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It has been proposed that the introduction of the high-flux high-energy pulsed-neutron
sources will allow the study of electronic transitions between valence and conduction bands
in semiconductors produced by inelastic scattering of neutrons. A theoretical calculation of
the cross sections that would be expected in such an experiment is described. Results are
presented for silicon and germanium. In calculating cross sections, which are based on an
empirical pseudopotential description of the electronic band structure, it has been impor-
tant to include both the spin and the orbital part of the magnetic scattering. It is found
that, for the values of momentum transfer considered (up to about 10 nm '), it is the orbi-
tal contribution that dominates. It is also shown that the matrix elements for the transi-
tions have an important effect. Cross sections are shown for a range of energy and
momentum transfer from which it is concluded that the experiment is likely to be possible,
but questions of resolution will be of great importance if useful information about band
structure is to be obtained.

I. INTRODUCTION

The introduction of the new high-flux high-
energy neutron sources {such as the Spallation Neu-
tron Source at the Rutherford-Appleton Laboratory
in England, the Weapons Neutron Research
Facility/Proton Storage Ring at Los Alamos, and
the Intensed Pulse Neutron Source at Argonne) in
the next few years will make it possible to perform
experiments that currently cannot be carried out.
One experiment that has been proposed is the
single-particle excitation of electrons across the
band gap in a semiconductor. This is an inelastic
scattering experiment in which energy and momen-
tum transfers would be measured but, unlike previ-
ous inelastic measurements, the energy transfer
would be in the few-eV range. Some considerations
about the spectrometry for an experiment of this
type has already been made by Allen et al. '

If such an experiment proves feasible, one would
hope that it would be a useful tool in the experi-
mental determination of band structure. Angle-
resolved photoemission spectroscopy has proved a
very powerful tool in the study of valence-band
structure, but as yet there is nothing comparable for
conduction-band measurements. Optical excitations
also provide a certain amount of information

through Q-conserving transitions. With inelastic
neutron scattering, non-Q-conserving {Q+0) transi-
tions could also be studied and would, at least in
principle, provide much more information.

Neutron scattering is a weak probe of matter,
describable within the Born approximation. This
affords a significant advantage over most other ex-
perimental techniques inasmuch that the experi-
ment gives direct information on the chemistry and
physical properties of the sample undistorted by the
external probe. The theory of neutron scattering
from a degenerate plasma in a magnetic field is re-
ported in Ref. 2 and a short review of the dynamic
properties of electrons by neutron scattering appears
in Ref. 3.

We have carried out an extensive series of calcu-
lations of the total magnetic scattering cross section
for electronic excitations in semiconductors in order
to aid the assessment of the feasibility of the experi-
ment. The interaction of the neutrons with the elec-
trons is the familiar magnetic one in which the
cross section contains the spin and the orbital parts.
This case has, to our knowledge, not been examined
previously. Earlier work on inelastic cross sections
for noninteracting electrons has largely concentrat-
ed on the free-electron model and tight-binding
models of d-band transition metals. '
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In Sec. II, we summarize the basic formulas for
the cross sections which form the basis for the
work. We also include a discussion of the
momentum-transfer (Q) dependence of the cross
section at low Q (= ~Q~). This can be obtained
trivially and enables us to set the work in context
with a comparison with the free-electron and tight-
binding cases.

A model band structure had to be chosen for the
calculation. The one used was the empirical pseu-
dopotential scheme, ' which is the most efficient
computationally. For the homopolar semiconduct-
ors this is a three-parameter model. The parametri-
zation gives a reasonable representation of energy
dispersion, at least as far as fitting to optical data
can determine. Pseudopotential wave functions are
a linear combination of plane waves, and orthogo-

nalized core terms need to be included to obtain
realistic wave functions. Matrix elements are easy
to calculate if we use only the pseudopotential wave
functions, but can lead to error due to the neglect of
the core part. Section III summarizes the relevant
pseudopotential formalism and indicates how we
have attempted to assess the importance of the core
part.

In Sec. IV the results of the model calculations
for silicon and germanium are illustrated. We find
that the orbital contribution to the cross section
dominates over the spin part for all values of Q
within the first Brillouin zone. We also find strong
indications that core corrections indeed are negligi-
ble. In Sec. V we summarize the prospects for the
experiment.

