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It is well known that the density-gradient expansion of the Hartree-Pock exchange en-

ergy for the bare-Coulomb interaction contains divergent terms of order e where e is the
electronic charge. We argue that the exchange energy evaluated with Kohn-Sham orbi-

tals (i.e., those derived from a local effective potential) is purely of order e and therefore
its gradient expansion is well defined. This density-gradient expansion, with the a priori
coefficient of Sham, is shown to converge by comparison with numerically refined values

for the exact exchange energy of a metal surface in the linear-potential model. As the
electron density profile becomes more slowly varying, the relative error of the zeroth-

order (local-density) term tends to zero. We present here the first demonstration that, in

addition, the absolute error is increasingly canceled by the second-order {gradient) term.
Like the gradient expansion for the kinetic energy but unlike the one for correlation, the
gradient expansion for exchange gives useful results even for "physical" surface profiles.
One- and many-electron atoms are also discussed. It is observed that, as the atomic num-

ber increases, the relative errors of the local-density and gradient-expansion approxima-
tions decrease in magnitude, but the gradient term corrects only a small fraction of the
error of the local-density approximation. This is a consequence of the fact that the con-

vergence condition
~

Vn
~

/2kFn & l is increasingly satisfied as the atomic number in-

creases but the second convergence condition ) V n
~

/2kF
~

~Vn
~

&& 1 is not so well satis-

fied.

I. INTRODUCTION

The total energy of a many-electron system and
the separate energy components are functionals of
the electron density n (r).' When n (r) varies

slowly over space, i.e., when

i
Vn

i
/2kFn & l

The gradient expansion for the kinetic energy une-

quivocally converges as the density becomes more
slowly varying; we will demonstrate here that the
same is true for the exchange energy.

The exchange energy is defined in density-
functional theory' as

g ll* ( r )llj ( r ')

and

V'n I/2kF
I
Vn

&,[n]= 2g J—d r I d r'
f
r —r'[

[where kF ——(3m n) is the local Fermi momen-

tum], the kinetic and exchange components can
each be approximated by an asymptotic expansion
in the density gradients. ' These expansions are
"useful" in themselves for some problems in the
sense that the error of the zeroth-order term is not
too large and is substantially corrected by the
second- or higher-order terms. Gradient expan-
sions may also guide the construction of more ac-
curate approximations to the density functionals.

(3)

where

n(r)=gn (r)=gg (P (r)~

and

[ p
V +" ff(r)]lao(r)=e otal(r) ~

Here o (= l or t) labels the spin, and a stands for
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the other quantum numbers. The local potential
u ff( r ) is a functional of n ( r ) since it must be
chosen to satisfy Eq. (4). For a given density n(r ),
the local effective potential upff(r ) in Eq. (5) may
be varied until its orbitals llj«(r ) yield n (r) via
Eq. (4). The exchange energy of Eq. (3) is then ob-
tained from these orbitals.

In the Kohn-Sham density-functional theory,
the total energy E[n] is defined as the sum of
several terms: the kinetic energy T, [n] of a system
of noninteracting electrons with density n(r), the
electrostatic energy, and the exchange-correlation
energy E„,[n], which for exchange alone becomes

E„[n]. The Kohn-Sham orbitals and density mini-
mize E[n], i.e.,

u ff(r)=5(E[n] —T, [n]) /5n(r)

{The exact Kohn-Sham formalism discussed here
must not be confused with the local-density ap-
proximation for E„,[n] and u,tt(r). )

We now discuss the relationship between

exchange-only Kohn-Sham and Hartree-Fock
theories. The difference is only that in the
Hartree-Pock theory the effective potential is al-

lowed to be nonlocal, i.e., u,tt(r, r ') replaces
u ff( r )5( r —r '). In Hartree-Fock theory, the
Hartree-Pock orbitals are used in Eq. (3) instead of
the Kohn-Sham orbitals. The difference between
the Hartree-Fock and Kohn-Sham definitions of
the exchange energy should be numerically negligi-
ble. For example, in jellium metal the two sets of
orbitals are identical. The orbitals are also identi-
cal for the atoms H and He, where the Hartree-
Fock effective potential is local. For larger atoms,
Aashamar, Luke, and Talman have constructed
the proper exchange-only Kohn-Sham orbitals, i.e.,
they ha've found the local effective potential which
minimizes the total energy in the atom. The re-

sulting Kohn-Sham energy exceeds the absolute
Hartree-Fock energy minimum (with a nonlocal ef-
fective potential) by less than fifty parts per mil-

lion. (By the virial theorem, the exchange-only
Kohn-Sham and Hartree-Fock kinetic energies are
also similarly close. )

Despite the numerical similarity of the Kohn-
Sham and Hartree-Fock exchange energies, the
difference is important in principle since the gra-
dient expansion exists only for the Kohn-Sham ex-

change energy and not for the Hartree-Fock or.

