to
the case of a 2D electron gas. In Sec. III we evalu-
ate 1/r«and explicitly establish its asymptotic
behavior. Section IV provides some discussion with
emphasis on the peculiar temperature and charge
dependence of the results. Finally three appendixes
complete the paper by providing a discussion of a
few technical aspects of the theory.

II. iNELASTIC LIFETIME OF A QUASIPARTICLE

Consider a degenerate gas of E electrons in its
normal ground state. This can be well described in
terms of filled Fermi sea. A quasiparticle is ob-
tained by adding to the system an extra electron
which occupies an otherwise empty state character-
ized by a wave vector p and a spin projection cr. In
complete analogy a quasihole can be obtained by re-
moving an electron from an otherwise occupied
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state. At T=O K, if pz is the Fermi wave vector,
necessarily p &p~ for a quasiparticle and p &pF for
a quasihole.

The ground state for these N+ I electrons config-
urations is of course again a filled Fermi sea with
the same Fermi wave vector, apart from corrections
of order I/N In. the absence of any relaxation
mechanism, quasiparticle, and quasihole states are
stationary. The mutual Coulomb interaction how-

ever, provides a way to redistribute energy and
momentum among the electrons and causes a quasi-
particle (quasihole) state to decay. This leads to a
finite inelastic lifetime I/r„ for these electronic
states.

For T=0 K the situation is readily analyzed via

standard time-dependent perturbation theory and
1/z„ is given by the decay rate of the correspond-
ing plane-wave state. At finite temperature the sit-
uation is more complicated and I/r« is defined by
the relaxation rate of the occupation number n-
as obtained by an approach based on a transport
equation of the type'

Bn

at

0
n —np, cT p, 0'

~ee

where n - is the distribution function at equilibri-
um. In both cases 1/~„can be evaluated within
perturbation theory, with the use of the usual Fermi
golden rule, '

~ee
n k, (1 nk—-, )(1 n-+-—)

~
V, (p, q)

~
5(E-+-+Ek - E-—E—

k ),
k, g, tT

(2)

where V, ( p, q } is the matrix element of suitable electron-electron interaction potential.
Some discussion is in order as far as the proper choice of V, is concerned. As pointed out by Quinn and

Ferrell, the use in Eq. (2) of the bare Coulomb potential matrix element U(q) for V, leads to the unphysical re-
sult I/r„= 0o. Such a difficulty can however be surmounted by allowing for screening effects. This is readi-
ly done within the random-phase approximation (RPA). ' Accordingly we choose a dynamically screened
interaction of the form

(3)

where e(q, co) is the wave vector and frequency-dependent dielectric function of a two-dimensional electron
gas. ' e is here evaluated at the frequency (E- E- -)/fi —corresponding to the energy transferred to the

p p+o
electron gas by the extra electron (hole) during the scattering. Notice that the use of a dynamical screening (as
compared to a static one) makes V, a complex quantity.

The sum over k and o appearing in Eq. (2) can be performed and, with the use of the fluctuation and dissi-
pation theorem, expressed in terms of the imaginary part of the susceptibility X (q, co) of a noninteracting elec-
tron gas,

n -„,(1 n-„-—, )5(E-„- E-„—co) =——
k,o' Sn.(1—e )

(4)

where S is the total surface and ks is Boltzmann's constant. ' Using this result and Eq. (3) in (2), I/r„can be
expressed as

2k T

5+p —E~+~
&&1m 5 co—

6 g, N

where p is the chemical potential and we have introduced the quantity 6=E-—p. 5 is just the excitation en-
P

ergy of the quasiparticle (hole) state. This expression for I/r„applies equally well to the usual three-
dimensional case (see Appendix C).