II. THEORY

The partial differential magnetic cross section for the scattering of unpolarized neutrons can be written in
the form"
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where Q= k~ —k; is the momentum transfer, in units of A', E is the energy transfer, and px is the probability
distribution of initial states. The carets denote unit vectors. The electron states are labeled by A, , A, with cor-
responding energies E~,Ex . The interaction operator D (Q) is defined by

T

D(Q)=pe'O'" s — QXp,

where r„, s, and p„are, respectively, the position, spin, and momentum of the vth electron in the system.
The two terms in the definition of D(Q) result from scattering from the electron spins and orbital moments,
respectively.

In the one-electron approximation A, is the label of the Bloch states (i.e., A, =n k, where n is the band index
and k is the wave vector). Assuming that the system is nonmagnetic so that the spin-up and spin-down bands
are equivalent, it is straightforward to show that the total cross section can be written as the sum of spin and
orbital parts (no cross terms):
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The spin part of the cross section is given by
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The spin form factor F' 'is

F„'~'(k,Q)= Jd re'O''P„k(r)g z+g(r),
0
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(6)

The orbital form factor is defined as

where Vo is the volume of the unit cell, P„k (r) is the Bloch wave function, and f„t, is the Fermi occupation

number. The corresponding orbital contribution is

d2 2
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For free electrons,

(8)

E-„+o E-„=(fi /2m)(Q—+2k, Q),

where the direction of Q is taken to define the z
axis. Substitution of this result into Eq. (8) and

changing variables from k, to k, Q immediately

brings out the Q
' factor in the joint density of

states. For intraband transitions we can write

Q V~E~k+Q k — k k (9)

Insertion of this result into Eq. (8) and expansion of
the argument of the 5 function about ko, the value

at which it vanishes, will again demonstrate that

and the notation
I

F' '
I

is taken to mean the

scalar product F (O).F(o)

The system under consideration is a semiconduc-
tor in which the Fermi energy lies in the band gap
and the inelastic scattering is due entirely to inter-

band transitions. Most of the earlier neutron

scattering calculations have been on either free elec--

tron models or tight-binding d-band transition met-

als. Generally, the limit of small momentum

transfer can be examined analytically. To set this

work in the context of earlier calculations, we recall

the low-Q results previously obtained and consider
the behavior that will occur in that limit for the
case of interband transitions.

Let us consider first the form of the cross section

at low Q and at zero temperature for a single band

free-electron gas. It was shown by Doniach that
the spin and orbital parts are proportional to Q
and Q, respectively. In fact, the spin part is ex-

actly proportional to EQ ' for Q & 2kF and

E &(A' /2m)Q(2k~ —Q), where kz is the Fermi
wave number.

This Q
' and Q behavior will be true general-

ly for intraband transitions, which can be under-

stood from the following reasoning. The joint den-

sity of states N is of the form

Q
' can be brought out as a factor.

Now let us consider the form factors. For a
plane wave the spin form factor of Eq. (5) is unity
for all Q. For more realistic wave functions, F'~' is
unity at Q =0 and falls off at increasing Q. For a
plane wave the orbital form factor in Eq. (7) is just
2QX kF' '. To obtain the cross section, an addi-
tional factor ki (where ki is the magnitude of
the component of k perpendicular to Q) must be in-

serted into Eq. (8). A factor Q
' from the integra-

tion and Q from Eq. (6) combine to give the Q
dependence.

Thus the Q '- and Q -dependent spin and orbi-
tal cross sections are characteristic of intraband
transitions at small Q. Realistic wave functions will

lead to form factors that cause a more rapid falling
off for large Q.

We now consider interband transitions. Previous-

ly, a factor of Q
' arose in the integration in Eq.

(8). This depended on the relation in Eq. (9), which
no longer holds for transitions between different
bands. Thus the Q

' factor is absent. With regard
to the spin form factor in Eq. (5), F„' ' +0 as Q~O—
for reasons of orthogonality. By expanding e' q ' '
in powers of Q, it can be seen that F„'~'-Q for
small Q, unless forbidden by parity considerations.
The spin part of the cross section is thus propor-
tional to Q at small Q for interband transitions. It,
of course, falls off in the familiar way for large Q.