other definitions. The Hartree-Fock exchange en-

ergy contains terms of order e, e, etc., where e is
the electron charge, and the e term of its gradient
expansion diverges due to the long range of the

Coulomb interaction. Examination of Eq. (3)
shows that the e and higher-order terms arise
from the e dependence of the Hartree-Fock orbi-
tals. Since the Kohn-Sham orbitals depend only
on the electron density and not otherwise on e, the
gradient expansion of the density-functional ex-

change energy is purely of order e and therefore
well defined. The fact that the gradient series for
the Kohn-Sham exchange energy terminates at or-
der e is already implicit in the work of Langreth
and Perdew. This important fact is not widely
known.

The form of the gradient expansion was pro-
posed on dimensional grounds by Herman, Van

Dyke, and Ortenburger:

E„[n]=—W„J d3r n4'3

—C„Jd r
~

Vn
~

/n ~ + (6)

(In our atomic units, A=rn =e =1.)
The gradient-expansion approximation (GEA)

retains the first two terms of Eq. (6). The first a
priori calculation of the coefficient

C„=7m/144(3m ) =0 001 667 a. .u.

was r'eported by Sham. ' (This coefficient has re-
cently been rederived by the method of wave-vector
analysis. ) Sham's coefficient is only —, to —, of
the empirical coefficient proposed for atoms by
Herman et al. ' This fact and recent evidence for
poor convergence of the gradient expansion for ex-
change and correlation in the metal-surface prob-
lem ' prompt a closer examination of the gradient
expansion for exchange.

The conditions (I) and (2), taken together, ought
to be sufficient to ensure convergence of the gra-
dient expansions for the kinetic and exchange ener-
gies. From Eq. (6) we can see that satisfaction of
condition (1) guarantees that the gradient term will
be small compared to the local term. The further
satisfaction of condition (2) should then guarantee
that the gradient term will correct nearly all of the
error of the local term.

The gradient expansion can only be tested for
systems in which the exact exchange energy is
known, e.g., atoms or models of the metal surface.

The terms not shown are of order V and diverge

in regions where the density tends to zero. ' The
first term of Eq. (6) is the local-density approxima-
tion (LDA) for exchange, which has the Gaspar"-
Kohn-Sham coefficient

A„=(3/4ir)(3n )'~ =0.73856 a.u.
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II. METAL-SURFACE ENERGIES

In the jellium model of a metal surface, the po-
tential u, rr( r } in Eq. (5) depends only on x, the dis-
tance from the edge of the semi-infinite uniform
positive background filling the half space x &0.
The exchange energies determined from Eq. (3) are
thus exact within the density-functional definition
of this property. The gradient expansion for the
exchange contribution to the surface energy takes
the form

o,[n]= J dx A„—n(n'~ n —)

dn

dx
4/3+. . .

for a neutral surface, where n =n ( —co ) =kF/3m.= 3 2

is the bulk density.
The exact exchange energy has been evaluated

for certain model potentials ,ur( rx): the infinite
square barrier, the finite square barrier, ' ' and
the linear-potential models. ' Observations about
the accuracy of the LDA and GEA for the
square-barrier models' ' are not conclusive evi-

dence for convergence' because the surface density
profiles cannot be made to vary arbitrarily
slowly —the barrier height can never fall below the
Fermi level. In contrast, the linear-potential
model' is well suited to test the convergence of

gradient expansions, and has already been em-

ployed to demonstrate convergence of the fourth-
order expansion for the kinetic energy and the
zeroth-order (LDA) expansion for exchange. '

In the linear-potential model

u,rr(x) =F(x —a }6I(x —a),
where the cutoff position a is determined by
charge neutrality and the slope is

I' = —,kF/yF . (9)

The parameter yF may vary from 0 (infinite
square-barrier limit) to oo (the limit of arbitrarily
slow density variations). The "physical" range
found variationally for jellium' and real-metal
surfaces is 0.6&yF &4.6. Within this model, the
reduced density n (x)/n is a universal function of
kFx and yz, and the reduced surface exchange en-

ergy o„/kz is a universal function of y~.
3

The exact exchange energy of Eq. (3) for the
linear-potential model has been evaluated by Ma
and Sahni. ' The calculation is demanding, and
involves the Monte Carlo evaluation of integrals
over as many as five dimensions. In order to test
the gradient term in Eq. (7), which is relatively
small for large yF, we have had to refine the nu-
merical calculation of the exact exchange energy to
an accuracy of + l%%uo.