If we use for the single-particle energy E k the free-electron value A' k /2m, the angular part of the integra-
tion involved in Eq. (5) can be carried out analytically. For a 2D system the result is
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I 1/5 co
Q+p —E~P+a

0, cu) Q(q),
2 —Q(q)—

I[Q(q) —co][Q(q)+fiq~/m+co]) '~

o, ~ & —Q(q) —Rq'/m

&co &Q(q)
m

Q() Apq 6'
m 2m

With (6) in (5) and u (q) =2rce /q we finally obtain for a 2D electron gas,

iraqi(1+e

1

r„(&)

where A'Q(q) (see Fig. 1) is the maximum value of the energy transfer for a scattering process in which the ex-

tra electron (hole) changes its wave vector by q,

fico
X coth

%co—6—tanh
8

Im(1/e(q, co)]

t [Q(q) c0][Q—(q)+ (i)iq /m ) +co]]'i

where q+(co) are the solutions of the equation

Q(q) =co, i.e.,
1 /2

fico
q+(co)=p 1+ 1—

p+6
Figure 1 illustrates the geometrical constraints im-

posed by energy and momentum conservation to the

+ee

2= ——ImX(p E ) .
fi

(10)

I

decay processes in a 2D electron gas.
A completely equivalent approach to this prob-

lem is to evaluate to the lowest order in the screened
interaction the self-energy X(pg-) of the quasipar-

P
ticle (quasihole). The corresponding diagram is
shown in Fig. 2. I/r„ is then obtained via '

E,

0.4

0.2

0,0
q-/pF qc /pF

III. DECAY PROCESSES

We turn now to the analysis of the elementary
processes by which a quasiparticle (quasihole) state
can decay, as described by the imaginary part of the
inverse dielectric function in (8). Within RPA we
can divide Im(1/e) as follows:

q/vF 2.ooo 1 1
Im =Im +Im

e(q, co) e(q, co), z e(q, co)

FIG. 1. Geometry of the q, co space for a 2D electron
gas. Single-particle excitations are possible only witkin
the electron-hole continuum defined by c0 &

~
co

~
&co+,

with co+(q) =ApFqlm+fiq /2m. Quasiparticle decay
into electron-hole pairs is allowed only for q, co in the
electron-hole continuum and such that

Q(q) hq'Im &co&0—(q) [E—q. (7) in the text]. coF is
the plasmon dispersion relation. The inset is an expan-
sion of the small q, co region and depicts a situation in
which plasmon emission is possible. For illustration we
have chosen here p =1.2pF and r, =0.318.

FIG. 2. The simplest self-energy diagram for an elec-
tron of wave vector p and spin projection u. The
dashed line represents the screened Coulomb potential,
Eq. (3).
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The first term is associated with single electron-hole
pair excitations with wave vector q and energy fico.

The second describes inelastic processes involving
excitation of plasma modes. Since in a three-
dimensional electron gas the plasma frequency is al-

ways finite, for small excitation energies b„single
electron-hole pair excitations represent the only
relevant dissipative processes. In a 2D system how-
ever, the plasma frequency (see Appendix A) goes to
zero at long wavelength' and, as already men-
tioned above, plasmons became available at small
energies. Multipairs excitations are also possible
but they lead to a small effect at low excitation en-

ergies, and are disregarded in RPA.

A. Decay into single-particle excitations

Within RPA single electron-hole pair excitations
are possible only for q and co inside the electron-
hole continuum (see Fig. 1). At low temperature
and small excitation energy b, only the region of

small co is relevant. In this case Eq. (8}can be con-
siderably simplified.

We first notice that because of the singular
behavior of the integrand in Eq. (8) for co=Q(q)
[i.e., q =q+ (co)], the main contribution to the decay
rate at low energies comes from scattering processes
involving a small wave-vector change q of the order
ofp —pF. Accordingly, we write

%co

2e pF

' 2 1/2
1 mcoIm 1— (12)

(q, c'o } fkgp

where we have made use in (A3) of the small q and
co expansion of the electronic susceptibility [Eqs.
(5), (Al), and (A2)]. For q and co outside of the
electron-hole continuum, Im (I/e), » is zero.