The gradient operator in Eq. (7) has nonzero ma-
trix elements even when the factor e' q ' = I, unless
the wave functions possess special symmetry. No
dominant Q dependence arises from the orbital
form factor and, therefore, the orbital part of the
cross section is proportional to Q from Eq. (6).
We note that four powers of Q distinguish the two
components of the cross section, and the orbital
part is likely to dominate at the lower values of
momentum transfer.

For completeness we also consider the low-Q
behavior of the tight-binding d-band calculations '

of nickel. The basis was the five-component I =2
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manifold. The spin part of the cross section at low

Q is dominated by intraband transitions and the

Q
' behavior referred to above is valid.

In the tight-binding approach used by Lovesey
and Windsor, only d symmetry bands were includ-

ed, and the overlap between the d (I =2) wave func-
tions on different sites was neglected. The gradient
operator in Eq. (7) has zero matrix elements be-

tween states with the same l value. Thus F'0'~0
for Q~O and one can write F' '-Q. The Q fac-
tor from the form factor cancels the Q from Eq.
(6). Furthermore, F' ' is only nonzero for transi-
tions between different tight-binding bands. For in-

terband transitions we have shown that no addition-
al Q

' factor appears from the integration of Eq.
(8). Thus in the tight-binding model the orbital
cross section tends to a constant at low Q, as found

by Lovesey and Windsor.
The difference in behavior between the tight-

binding model as used by Lovesey and Windsor and
the general results obtained above arises from the
neglect of overlap of the tight-binding basis func-
tions associated with different sites and from con-
sideration of only the d symmetry terms. While
these restrictions may not be too important for cal-

culating other properties of d-band metals, we have
demonstrated that they have a dramatic impact on
the behavior of the scattering cross section at low
Q. Thus it is necessary to exercise some care when

approximating wave functions in order that the

divergent behavior near Q =0 is treated correctly.

III. COMPUTATIONAL DETAILS

To perform the Brillouin-zone sums in Eqs. (4)
and (6) in a realistic time, it is necessary to use a
band-structure routine that efficiently generates the
electronic energies and wave functions at a general

point k. The calculations described here are based
on the empirical pseudopotential method discussed

by Cohen and Bergstresser.
We consider the homopolar semiconductors sil-

icon and germanium, which are described by a
three-parameter pseudopotential,

V, (r)=QVG cosG r e-'o ', (10)
6

1 1 1

where r =ao( —,, —,, —,), 6 =
~

6 ~, and ao is the lat-

tice constant. The summation in Eq. (10) is over
those reciprocal-lattice vectors of magnitude 3, 8,
and 11 (in units of 2m. /ao). The pseudopotential
wave function has the form

y„-„(r)= yA„-„(G)e '"+ '' . (ll)nk V
nk

The number of plane waves used in Eq. (11) was re-

stricted to about 20 by adopting a cutoff parameter

Ei such that
~

6+k
~

&Ei. Additional plane
waves, restricted in number by a cutoff parameter

E2, were also included approximately by the
Lowdin method. For details, see Refs. 9 and 10.
The first step in the calculation is the determination
of the electronic energies E(n k) and the plane-wave

expansion coefficients A„k (6), which were ob-

tained by solving the model wave equation

V +V&(r) p„k(r)=E(nk)p„k(r) .

(12)

The pseudopotential method was developed to be
an efficient scheme for obtaining energy eigen-

values. We recall that the method is a development
of the orthogonalized plane-wave formalism in
which the electronic wave function is written

p„k (r) =p„k (r ) —QA„k (6)gaj-„(G)ge '6'(r —Ri) .
j I

(13)

The sum on I is over both unit cells and sites within
the unit cell, and 8'(r —Ri) is the jth core wave as-

sociated with site I. The coefficient a J-(6) ensures
k

orthogonalization of g to the core states and is

given by

TABLE I. Pseudopotential parameters in Ry as de-
fined in Eq. (10) for silicon and germanium. Only
nonzero terms correspond to 6 =3, 8, and 11 (in units of
2m/ap).

aj-„(6)= Jd r 6 (Jr)e ""+ '' . (14)
k V

The core terms in Eq. (13) are incorporated into an

energy-dependent pseudopotential, which is approx-

Si

—0.21
0.04
0.08

—0.23
0.01
0.06
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FIG. 1. Energy bands for silicon generated by pseudo-
potential parameters given in Table I.