Our results are displayed in Table I and Fig. 1.
As others have shown, ' ' ' the LDA is not very
good and the GEA is even worse in the infinite

TABLE I. Surface exchange energy in the linear-potential model as a function of slope
parameter yF. The local-density (LDA) and second-order gradient-expansion (GEA) values
are compared with the exact exchange energy. Numbers in parentheses show the numerical
uncertainty in the exact exchange energy, e.g., for yF ——10 we have 0.„'""'/EF——(5.382
+0.037))&10 ' a.u.

Parameter
LDA

Surface exchange energy 0.„(kF)&10 a.u. )

GEA Exact

0.0000
0.0001
0.001
0.01
0.1

0.5
1

2
3
4
6
8

10

0.8939
0.894
0.894
0.898
0.934
1.078
1.252
1.609
1.999
2.439
3.438
4.469
5.513

—0.3157
—0.026

0.059
0.172
0.349
0.620
0.860
1.293
1.737
2.219
3.274
4.336
5.400

0.576(1)
0.577(2)
0.579(2)
0.585(3)
0.605(5)
0.736(8)
0.899(10)
1.268(13 )

1.703(18)
2.177(20)
3.274(33)
4.309(36)
5.382(37)
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barrier limit (yF =0). At y~ ——1, the LDA is still
substantially in error, but this error is nicely
corrected by the gradient term for all yF ) 1. The
relative error of the LDA gradually vanishes as

We also display the "small parameters" of Eqs.
(1) and (2), and the exchange energy density of Eq.
(7), for the infinite barrier limit (Fig. 2), a physical

' '
l—physical range%

l. I I I I . I I I I I

2 4 6 8 IO

Density qrofile qarometer yF

FIG. 1. Percent errors of the local-density (LDA) and
gradient-expansion (GEA) approximations to the surface
exchange energy as the density profile becomes more
slowly varying (i.e., as yF increases). For the LDA we
have only shown a smooth curve, but for the GEA we
have also plotted the actual calculated points which
display a small scatter due to numerical uncertainties in
the exact exchange energies.

III. ATOMIC ENERGIES

We begin by discussing the one-electron atom
for which the exchange energy of Eq. (3) is purely
a self-interaction correction and the exact density
functional is known:

E [ft]
' I d3r f d3r "(

fr —r'f (10)

Since the one-electron atom is fully spin polarized,
we will need the spin-density gradient expansion

surface density profile (Fig. 3), and a very slowly
varying profile (Fig. 4). Conditions for conver-
gence are clearly unfavorable for the infinite bar-
rier model, especially near the position of the bar-
rier, and favorable for the slowly varying profile.

For this same slowly varying profile (yF =8),
where the gradient term is correcting essentially all
of the LDA error of the surface exchange energy,
there are indications that the gradient term in the
exchange and correlation energy may still be too
large by a factor of 2 to successfully correct the
LDA for exchange and correlation. The differ-
ence is explained by an analysis of the gradient
coefficient into contributions from dynamic density
fluctuations of various wave vectors. This
analysis suggests' that sufficient conditions for
convergence of the gradient expansion for correla-
tion are usaHy much more severe than the condi-
tions of Eqs. (1) and (2).
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Distance from jeiiium edge (2'il'/kF)

FIG. 2. Details for the infinite barrier model (y~ ——0)
of the metal surface. (a) displays the "small" parame-
ters of Eqs. (1) and (2) as well as the reduced density
profile n (x)/n. (b) shows the LDA and GEA exchange
energy densities; the area under each curve gives the
corresponding exchange contribution to the surface
energy.

exchange energy

C o
O )C
O

cn

I I I I I I I I I

Distance from jeiiium edge (2fl'/k )
FIG. 3. Details for a physical (yF=4) density profile

at the metal surface (see caption of Fig. 2).
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FIG. 4. Details for a very slowly varying (yr =8)
density profile at the metal surface (see caption of Fig.
2).

E„[n„n,]=g —'2'/A» f d rn

o 0
Spurious self-interacting potential

0
F"

I

LLI

—O. I

(c)

C„, iVn

2 ll
r + s ~ ~

5E„[n„n, ]+
5n (r)

(12)

where u,„t is the external (nuclear) potential. In
the one-electron atom, the last two terms of Eq.
(12) constitute a "spurious self-interacting poten-
tial" which is zero in the exact treatment of ex-
change [Eq. (10)]. In Fig. 5(b) we show this spuri-
ous seLf-interacting potential in the LDA and
GEA. Over the region of greatest radial probabili-
ty, these potentials are large but nearly constant,
i.e., they seriously contaminate the eigenvalue of

which has been deduced from Eq. (6) by a simple
argument.

Figure 5 shows the small parameters of Eqs. (1)
and (2), and the exact [from Eq. (10)], LDA and

GEA [from Eq. (11)] exchange energy densities.
In spite of the fact that the conditions (1) and (2)
are not well satisfied, the LDA is surprisingly good
and the GEA is slightly better. Note that the rela-

tive errors of LDA and GEA are unaffected by the
nuclear charge Z in this one-electron atom.