At T =0 K, the frequency integral of Eq. (8} is
restricted to the interval 0, b /iii. In this case, mak-
ing use of (12) in (8}, 1/r„~, » can be reduced, after
some straightforward manipulations, to a single
quadrature. A direct inspection allows us to extract
the leading contribution. We find

E~
4mfi Eg

ln
F

1 2qTF———ln
2 pF

f2 (2)

0 K g p q
(13)

a result previously obtained by Chaplik. In Eq. (13) Ep=h'2pp/2m is the Fermi energy of the electronic sys-
tem and qTF is the Thomas-Fermi screening wave vector in 2D, given by 2me2/iii . The result of the numeri-
cal integration is shown in Fig. 3.

At finite temperatures the integrals involved in Eq. (8) are not feasible. However, in the region of tempera-
tures much larger than 6/kii and much smaller than Ep/k~, we have been able to evaluate the relevant con-
tribution. The result is

1

r„(&)

'2
EF AT
2M EF

AT
ln

(2)
qTF—ln
PF

—ln2 —1, 6 «AT «EF . (14)

B. Decay into plasma modes

At zero temperature, the contribution to Im(1/e) associated with the collective modes is given in RPA by'

1
Im

e(q, co )

d Ree(q, co )

Bco
5(co —cop(q)), (15)

where cop(q) is the plasma dispersion relation, as discussed in Appendix B. This expression is defined only for
values of q and ~ lying outside of the electron-hole continuum (see Fig. 1). For a 2D electron gas the quantity
8 Ree/Bco can be readily evaluated using Eqs. (A3) and (Al).

Inserting Eq. (15) in (8) we find after some straightforward manipulations,

2e J~~ e{Q(q)—~+(q)) 1

r„(&)
i

& 0
I [Q(q) —cop(q)][Q(q)+(hq /m )+cop(q)] j

'~ [&Ree(q,~p(q))/&~]

min[6/fi, cu(q) ]
X I Cko5(co —cop(q),

min[LE/A, O(q) ]
(16)
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(17)

where q, is the critical wave vector for plasma modes (see Appendix B) and min[a, b] is the minimum between
a and b.

Finite contributions to I/r„ in Eq. (16} come only from wave vectors q for which the condition
co+(q}&cop(q) & Q(q} is satisfied (see Fig. 1). Furthermore, at zero temperature, the excitation energy 6 must
be larger than ficop(q ), with q defined in Eq. (B6). This leads to the existence of a finite excitation-energy
threshold b,, for the decay into plasmons. By using Eq. (B6) in (B2) we obtain for 6, the following equation:

2 1/2 1/2 3/4
32me EF(EF+b, ) ir, EF+b(r, )

cos + 3 arccos
3A F+ c

where b, is given by Eq. (B5). In the high-density
limit, Eq. (17) reduces to the simpler form,

E,=V2r, EF, r, «0 . (18)

Here r, is the average interelectronic distance mea-

sured in Bohr radii.
In the general case Eq. (17) must be used. The

values of b,, as given by Eq. (17) and (18) are com-
pared for small r, in Fig. 4. At metallic densities

Eq. (17) gives quite large values for the excitation
energy threshold h„and the quasiparticle decay
into plasma modes is inhibited. In the high-density
regime however, 6, can be still considered as a
small fraction of the Fermi energy. In this case, for
small 5 and b„we can make use in (16) of the ap-
proximate form

2e m'
e(a —a, )(q

(20)
with q~ =min[8, /2e EF,q, ] and q is given in
Eq. (B6). For b, slightly larger than b,„(20)
reduces to

1 2 mme

r„(~), fi PF

1/2

c

(21)

' 1/2
2e4m

r„(b,), g' EF
pl

6&fuop(q, ) .

Finally, as 5 exceeds ficop(q, )=(2ezEFq, )'/z, Eq.
(20) can be written as

BRee(q, ro ) 2

m=mp(e) nip(q)
(19)

IV. DISCUSSION

(22)

valid at small q. The result for I/r„~ p&
is In this paper we have calculated within a pertur-

bative approach the temperature-dependent

8.00-
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FIG. 3. Plot of (~«A )
' measured in units of 4+RE~

versus 6/4EI:, as obtained via direct numerical compu-
tation. For illustration we have taken here r, =2.

