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Self-consistent harmonic approximation for atomic static displacements in alloys
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A self-consistent harmonic approximation for the static displacements of host atoms in

a crystal lattice due to interstitial impurities is introduced. It is shown that at a certain
concentration of the impurity the loss of stability arises; for higher concentrations there
are no real solutions of the equilibrium equation for displacements as well as for the pho-
non frequencies. A criterion for the mean-square displacements, analogous to Linde-

mann s criterion in the theory of melting, may be introduced. The phenomenological rule

that the maximal concentration of hydrogen atoms in a transition-metal system corre-

sponds to an average d-electron concentration, DEC= 5, is explained using the new

Lindemann's criterion.

I. INTRODUCTION

Since the pioneering works' appeared, consider-
able success has been achieved in the microscopic
theory of elastic interaction in interstitial alloys
and compounds, and particularly in metal-hydro-

gen systems.
Among the most important phenomena originat-

ing from elastic interaction which the new ap-
proach has managed to investigate were phase
transitions both of gas-liquid and order-disorder

type. The elastic interaction may also lead to the
loss of stability of a crystal lattice. The concentra-
tion of impurity corresponding to this point at a
given temperature is the maximally possible one
for a given system. It is very important from a
practical point of view to be able to find the condi-
tions allowing for the maximal concentration of
impurity in a still stable crystal.

In order to be able to consider a criterion of
elastic stability of an interstitial solid solution we

will develop an approach that may be called the
"self-consistent harmonic approximation" (SCHA)
for atomic static displacements. The latter is a
counterpart of the approach developed in lattice
dynamics, the self-consistent phonon approxima-
tion, which has been successfully used in the ther-
modynamics of rare-gas crystals and melting.

In 1975, in a Letter, we used the SCHA
without proof to explain the well-known

phenomenological criterion of solubility in substi-

tutional solid solutions suggested by Hume-

Rothery almost SO years ago. In the present work

we are going to justify this approach and show
how it may predict the elastic instability in an in-
terstitial solid solution, and, particularly, a metal-
hydrogen system.

II. STATIC DISPLACEMENTS
IN INTERSTITIAL SOLID SOLUTIONS

AND THE HARMONIC HAMILTONIAN

Let us consider a crystal with the host atoms in

the crystal lattice sites and the impurity atoms oc-

cupying some interstitial positions. If we suppose
that the atoms interact via pairwise potentials, the
Hamiltonian reads

H = —, g' U(A —A')+ g V~(% —A')C~~,

(A —8")C~y C~~, .

Here the first term is the interaction energy of the
host atoms; the second one is the sum of interac-
tions of a host atom at lattice site A with an inter-
stitial atom in the pth interstitial position of the
A'th unit cell. (For simplicity we are considering
a Bravais lattice. ) The third term is a direct in-

teraction of the impurity atoms. The potential
W&& (A —A') is of short range and, since the con-
centration of interstitial atoms is usually low, it is
often neglected. In Eq. (I) C~~ is a random quan-

tity equal to 1 if there is an atom in the pth inter-
stitial position of the A'th unit cell, and 0 other-
wise. The repeating indices p,p' mean summation;
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p,p' = 1,2, . . . ,v, where v is the number of the in-

terstitial positions in each unit cell that may be oc-
cupied.

The set j 9P j does not form a perfect crystal lat-
tice because of static displacements due to intersti-
tial atoms. In fact,

8'=R+u R .

Here u R is the nonuniform part of the displace-

ment. The uniform displacement allowing for the
"concentrational expansion" of the lattice is in-

eluded into the first term, so that [RI means the
regular "average" lattice after the concentrational
expansion. X-ray diffraction experiments just give
the values of the lattice parameter of IRI that de-

pends on c, the average concentration of the im-

purity atoms. Obviously, g z u R =0.
We impose periodic boundary conditions and

write the Hamiltonian, Eq. (I), as a Fourier series
in the volume 0 (Q=QON, where N is the total
number of unit cells within the volume and Qo is
the volume of the unit cell):

1 1 iq (R —R'+ u R
—u R.) 1 iq (R —R'+u R "R'H= ——gU-, g' e ' " +—gV'-, g ~2n

q R, R' q R, R'

1 1 iq (R —R'+u
R "R' I

+——g w~~ g e " "'c~-c~-, ,
2 n R R''