FIG. 3. Energy bands for germanium generated by
pseudopotential parameters given in Table I.

imated in the present scheme by Vz(r) in Eq. (12).
The pseudopotential wave functions P should be
corrected by the inclusion of core states according
to Eq. (13) in order to obtain the true wave function

If it can be shown that the core corrections have
a negligible effect on the scattering cross section,
then a considerable simplification in the analysis
can be achieved by using the pseudopotential wave
functions P alone. The form factors from Eqs. (5)
and (7) can then be written in the relatively simple
orm,

(15)

x& k+ g(G) (16)

We have attempted to assess the importance of core
corrections, which will be discussed at the end of
this section. The conclusion is that although they
inay modify considerably individual matrix ele-
ments, the effect on the cross section itself is negli-
gible. Use of Eqs. (15) and (16) can thus be justi-
1ed.

The numerical evaluation of the neutron scatter-
ing cross section was carried out in two steps. First
the pseudopotential band-structure equations were
numerically solved to obtain the energies and ex-
pansion coefficients for silicon and germanium on a
regular mesh of about 2000 points in the irreducible
Brillouin zone for a face-centered-cubic (fcc) lattice
(with two atoms per unit cell). The pseudopotential
parameters used in these calculations are given in
Table I. We have chosen the coordinate system so

1 1that the atoms are located at R+ao( —,, —,, —,), where
R is an fcc lattice vector, which ensures that the
A„k(G) are real. The Brillouin-zone sums were
evaluated using the tetrahedron method, ' with
1536 tetrahedra in the irreducible zone. Part of the
band structure derived from the parameters in
Table I, together with the corresponding density of
states, is given in Figs. 1 and 2, respectively, for sil-
icon and Figs. 3 and 4 for germanium.

We consider now the justification for neglecting
core terms in the wave function. Some attempts' *'

have been made to discuss this matter with respect
to analogous calculations of the wave-vector-
dependent dielectric function. The indications in
that work were that the core functions had an insig-

0.04-

0.03-0

0.02—M

0.01"
M0a
W
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0.05
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0.04-

O

0.03—
M

0.02

0.010
Cl

0.0 5.0 i0.0 15.0 20.0 25.0 30.0
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FIG. 2. Electronic density of states for silicon for four
valence and four conduction bands.

FIG. 4. Electronic density of states for germanium for
four valence and four conduction bands.
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nificant effect on the dielectric function itself.
To test the effect of core corrections in this case

we employed the analytic forms of the core func-
tions (ls, 2s, 2p) given by Woodruff. ' The overlap
coefficients a~&(G} from Eq. (14) can be calculated

analytically and included in Eq. (13) to give an ap-
proximation to the true wave function l(. Normali-
zation of the P„ i, (r ) was then performed. States of
different n k are not exactly orthogonal, but this is
not important for these purposes.

The modification to the spin form factor in Eq.
(15) can also be calculated relatively easily. We
were thus able to compare the spin part of the cross
section calculated both with and without core
corrections. It was found that for a representative

momentum transfer,

Q = (0.8125,0,0),
ao

and for all energy transfers up to E-10 eV, the
difference between the two values is less than 1%.
The corrections to the orbital form factor are much
harder to obtain. There is no obvious reason to ex-

pect that core corrections will be significantly more

important for the orbital than for the spin cross sec-

tions. Therefore, for this first-generation calcula-
tion, the spin and orbital form factors are calculated

using only the pseudopotential wave functions.

