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The tight-binding scheme has been largely used in the description of the electronic

properties of disordered systems. Several direct-space techniques of calculation have been

developed in order to compute the density of electronic states; among those the moments
method and the recursion scheme have become popular. We discuss both of them and we

propose a new method that interpolates between these two techniques. It is based on the
calculations of generalized moments. We show that the generalized-moments method
shares the advantages of both methods and avoids their difficulties.

I. INTRODUCTION

Disordered systems (amorphous semiconductors,
transition-metal alloys, etc.) have been widely stud-
ied in a one-electron description using parame-
trized tight-binding Hamiltonians. The calculation
of the density of electronic states in noncrystalline
systems requires special techniques that do not
make use of translational invariance. Most of
them have been developed in the last decade. The
most important are the moments method, ' the re-
cursion method, ' the cluster-Bethe-lattice
method, ' and the equation-of-motion method.
A11 these methods have been proven useful when

the Bloch theorem is not applicable: Nearly ten
years of experience has shown that all these tech-
niques are comparable with characteristic advan-

tages and limitations that we briefly discuss here
before presenting the generalized-moments method.

The moments method consists of the calculation
of the power moments (l) of the density of states

pk —— E"n E dE

that are nothing but the coefficients of the expan-
sion of the diagonal elements of the resolvent R (z)
in inverse powers of the complex energy variable z

R (z)o=(0~( HZ) '~0)= y
k=0 z

where
~

0) denotes the orbital on which the density
of states is calculated. In a tight-binding Hamil-
tonian, the moments are easily computed: They
are associated with closed walks on the structure. '

As shown by Eq. (l) the moments are linear on the
density of states so that they can be configuration-

ally averaged. The calculation of the density of
states from the moments is the famous "inverse-
moments problem" solved by Stieltjes' using a con-
tinued fraction expansion of the resolvent Ro(z).
Numerically this problem is ill-conditioned and
consequently a high accuracy in the calculation of
the moments is required. Indeed, the moments do
not store properly the information: In a moment
of given order a larger contribution comes from
lower-order moments as shown in Sec. II. The
same problem arises in the related Gaussian quad-
rature where the poles and residues are determined
from the moments of the weight function.

The so-called "recursion method" ' is an adap-
tation of Lanczos matrix tridiagonalization algo-
rithm': The coefficients of the continued fraction
are directly calculated by an algorithm optimized
from the point of view of numerical stability, as
demonstrated in Sec. III. However, thy continued
fraction coefficients cannot be averaged as they are
strongly nonlinear on the density of states.

Apart from these two differences (numerical sta-
bility and linearity), the moments method and the
recursion method are essentially identical. In both
methods the spectral resolution depends on the size
of the cluster. Outside the cluster, an unstructured
external mean field is assumed; practically this is
realized by the continuation of the fraction with
asymptotic constant coefficients.

We present in this paper a new method that has
the advantages of both the moments method
(linearity) and the recursion method (numerical sta-
bility). The basic quantities of the method are the
"generalized moments" defined by

&2k( —i) f ~k(E)~k( —l)(E)&(&)dE
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where- Pk and Pk ~ are, respectively, polynomials
of degree k and k —1. As we show in the follow-

ing sections in detail, the power moments corre-
sponds to Pk(E) =E" and the recursion algorithm
corresponds to Pk(E) which are orthogonal polyno-
mials with respect to n (E). Having chosen a poly-
nomial sequence Pk(E), k =0, 1,2, . . . , the general-
ized moments are linear upon the density of states,
by construction. A careful choice of the polynomi-
al Pk(E) eliminates most of the redividant contri-
butions present in the power moments.

This paper is organized as follows: Sec. II re-

calls the main aspects of the power-moments
method with a special attention to the formulas
that are subject to generalization in the general-
ized-moments method which is developed in Sec.
III. Some examples are treated in Sec. IV.