R, R'
(2)

where U-, V~-, and W~~ are the Fourier transforms of the corresponding potentials in Eq. (I).
We now introduce a new random quantity corresponding to concentration fluctuations:

Chcp- =cp- ——.R R

Obviously,

1 c 1—g c~- = —,—g b,c~- =0 .
R &' ~ R

R R

Then Eq. (2) may be rewritten

1 1 iq-(R —R'+u
RH= g+-, —g—' e

2 0
q R, R'

1 1 I iq (R —R'+
+——gw'-,' g e

2 0
q R, R'

—u R') ]' iq (R —R'+u
R u R' p

q R'
R, R'

uR uR'~ p
R R''

where

V —2 V

U-+ g v'-+ —, g w'-',
q q p q

p=1 p,p'=1

V

v~, +—'g w~~.
V

(4a)

(4b)

Now we are going to make use of a harmonic approximation. In our case this will mean keeping the terms
up to second order not only in the displacements u R but also in the concentration fluctuations hcpR. Then
the total Hamiltonian is

H =HI, +0(u, bc 3),
and the harmonic Hamiltonian reads

Hp ——Ho+ ~p,
where
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i q (.R —R ')

2 0
q R, R'

(Sa)

1+—g W~- g e'q' 'i[q. (u R
—u-R, )]b,c~-„,

R, R'

+——g W~~ g e'q'" "a-c~-ac~-, .
R, R'

(Sb)

Equations (Sa) and (Sb) may be written in another
orm:

5HI, =0.
5u-R

Ho ———, g' 4'(R —R'),
R, R'

M'J(R —R')u'R u J,
R, R'

(6a)
The corresponding equation reads

g M'J(R —R')u J-, —g F' (R—R')hc~-, =0 .
R' R'

Fp(R —R')u'R b,c~-,
R, R'

Wrr (R R')b, c~- b,c~-—
R R

R, R'

(6b)

The eigenvalues of operator A are just vibration
frequencies of the average lattice:

(K )e&( K ) =mCO&(K )e&( K )

(8)

Here k(R —R'} has the meaning of an effective
interaction of the host atoms in the "average" lat-
tice, allowing for the effects of an absolutely ran-

dom distribution of the impurity atoms. The
lattice-vibration spectrum of such a lattice would

be defined by a dynamical matrix, which happens
to be just identical to W'J(R —R') of Eq. (6b) (al-

though the displacements u'R here are not dynam-

ic, the static ones are). Obviously,

~~ (RQR )= gq~q @ e q ~

0
q

(7)

M'~(R=R') =——g q'qj+- g e' q '

0 q
q

+

Ft(R —R') has the meaning of a force acting be-

tween the host atom in lattice site R and the im-

purity atom in position p of the R'th unit cell.
(i,j ) in Eqs. (6b) and (7) are Cartesian indices.

The harmonic Hamiltonian, Eqs. (6a) and (6b),
depends on two random quantities I u- ) and

Ib,c~-„ I. However, they are not independent. At a
fixed (arbitrary) distribution of the impurity atoms
Ihc~R I, the u „'s may be found from the minimi-

zation requirement:

Here r0 (K) and e' (K) are the frequencies and po-
larization vectors corresponding to the o.th branch
of vibration (a Bravais lattice has only acoustic
branches o =1,2,3). M'J(K) is the Fourier
transform of the dynamical matrix, Eq. (7),

M'J( K ) =g M'J( 9F )e' " ' "
R

(7')

eo K e~ a
G'Jl K) =

a=i mCOo &

one immediately obtains the solution to Eq. (8):

e' (K)e (K)F&(K)bc (K)
u'(K)= g 2

can=1 rnco~( K )

where

(10a)

u'(K}=g u'Re'"'
R

(10b)

bc~(K) =g dc' e' " "
R

(10c)

The method of solving Eq. (8} and the solution,

(vectors K are defined within the Brillouin zone of
the lattice (RI ), and m is the (effective} mass of
vibrating ("average") host atoms.