The self-consistent Kohn-Sham potenti'al for
electrons of spin cr (neglecting correlation) is '

v,rr(r)=- U,„,(r)+ d r' n(r ')

-0.2 4TIr aa x exchange energy

I I I Z I, I I

density

Distance from nucleus (Z a. u.)

FIG. 5. Details for the one-electron atom with nu-

clear charge Z. (a) shows the small parameters of Eqs.
(I) and (2) [note kF =(6m n )' ' for this fully spin-
polariied system] and the radial probability density.

(b) displays the "spurious self-interacting potentials"
described after Eq. (12). (c) shows the LDA, GEA, and
exact exchange energy densities; the area under each
curve gives the corresponding exchange energy.

the Kohn-Sham equation (5), but still yield rather
good electron densities and total energies. The
eigenvalue contamiriation leads, in particular, to in-
correct long-range behavior of the density. The
functional derivative of the gradient term

5 d3, [jVnf 4 iVn/ 3 V n

(~) n4/3 3 n7/3 n4/3

(13)
diverges both at large and small r. '

Figure 6 shows a similiar analysis of the small
parameters and the exchange energy density for a
many-electron atom, krypton. The condition (1) is
now well satisfied so the gradient correction to
LDA is relatively small, but the condition (2) is
still not satisfied very well —we cannot be sure that
the gradient term will give the right correction to
LDA.

In Table II we present results for the exact ex-
change and kinetic energies for a series of
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LDA-
GEA ———

ergy (T, ) taken with respect to the Kohn-Sham
results. Except for H, all the LDA and GEA re-
sults are from Refs. 25 and 26. However, the a
priori coefficients, ' appropriate for slow density
variations, have been used instead of empirical
coefficients.

The LDA errors are similar for E„—and T,
and decrease with increasing atomic number be-
cause the condition (1) is progressively better satis-
fied. The gradient term corrects essentially all of
the LDA error for the kinetic energy, but only a
fraction of the LDA error for exchange.

-400
0

-600 '

exchange energy density

I I I I I I I I I

Oistance from nucleus (a. u. )

FIG. 6. Details for the krypton atom using Hartree-
Fock densities from Ref. 28. (a) shows the small
parameters of Eqs. (1) and (2). (b) shows the LDA and
GEA exchange energy densities; the area under each
curve gives the corresponding exchange energy.

atoms evaluated with Hartree-Fock orbitals, and
results obtained by Talman and co-workers '

from the proper exchange-only Kohn-Sham orbi-
tals. These two sets of results are essentially
equivalent. Table II also summarizes the errors of
the LDA and GEA calculations for the magnitude
of the exchange energy

'
( E„)and the kin—etic en-

IV. CONCLUSIONS

We have demonstrated the convergence of the
second-order gradient expansion for the exchange
energy with the a priori coefficient of Sham, ' as
the density becomes more slowly varying. This ex-
pansion gives useful results for the metal surface
even for physical density profiles, like the gradient
expansion for the kinetic energy and apparently
unlike the one for correlation. It has also recently
been shown that the second-order gradient expan-
sion can usefully replace the exact exchange energy
in variational calculations of surface energies and
work functions for a Pauli-correlated jellium metal
surface. On the other hand, the a priori gradient
expansion for exchange is not particularly useful

TABLE II. Hartree-Fock and Kohn-Sham exchange E„(and kinetic T,) energies for a
series of atoms and the % errors (relative to Kohn-Sham) of the local-density (LDA) and
second-order gradient-expansion (GEA) approximations for —E„(and T,).

Atom
Exact values (a.u. )

E
(T,)

LDA
%%uo errors

GEA

Hartree-Fock Kohn-Sham

H 0.3125
(0.5000)

0.3125
(0.5000)

—14.2
(—8.2)

—5.9
(+2.9)

He
1.03

(2.86)
1.03

(2.86)

—13.6
( —10.5)

—5.3
(+o.6)

12.13
(128.55)

12.10
(128.55)

—8.8
(—8.4)

46
( —0.6)

Ar 30.30
(S26.82)

30.16
(526.81)

—7.5
(—7.0) ( —0.5)

94.63
(2752.05)

93.78
(27S2.04)

—5.4
( —5.9)

—3.2
( —0.7)
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for atoms. The validity conditions (I) and (2) play
different roles, and it is only when both are well

satisfied that convergence is assured for the gra-
dient expansions of the exchange and kinetic ener-

gies.
The near equivalence of the gradient expansion

to the exact exchange energy for the metal surface,
demonstrated here and in Ref. 29, provides some
justification for an approach recently proposed by
Langreth and Mehl. They suggest employing the
gradient expansion for the exchange energy, but a
generalization of the gradient expansion for the

correlation energy, in order to go beyond the
local-density approximation.
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