IV. NUMERICAL RESULTS

In this section we present some of the results
from an extensive series of numerical calculations
for silicon and germanium. Results have been ob-

tained for Q along [100], [111],and [110],and re-

stricted to the first Brillouin zone. The calculations
incorporate the full band structure for the four
valence and four conduction bands, with higher en-

ergy bands being neglected. This should ensure that
we obtain the total scattering for energies on the or-
der of 10 eV or less, which is sufficient for our
needs. It should be emphasized that one of the
main purposes of these calculations is to obtain the
magnitude of the cross sections in absolute units

(mb/sr eV). All factors in Eq. (1) have been includ-
ed therefore, apart from the ratio

~ k/
~

/
~
k; ~,

which was set equal to unity. Results for any par-
ticular experimental configuration can be obtained

by simply multiplying our cross sections by the
relevant ratio

~
kI ~/~ k; ~.

In order to investigate the importance of the band
and wave-vector dependence of the spin and orbital
form factors given in Eqs. (15) and (16) we have

Q=-(0.4375,0.0,0.0)

6.0-

4.0-
V)

z 2.0-

0.0 2.0 4.0 6,0 8.0 10.0
ENERGY (eV)

FIG. 5. Comparison of joint densigt of states vs total
scattering intensity for silicon for Q=(0.4375,0.0,0.0).
Differences are due to matrix element effects.

also evaluated the joint density of states (JDOS) de-
fined in Eq. (8}. A comparison of the JDOS with
the total scattering cross section is giveri in Fig. 5
for silicon with Q=(0.4375,0.0,0.0). The JDOS re-

sult has been scaled to give the same maximum as
the total scattering cross section. This result is typ-
ical of the calculations for both silicon and ger-
manium carried out along the three principle sym-

metry directions in that it establishes beyond any
doubt that the band and wave-vector dependence of
the spin and orbital form factor cannot be ignored.

A comparison of the spin and orbital scattering
cross sections for Q=(0.4375,0.0,0.0) is shown in
Fig. 6 for silicon and Fig. 7 for germanium. Notice
that there is a considerable amount of structure in
both components of the scattering and the orbital
part is significantly larger than the spin part. The
dominance of the orbital part occurred at all values
of Q we examined, but was less for large Q. Anoth-
er important feature of these results is that there is
not a dramatic rise in the scattering intensity for E
near the indirect gap energy (which in the present
pseudopotential parametrization is about 0.9 eV for
silicon and 0.8 eV for germanium) as one might ex-

pect, at least for appropriate values of Q. This is
due primarily to the same type of behavior that oc-
curs in the JDOS for transitions across the gap, as
can be seen in Fig. 5. It is clear, therefore, that no
direct information about the band gap can be deter-
mined from inelastic neutron scattering experi-
ments.

In order to demonstrate that these observatioris
are quite general, we show a series of plots of the
total scattering cross section (with the orbital con-
tribution) as a function of energy for various values
of Q along the principle symmetry directions in the
crystal. Figures 8 and 9 show results for silicon and
germanium, respectively. These results also indi-
cate that the cross sections have sufficient structure
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FIG. 6. Comparison of spin and orbital scattering cross sections for silicon. Notice difference in scales.

and variation with Q that the band structure, and
thus the wave-vector-dependent band gap could, in

principle, be determined indirectly. This could be
accomplished by varying the pseudopotential
parameters to provide the best overall agreement be-

tween theory and experiment. This procedure could
also provide an indirect check on the validity of the
pseudopotential theory. If a good overall fit to the
experimental data could not be obtained then we
must rely on first-principles methods to generate
the band structure. This would not cause any
severe numerical difficulties but it would be more
difficult to iterate to the "best" one-electron poten-
tial.

Finally, we show in Fig. 10 a breakdown of the
total scattering for germanium into its individual
band-to-band contributions. The contributions
shown are from the top two valence bands (labeled

V 3 and V4) to the lowest two conduction bands (la-

beled Cl and C2). The remaining contributions,
which involve C3, C4, Vl, and V2 (in an obvious

notation), do not appear on the diagram. These re-

sults indicate that the total scattering cross section
is a rather complicated combination of the inter-
band contributions and that the structure found in

the cross section cannot necessarily be directly relat-
ed to features of particular interband transitions.