Now, making use of the Green's-function tensor,
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Eq. (10a), were first suggested in Ref. 1 (see also
Refs. 9 and 10). There, however, the dynamical
matrix and co corresponded to the pure host lat-
tice, while in our case the effects of homogeneous
impurity distribution are also incorporated (by in-

troducing the "average" lattice).
Now let us return to Eq. (8). Having substituted

it in Eq. (6b) one obtains:

H=Hh+u, u = V—Hh . (14)

We are going to consider a Gibbs ensemble with
the partition function

Let there further exist an approximation Hh that
allows an exact (or easy) solution. We will be
referring to Hh as a "harmonic" Hamiltonian.
Then Eq. (13) identically reads

W'J(R —R')u'R u JR,
R, R'

Z=Tr(e ~ ), (15)

g W» (R'R—')ac~ ac~, ,
R, R'

where now u'R are the solutions of Eq. (8) and are

defined via Eq. (10a).
At this stage we are going to drop the second

term in Eq. (11), the direct interaction of
impurity-atom fluctuations. Note that we do keep
the impurity interaction for the uniform distribu-

tion of impurity atoms, which contributes to the
interatomic interactions in the "average" lattice,
Eqs. (4a) and (4b). Now

(16a)

where

Zp ——Tr(e ~ h),

(}= Tr( e ~h)1 H
0

0

and

(16b)

(16c)

where P= 1 /T, T is the absolute temperature in en-

ergy units, and Tr( ) means the trace: summation
(or integration) over all the microstates of the (clas-
sical) system.

With Eq. (14) one has

z =.-""'z,(.-»"&„

M'i(R —R')u'- u~ . .
+ R R'

R, R'
hv=v —(v}p. (16d)

We may now return to the expression of the type
of Eqs. (5a) and (Sb) and write

Hh ——H0+ EHh

The last factor in Eq. (16a), the average, is con-
veniently considered as a series in so-called "cen-
tral moments, "p„=(b v" }p. Then

iq (R —R')
2 0

q R, R'

X I 1+—,[q (u R
—u R.)] I .

Z=zpe ' 1+ g p„
P&v &p

— ( — )"

n=2

Now we are going to introduce a "fictitious"
harmonic approximation,

(17)

(12)
Hh ——aHh, (18)

Here again we point out that u R are random

quantities which are defined via another set of ran-

dom quantities b,c~z by Eqs. (10b) and (10c).
From now on we will be working with the har-
monic Hamiltonian, Eq. (12).

-p&.-),
Zh =Z0e (19)

where a is a (nonrandom) operator, and we will try
to find such an a that the relative difference be-

tween the exact Z, Eq. (16a), and

III. SELF-CONSISTENT HARMONIC
APPROXIMATION

is minimal. To be precise, we require that
2

Zh
1 — =0.

5a Z
(20a)

We are going to consider now a more general
problem of calculating the partition function. Let
the Hamiltonian consist of only potential energy,
i.e., it corresponds to a static classical system:

(13)

In Eq. (19) ( }p now means the average over the
Gibbs ensemble with the Hamiltonian H)„Eq. (18),
and u= V—Hh.

Since Z does not depend on a, Eq. (20a} is
equivalent to



26 SELF-CONSISTENT HARMONIC APPROXIMATION FOR ATOMIC. . . 4393

(20b)

or

(Hsu &p=(Hs &o(U &p . (21b)

The Hs with a satisfying Eqs. (21a) and (21b) will

be referred to as the SCHA. One can easily see
that condition (20b) is equivalent to the minimiza-

tion, with respect to a, of Gibbs free energy,

4= ——ln(Zpe ) .1 -p(.-&,

Making use of the definitions, Eqs. (16b)—(16d),
the variational derivative, Eq. (20b), reads

&H//aH/$ &p
—&Hg &o&aH/g &p

= &Hs V&o —&Ha &o( V&o (21a)

Note also, that the Eqs. (21a) and (21b) hold if one
requires a minimum of the second central moment

p2 with respect to a.
Returning to Eqs. (2la) and (21b) we may now

attempt to find the SCHA corresponding to Hs for
static displacements, Eq. (12). Let the operator a
belong to quite a general class, such that

R )eiq i R —R')
q q

R, R'

X [ I+ —,[q (u R
—u R.)]ij,

(22)

where a q(R —R') is a function of q and R—R'
In order to simplify the formula we will intro-

duce the notations

Then the requirement that the solution corresponds
to a minimum of 4,

524
2 &0,

a
reads

P'(&Hs &p&o &p
—2&H), &p&Hs)T&o+ &H)', U &o) &0,

and for a satisfying Eq. (20b),

P ( & H/g U & p (H/g & p &
—iT &p) )0 ~

The loss of stability 5 4/5a =0 occurs for

&Hs p &o= &Hi &o(U &o .