FIG. 4. Plasmon emission threshold 6, (measured in
units of EF) versus r, /r,* (r, =8V 2/27) in the high-
density region. 6, is obtained solving numerically Eq.
(17). The dashed line is the asymptotic formula
6,/Ep ~2r, [Eq. (18)].



GABRIELE F. GIULIANI AND JOHN J. QUINN 26

Coulomb inelastic lifetime ~„ofa quasiparticle in a
2D electron gas. Our findings [Eqs. (13) and (20)]
complemented by the results of earlier calculations,
are schematically summarized in Table I. It is clear
that the customary textbook "phase-space argu-
ment"' leads to the correct answer only in the 3D
case.

In a 2D system, v„displays an extra logarithmic
dependence. This peculiar result stems from the
concurrent effects of the planar geometry and the
conservation of energy and momentum in the elec-
tronic collision processes, as expressed by Eq. (6).
This has been overlooked by several previous inves-
tigators.

Another interesting feature is the complete in-
dependence of r„ from the electric charge, as mani-
fest in Eqs. (13) and (14). This is just one of the
consequences of the analytic dependence of the
screened Coulomb potential regarded as a function
of electric charge and wave vmtor.

We have investigated for comparison the depen-
dence on the electric charge e of ~„ in the usual 3D
case. In the high-density limit Quinn and Ferrel
find that 1/r„ is simply proportional to e. In the
general case however, this dependence is much more
involved as shown by the calculation of 1/r„ for a
3D electron gas presented in Appendix C.

Quite generally, the dependence of 1/r„upon e is
dictated by which values of the wave-vector transfer

q are the most relevant ones in the decay process.
In a 3D metal all the q values between zero and 2pF
provide a relevant contribution to 1/r« leading to
the complicated structure of Eq. (Cl). For a 2D
system the singular behavior displayed in Eq. (6)
makes the q values of the order of p —Jiz to contri-
bute the leading term at low excitation energy.
Since at long wavelength the screened Coulomb po-
tential is independent of e so does 1/r«

The situation resembles the dirty-metal case. ' In
the presence of a finite concentration of impurities
momentum conservation is relaxed and diffusion
dominates the dynamics at low energy. In this case,
in all dimensions, the most relevant contributions to
the inelastic Coulomb lifetime come from q values
of the order (k~T/D)', where D is the diffusion
constant. As a consequence 1/~«does not depend
upon e both in two' and three dimensions.

TABLE I. Asymptotic behavior of the inelastic
Coulomb lifetime v„ for p ~p+ in a 3D, 2D, and 1D de-
generate electron gas.

3D'
2D'
1D'

'Landau and Pomerantschusk (Ref. 1), Baber (Ref. 2),
and Quinn and Ferrell (Ref. 3).
Chaplik (Ref. 6) and this work.

'Luttinger (Ref. 4).

In the comparison with experiment the depen-
dence of the leading term in a temperature expan-
sion of llr«upon the electronic density is usually
of interest. For a 3D metal I/r«ccA3T with A3
proportional to n ~ . Our analysis of the 2D case
gives [see Eq. (14)] llr„~A2T lnT with A2 in-
versely proportional to n.

As discussed in Sec. III, at T =0 K, there exists a
finite energy threshold for quasiparticle decay into
plasma modes. This threshold is a substantial frac-
tion of the Fermi energy at metallic densities. Such
a fraction however decreases as the electronic con-
centration increases [see Eq. (18)]. At finite tem-
peratures the calculation becomes involved and no
clear-cut statement can be made. We expect, how-
ever, the existence of a typical temperature thresh-
old T, of the order r,E~/ke for which the plasma
decay mechanism becomes as important as the
single-particle processes in the broadening of quasi-
particle states. Accordingly, above T„ 1lr„will
display an additional contribution proportional to
(T T, )'~ and t—hen to T'~ as T is further in-
creased.
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APPENDIX A: DIELECTRIC FUNCTION
OF A 2D ELECTRON GAS

The susceptibility X (qadi) of a noninteracting elec-
tron gas in 2D is readily evaluated at T =0 K, via
linear response theory. The result is