V. CONCLUSIONS

We will attempt here to indicate the considera-
tions that should be made in assessing the instru-
mental requirements necessary if neutron scattering
is to be a useful technique for band-structure deter-

mination. One starts with a band-structure model,
ideally with a small number of parameters like the
empirical pseudopotential scheme, and assumes that
its consistency with the valence band can be deter-
mined by angle-resolved photoemission experi-

ments. Optical measurements will then serve to

Q=(0.4375,0.0,0.0) Q=(0.4375,0.0,0.0)

0.4-

4.0-
M

2.0-

0.3-

oz-
W

Of

0.0
0.0 2.0

I I

4.0 8.0 8.0
ENERGY (eV)

10.0
0.0

0.0 2.0
I I I

4.o e.o 8.0
ENERGY (eV)

10.0

FIG. 7. Comparison of spin and orbital scattering cross sections for germanium. Notice difference in scales.
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FIG. 9. Results for total scattering intensity and orbital contribution for germanium for several values of Q along

[100],[110],and [111).
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3.0
)

2.0-6

N

1.0-

Q=(0.8125,0.0,0.0) The band structure of Si and Ge are similar, as
can be seen from Figs. 1 and 3. This similarity is
reflected in the cross sections. It is instructive to
ask which cross sections most clearly distinguish
between the two cases. One obvious candidate is
the cross section for

0.0
0.0 2.0 4.0 6.0 8.0 10.0

ENERGY (eV)

FIG. 10. Breakdown of total scattering intensity for
germanium into its individual band-to-band components.
V3 and V4 correspond to the top two valence bands
respectively; C1 and C2 refer to the two lowest energy
conduction bands, respectively.

specify a few points in the conduction band. Can
neutron scattering complete the test of the con-
sistency of the model with the actual band struc-
ture? The answer to this question depends on both
intensity and resolution.

The largest value of momentum transfer used in

this work was Q=(2irla, ) (1,0,0). This is roughly
10 nm '. The scattering intensity can be estimated

by assuming a variation approximately like Q
Thus at 20 and 30 nm ' the intensities will be

roughly in the ranges 0.25 —0.5 and 0.1 —0.2
mb/(sr eV), respectively.

We note that although the band gaps in Si and

Ge are of the order of 1 eV, the intensity remains

negligible until the energy transfer is about 3 eV.
To obtain a significant amount of useful informa-
tion it would be desirable to be able to measure
cross sections up to value of E of 7 or 8 eV. As a
working hypothesis, therefore, one needs to study

energy transfers from about 3 to 8 times the band

gap. For the III-V compounds with smaller band

gaps, none of the figures so far quoted are outside
the range of feasibility considered by Allen et al. '

Let us now point to some aspects of the figures
that will indicate the sort of instrumental resolution

required. One first looks for structure. There is

plenty of it, but a lot is certainly beyond the limits
of resolution. Some of the best defined peaks (at
lower energy transfers) in the calculations reported
here are near 5 eV for

Q = (0.5625,0.5625,0) .
ao

For Ge the intensity increases rapidly for E up to 4
eV, remains roughly constant to about 7 eV, and
then increases again. For Si, the intensity increases

by about a factor of 2 over the 4—7 eV range of en-

ergy transfer, with two narrow plateaus ( & 1 eV in

width} that may be seen as shoulders with reason-
able resolution. Clearly, in planning an experiment
one must plan to be able to resolve differences such
as those just illustrated.

The problem of determining band-structure
parameters precisely is similar to that of distin-

guishing between the cross section for the two simi-
lar band structures of Si and Ge. A set of model

calculations will indicate the regions of energy and
momentum transfer that can be optimally studied.
The set of plots displayed in Figs. 7 and 8 should

help in the assessment of the resolution on E and Q
necessary to make the proposed experiments useful.

From the theoretical point of view, one will need
to extend the calculations of the cross sections to
larger values of Q and to values of Q away from the
symmetry directions. One also has to bear in mind
the approximations made in calculating matrix ele-
ments. Hopefully the pseudopotential wave func-
tions will be sufficient. The importance of the ma-
trix elements in the calculation of the cross sections
was illustrated in Fig. 5. Clearly in any disagree-
ment with experiment the question of the matrix
elements would have to be considered again. It ap-
pears from the results we have obtained that the ex-

periment proposed by Allen et a/. ' is going to be a
difficult one to perform. The successful measure-
ment of these relatively small cross sections would,
however, provide important information about the
conduction bands in semiconductors that cannot, at
present, be obtained from any other source.
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