XX[ ]—=——X+q X' e'"'"
2 0

q q R, R'

b ui ——u- —u-, a'-"=a-(R —R') .

Then

Q g Ia'-,"[1+—,(q ~u))']]
q (&)

(23)
V=H=+ QI e

q (&)

Taking the variational derivative, Eq. (20b), with

respect to a-(R—R'), one obtains the equation

gg{a'-"[&(q ~ui)'(q' ~u2)'&p —&(q &u))'&p((q' bu2) &p]
' (2)q

+2[((q'~ 1)' '&o —((q ~ )'&o&
' "'&,]]=0. (24)

In order to solve this equation for a one needs to
calculate the averages.

If the distribution of displacements were Gauss-
ian, the calculations could easily be performed.
However, as was pointed out by Krivoglaz (see Sec.
24 of Ref. 10), it is not. In spite of the quadratic
form of the Hamiltonian, Eq. (12), and the fact
that the displacement of each host atom uR is the
superposition of a macroscopically great number of
displacements due to individual impurity atoms
b, u~(R —R'),

u-„=g b, u~(R —R')b, c~~. ,
R'

there may be significant deviations from the
Gaussian behavior because of the prevalent role of
nearest neighbors. From the mathematical point
of view this finds its manifestation in that the ran-

dom quantities hc (x ) on which each u R depends,

Eqs. (10a) and (10b), do not run all the possible
values (the latter would correspond to the Gaussian
distribution of u R ). In fact, the number of im-

purity atoms is constant. Therefore,
V—ggcR= —.

R P=&

Further, since (c~R ) =c~R, the following condi-
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tions must hold:

(25a)

a-(R —R') =-a- =exp[ —((q u R )2)&] .

(27)

Q g [b,c~(lc)] =—1 ——
K p= V V

(25b)

Let us now find the average ((q.u R )z)0. From

Eqs. (10a) and (10b) we obtain

X ((q b u i)( q'. bu2) )0=0 . (24')

For the arbitrary function b, u the obvious solution
1s

—(1/2)( [ q ( u ~R —u ~R, ) ] &0a-(R —R') =e
q

(26)

The result has its counterpart in the self-consistent
phonon theory, but now u R are static displace-

ments, not dynamic ones. Note that Eq. (26) was
obtained from purely classical considerations for
the static system.

The exponential in Eq. (26) may be represented
as consisting of two terms:

—, ([q.(u R
—u-„,)] )o——M-„—bM-(R —R'),

M =((q u„) )0,
hM-(R —R')= ((q.u-„)(q u-„,))o .

The first term Mq gives rise to the well-known
Debye-%aller factor; the second one, a correlator,
decays rather rapidly (though oscillating) with

l
R—R'

l
. For a disordered solid solution, far

from order-disordered transition points, the effect
of hM-(R —R') is small compared to that of the
Debye-Wailer term even for nearest neighbors.
With this reservation we shall assume that

Equation (25b) means that the random quantities
hc~(a ) may take on values only on the surface of
the vN-dimensional sphere (the number of allowed
p7 points in the Brillouin zone is N) with radius

[(c/v)(1 —c/v)]'
However, as was shown in Ref. 10, deviations

from the Gaussian behavior for u R are not signifi-

cant for low concentrations of impurity atoms.
Since this is usually the case for interstitial solid
solutions, we shall also assume that the distribution
of u R is Gaussian.