Rey (q, ni)= N, 1 —e(
~

x+y
~

——1) [(x+y)' —1]' '
2x

—6(
i
x —y ~

—1) [(x —y) —1]'
2x

(Al)
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Im+ (q, co)= — I8(1—~x+y
~
)[1—(x+y) ]' —8(1—~x —y ~

)[1—(x —y) ]'
2x

(A2)

e(q, co) =1—v(q)X (q,co), (A3)

where x =q/2pp, y =mco/fiqpp, and No is the den-

sity of states at the Fermi energy. 8(x) is the usual

step function. Within RPA the dielectric constant
e(q, co) is then given by

I

with a=2e Eplfi and P=3Ep/2m. The second
term in (Bl) is relevant only for q ) (4/3v 2)r,pp, r,
being the average interelectronic distance in Bohr
radii. For r, & 1, and in any case at low frequencies,
the expression

with v(q)=2m. e q.
cop(q)=(aq)' ' (B2)

APPENDIX 8: PLASMA WAVES
IN A 2D ELECTRON GAS

The dispersion relation cop(q) for plasma waves
can be readily established within RPA. Making use
of the results of Appendix A, the collective mode
condition e(q, cop(q) ) =0 gives at long wave-

1"gth,"'"
Sppr, P(r, )

q, (r, ) = cos
3&2 3

1

rs +rs

(B3)

provides a satisfactory approximation.
Plasma waves are well-defined collective modes

only for q less than a critical wave vector q, defined

by cop(q )=co+(q) co+(q) being the upper:edge of
the electron-hole continuum (see Fig. 1). From' the
condition e(q„co+(q) ) =0 we obtain

cop(q)=aq+Pq (Bl) with

and

P(r, ) = arccos[1+ (r, /2r, ) 4(r, /r, ) '—]'~

' 2/3
's

q, (r, ) =2pF
2

rs
1——

2r r
J

1/2 1/3
rs1—

2fs

rs
1 ——

rs

1/2 1/3

rs ~ rs +rs

(B4)

A(r, ) =
2/3

r, —1 E~, (B5)

where r,*=gv 2/27-0. 42. In this case the condi-
tion cop(q) =Q(q) is satisfied by q+m

In (B3) and (B4) r, =27& 2/32=1. 19. For q larger
than q, plasmons suffer Landau damping.

The plasmon frequency

cop�(q)

intersects
Q(q) =Apq/m Aq l2m (se—e text) only if b, =E @-
is larger than the threshold value b,(r, ). With the
use of Eq. (B2) we obtain

APPENDIX C: CHARGE DEPENDENCE
OF 1/v„

In a 3D electron gas the only contribution to
I/r„comes from single electron-hole particle exci-
tations. The calculation can be carried out using
Eq. (5) and the standard formulas for e(q, co) and
v(q). ' At T =0 K we obtain

1 &ps 1

ree(~) 3D
32& 1+(qrF/2pp)

3/4s, n i EF+~(r. )
q+(r, )=—p cos ———arccos+ s 3 3 + 3 EF+5

2pp
1 2'+ (3) tan '

(3)
qTF qTF EF

where q &q+.

(B6)
(Cl)

where q TF is the usual 3D Thomas-Fermi screening
wave vector. The extreme RPA limit (i.e., high
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densities) for 1/r„, as calculated by Quinn and Fer-
rell, is recovered in the limit of qrF'«pF,

high-density limit .

(C2)

Since qTF ~ e we observe that 1/r„~ sn is propor-
tional to e in the high-density limit, whereas in the
general case its charge dependence is fairly compli-

cattail [see Eq. (Cl)].
In obtaining Eq. (Cl) we have used for et(q, to)

the approximate expression I+(qrF'/q) . Had we
disregarded the one with respect to (qrF/q),
I/'T, ~3D would have been charge independent.
This is however not justified since in 3D, unlikely in
the 20 case, all the wave-vector values between zero
and 2p~ lead to a contribution of the same order of
magnitude to the sum of Eq. (5).
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