As soon as this assumption is accepted, the cal-
culation of the averages in Eq. (24) becomes rather
simple (see Appendix). Having found the averages
we obtain for Eq. (24):

(2) 1/2(( q 'h' 2) )0(a-, —e )q'
' (2)q

where

(28a)

[q.e (ic)][e F~(ic)]
f~(q, ic)=

o=i mcoa K
(28b)

and we made use of the fact that, neglecting the
correlations,

(b,c~(Pc)b,c~ (ic ') ) =— 1 ——5 5-
pp Pcs '

(29)

To summarize this section, we have found that
the SCHA for static displacements consists in re-
norrnalizing the effective interatomic interaction of
the "average" host lattice. " Namely,

-&(q u R) &0k-~e
q

(30)

((q.u-„) )0——— 1 ——
q

V V

2[e F~(ic)]
2

g p = ] pico ~ ( Ic )

(31)

Then the expression for the trace of M'J(ic) also is
easily found:

m '
2 ~0—g +co~(~)=, f dqe e "("lq +-

N , (2n )

gg2e —g l4(~) @ (32)

This approximation is self-consistent because the
phonon spectrum [co ( Ic )] of the (average) host lat-
tice that enters ((q.u R ) )o [Eqs. (28a) and (28b)]
is itself to be determined via the dynamical matrix
M'~(a ) which, in turn, depends on the Debye-
Waller factor,

exp( —M-[co])=exp( —((q.u R ) )0) .

For the cubic crystals, Eqs. (28a) and (28b) simpli-
fy to
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where t g I is the set of reciprocal-lattice vectors,
and

is the right-hand side of Eq. (31) without the q2

factor.

where
T

1/2 1/2 P ~ — 2P(p)=p, '~'f'~' I dq "q'+-
(2~)'

2—ge g "g'+-,

IV. LOSS OF STABILITY
OF THE INTERSTITIAL SOLID SOLUTION

AND LINDEMANN'S CRITERION
FOR STATIC DISPLACEMENTS

3

67 =
~ g QC0~(K),

1
N

and make use of the so-called Born method, '

which in our case yields the approximation

1 1 1

4
=

3 X ~ X

(33a)

(33b)

We are going to show now that the self-consis-
tent equation for the phonon frequencies [either
Eq. (32) or Eq. (9) with M'J] contains an instabili-

ty. For a certain range of parameters involved a
real solution for the frequencies does not exist.

In order fo find this range exactly, one must
solve Eq. (9) precisely. We shall restrict ourselves

to an almost qualitative consideration. Since the
results seem to be quite meaningful, we do believe

that our consideration is correct, although not be-

ing rigorous enough.
Let us introduce the "average" frequency

(36b)

Let us consider the behavior of P(JM) at IM & 0.
P(p) is obviously a positive quantity [it follows

from the definition originating from Eq. (32)]. At

JM =0, P(p) vanishes. At p —m ao the second term of
Eq. (36b), the sum over the reciprocal-lattice vec-

tors vanishes when g p »1 for all g. In this
range of p the first term, the integral, may be
evaluated using the Laplace method. Since +- is

q

a smooth function, the integral equals

2 —q &JM,
const

qqe
' = n/2q=

and therefore

p(p) ~
p~ao p

At intermediate p, s, P(p) is obviously undergoing

a maximum (or maxima, which is less likely). The
shape of P(p, ) is shown in Fig. 1.

Let p,„correspond to the (strongest) maximum
of P(p). Then Eq. (36) may have a real solution

only if
1/2

Further, since e (a) is a unit vector, we set
c c8= — 1 ——
v v

&p(p, „) . (37a)

[e F~(a)]=
~
F~(ir) ~, (34)

v[~]=— (35)

where f is a constant.
Equation (32) now reads

mco = Qp
dqe " q +-

(2~)'

and, making use of the theorem of averages, obtain
for p[co] the approximate expression

c c
1 ——

v
&p(p,„) . (37b)

Otherwise only complex p's may satisfy the equa-
tion and that would mean complex frequencies.
As one may see from Fig. 1, with the conditions
(37a) and (37b) fulfilled, there may be two real
solutions for each value of c. Only the solution

p &p,„has physical meaning. ' In fact, at c =0
the static displacements are absent, p =0, and with
increasing c the mean-square static displacement p
must increase. The instability arises when

1/2

c
1/2

c
1 ——

v
=p(p),

g e gP(~lg2~-
g

g

Considering p, [co] in Eq. (35) as a variable, Eq.
(32') means

(32')

(36a)

The parameter 8 as a function of c/v has a max-
1

imum at c/v= —,. However, our theory, as was

mentioned above, is valid only for low concentra-
tions, definitely for c/v& —,. Therefore, 6 is the

increasing function of c/v, and conditions (37a)
and (37b) mean that there exists a limiting concen-
tration of interstitial atoms, above which the sys-
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I

I

I

I

I

I

I

P'sea

FIG. 1. Possible solutions of Eqs. (36). (e ~ )
correspond to the loss of stability point.

tern is dynamically unstable.
The existence of a limiting mean-square static

displacement p, ,„ is, in fact, a counterpart of the
Lindemann's criterion for melting. In Ref. 7 we
pointed out that for substitutional solid solutions
the Burne-Rothery rule is also based on the cri-
terion of Lindemann's type.

The general conclusion of our consideration and
its graphic interpretation, Fig. 1, obviously do not
depend on the approximations [Eqs. (33a), (33b),
and (34)] made: The latter only helped in obtain-
ing the result in a simple form. Of course, in or-
der to investigate quantitatively the conditions of
the instability and consequently the maximal possi-
ble concentration of interstitial atoms, one has to
know the value of iu, ,„and the explicit dependence
of }M, on c and other parameters of the system of
interest.

According to Lindemann s criteria of melting,

p, =—10 a (a is the lattice spacing). In our case)u
is probably of the same order of magnitude. As
for the explicit expression for iM, , we will make use
of the one given by Krivoglaz' ':

3 c c, 1 ~QO

417 v v Qo c}c

(38)

Here A is a factor depending on a combination of
elastic moduli but varying only slightly from metal
to metal (its typical value is 0.5 —1.0; see Table I
of Ref. 10).

The relative change of volume,

~ an,
Qo Bc

is the most important parameter in the formula.
Its magnitude depends both on the elastic proper-
ties of the host lattice and the characteristics of the
interstitial atoms. In modern theories of lattice de-
fects this quantity is expressed via the so-called
double-force tensor and the Kanzaki model's:

1 ~QO 1 pli

Qo gc 3 QoB
(39)

where p;; is the trace of the double-force tensor p,j,
and 8 is the bulk modulus of the host lattice.

In the other model, treating an impurity atom as
an elastic sphere of radius r; in the elastic medium,
corresponding to a host lattice, '

BQp r; —rI,=3' X
Qo Bc

3(1—«)8;
2(1 2ic )8 +—(1+«)8;

(40a)

where 8 and 8; are the bulk moduli of the host
lattice and the "impurity medium, " and ~ is the
Poisson coefficient. Since for most solids ~= —,,

BQO hr; 38;=3
Qo (jc r; 8+28; (40b)

Here hr; is the change of the effective impurity
atom radius in the solid solution. We see that Eqs.
(40a} and (40b} also have the inverse dependence on
the host-lattice bulk modulus 8.

Let us return now to the I.indemann's criterion
based on Eq. (38):

3
A —1 ——

4m v v

'2
BQp

p ()c
=const . (41)

The highest possible concentration c would corre-
spond to the least value of the volume factor.
Considering the transition-metal series correspond-
ing to the fourth and fifth rows of the Periodic
Table, one sees that the Wigner-Seitz radius (pro-
portional to any linear dimension of a crystal lat-
tice) undergoes the minima in the centers of the
series, while the bulk moduli have maxima in the
same points. ' This is shown in Fig. 2.' The aver-
age d-electron concentration (DEC} corresponding
to these points is DEC=5. As one can see, the
Wigner-Seitz radius minima are rather shallow, so
that the factor hr;Ir; changes only slightly, while
the bulk moduli maxima are rather sharp. As a
result, the least value of the volume factor, Eqs.
(33}and (40a), is achieved in the middle of the
series for DEC=5. And to the host lattice of such
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c.pp

O
4.00

O.'
N

3.50
'isJ
V)

I~ 300
La)

2.50

K~ 3000-

2000O0
OC

g) l 000

Ca Ti Cr Fe Ni 7n

Nb, Tc', Rh, Ag,
Sr Zr Mo RM Pd Cd

FIG. 2. Wigner-Seitz radius and bulk modulus vs atomic number for 3d and 4d transition series (Ref. 18). Points
and crosses are, respectively, calculated and measured values.

System DEC

TiCri 8H3 6

TiCrMnH3
Tip 9Zrp iCrMnH3
T1p SZrp 2CrMnH3
TiFeHz
TiFep. sMnp 2H2

5.2
5.0
5.0
5.0
5.0
4.9

In calculating DEC's for these systems it was as-
sumed that the H atoms contribute their electrons
to the d bands of the alloys, and the host lattice is
the one with the electrons added —which corre-
sponds to our theoretical model, where the host
lattice incorporates the effects of the homogeneous
distribution of impurity atoms [see Eqs. (4a) and
(4b)].

a composition a maximum concentration of inter-
stitial atoms c must correspond.

This rule has been recently empirically formulat-
ed for metal-hydrogen systems. ' Examples of
such systems are' '

V. CONCLUSION

In this paper we demonstrated that a variational
procedure, as applied to either the partition func-
toin or the Gibbs free energy of the interstitial
solid solution with the host atoms displaced from
their regular positions, results in an approximation
which has typical features of a self-consistent-field
theory. The effective potential of the interatomic
interaction renormalizes, and as a result, both the
atomic static displacements and the phonon fre-
quencies of the "average crystal" have to be found
self-consistently.

Of course, the resemblance of the renormaliza-
tion factor as(R —R') with that in the self-
consistent phonon theory is due to the Gaussian
distribution of displacements. We do believe, how-

ever, that the deviation from this distribution mak-
ing the static displacements different from dynam-
ic ones, does not affect the main feature that the
SCHA reveals: an elastic instability of an intersti-
tial solid solution.

The fact that a Lindemann-type criterion must
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hold for atomic static displacements seems to be
quite natural from the physical point of view. As
in the case of melting there must be a maximal
mean-square static displacement that an alloy can
withstand: The crystal as a dynamically stable

body collapses if the displacement exceeds a criti-
cal value.

The existence of the Lindemann criterion for
static displacements might well be postulated (as
was the case with the original Lindemann criterion
for melting). The DEC rule we explained for
metal-hydrogen systems follows directly from this
postulate and a realistic model for the displace-
ments —Eq. (41).

As for the proof of the criterion we suggested, it
is actually of a semiquantitative character. The
approximations involved do not "endanger" the
SCHA itself but rather enable us to obtain, in the
shortest way, the physically feasible result.

On the other hand, as the calculations have
shown, ' the loss of stability temperature that ap-

pears in the self-consistent phonon theory is an or-
der of magnitude higher than the corresponding
temperature of melting. The latter is probably due
to the fact that the approximation does not allow

for uneven anharmonic contributions. This is also
the case with the SCHA. We do not know what
kind of restrictions are imposed on the static sys-

tem because of this drawback. A detailed quanti-
tative consideration is necessary in order to learn
more about the SCHA. We believe that the SCHA

I

may be useful both for calculations of elastic prop-
erties and for an analysis of phase transitions and
instabilities due to elastic interaction in solids.
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APPENDIX: CALCULATION OF AVERAGES
IN THE HARMONIC APPROXIMATION

We need to calculate averages of the following
type:

Ai ——(Au'ibuiku26u2)p,

A2 ——(hu'ibu iexp[ —i(q b uz)])o .

A simple method is based on the fact that for
Gaussian distribution of displacements,

(expIi[(qi oui)+(q2. hu2)+ +(q„bu„)]I )p

=expI ——,([(q, b, u, )+(q2 b, u2)+ . +(q„bu„)]2)p] . (Al)

Then, obviously,

4

Ai ——
, „&(expI —i[(qi.oui)+(q2 bug)])pI

aqIaqj, aq", a~', q&
——q2 ——0

4

BqqBq~BqzBqz
„,-pI--,'&[(q, ~-.,)+(q, ~-.,)]').~

- - „
2

A2 ———, ( expt —i[(q, b u, )+(q2 b u2)]I )-
~qt~qi q) ——0

2

. e"pI ——,
'

& [(qi ~ui)+(q2 ~u2)]')oI - =iiaq', Bq,

and simple algebra gives

&(q'~ui)'(q'~u2) )o=2((q oui)(q' bu2))o+((q oui) )p((q'. bu2) )o

&(q.Aui) exp[i(q' bu2)])p ——[((q.oui) )p —((q.oui)(q'. bu2))o] exp[ ——,((q'.Eu2) )o] .

(A2)

(A3)

(A4)

(A5)

Substituting Eqs. (A4) and (A5) into Eq (24) one o.btains the final result Eq. (24').
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