II. THE POWER-MOMENTS METHOD

In this section we briefly recall the principles
and main formulas of the power-moments method.
In order to obtain the local density of states n (E),
a two-step procedure is developed. The power mo-
ments (i40,p~, . . .,p, 2„) of the density of states are
computed as shown below. In the second step,
n (E) is determined from its moments: It is the
famous "inverse-moments problem. " The calcula-
tion of the moments is particularly simple in the
case of one-electron Hamiltonians. We consider a
one-electron tight-binding Hamiltonian 8,

(4)

Pl = &o IH'I o)

I ]p ~ ~ ~ p II ]

X &i)
~

H
~
i2) (6 ) ~

H
~

0) .

In practice, formula (5) is written as

82k g &o IH
I

~ &&i
I

H 10&,

(5)

(5')

from which it is obvious that the even-order mo-
ments are positive. Practically the computer calcu-
lation requires the simultaneous storage of the two
vectors (0~H" ~i) and (0~H" +' ~i), a total of
2)&N words whereiV is the numbers of orbitals of
the structure. As it is obvious from (1) the mo-
ments are linear upon the density of states; conse-
quently, the moments of the average density of
states are the corresponding averages of the mo-
ments of the individual densities of states. This
property is largely used in disordered systems (al-

loys, amorphous and liquid structures, etc.) in
which a configurational average usually has to be
taken. The geometrical meaning of the moments is
obvious by (5): The moment of order k is the sum
of the contributions of all the closed walks of
length k that can be done on the structure by suc-
cessive jumps from site to site connected by a non-
vanishing element of the Hamiltonian P;J. For ex-

ample, the moment of order 4 on the square lattice
is written pictorially, '

For the sake of simplicity we neglect the orbital
degeneracy so that

~

i }labels the atomic site. e; is
the atomic level and P;J is the hopping (or reso-
nance) matrix element. The extension of the
method, as well as that of Sec. III, to Hamiltonians
with orbital degeneracy is straightforward. How-
ever, the extension of the moments method to
many-body Hamiltonians is difficult, " essentially
because the calculation of the moments (i.e., the
powers of H) is hard to perform.

The inspection of the right-hand side of Eq. (2)
shows that the moments are nothing but the diago-
nal elements of the powers of the Hamiltonian. If
we label 0 the site on which the local density of
states is calculated, we get

p4 ——8g'+ 12@'+1213 +4g' =36@' .

The first two terms involve atoms from the first
and the second coordination shells; the last two
terms involve only atoms from the first coordina-
tion shell and so they correspond to information
already contained in the lower-order moments (p, q).

For high-order moments pk, the kth-order prop-
er contribution is dominated by the contribution of
the walks confined in the near neighborhood of the
central atom. The proper contribution p2I, to the
even-order moments for a symmetric band has
been estimated' to be

p, 2~k -(Z/3/2) "
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while the value of the moment is of the order of
(Zp}z~ so that the ratio is asymptotically given by

Rp(z) =
Z —Ql—

bl

92k

1

22k

It becomes negligible when the order of the mo-
ments increases. This is the main drawback of the
moments method: It has awkward consequences
on the numerical stability of the inverse-moments
problem. The new method presented in Sec. III
avoids most of this difficutly. The second step
consists in calculating the diagonal element Rp(z)
of the resolvent operator (2) under the form of a
continued fraction

Z —Q2-
Z —Q3 —' '

The coefficients bk are positive. The coefficients

ak and bk are determined from the moments by
different algorithms' ' that are numerically ill

conditioned: they are of PD (product difference}

or QD (quotient difference) type. In a typical cal-
culation on a 32 bit word computer, bk has no
more significant digit when n ) 10.

The relation between the moments and the coef-
ficients ak and bk is formally given by ratios of the

Hankel determinants b,k and h, k
' defined by

PO Pl P2

IM1 P2

hk =det(Hk) =det p2 p3 p4

Pk+1

8k+2

Pk Pk+1 9k+2 92k

and

Pl P2

92 P3
6'k" ——det(Hk" ) =det p3 p'4

P3 ' Pk+1

P4 ' 8k+2

PS
' Pk+3 ~ (10)

@k+1 I k+2 I k+3 ' ' ' P2k+1

Then

1
Qk

~k-2

~k —1~k —3 ~k —1~k —2
(1) (1)

+

n (E) like the power moments, but that are better
numerically conditioned than the latter. The idea
is to use a particular type of modified moments mi
generally defined by' '

and

(12)

m& = I Qi(E}n(E)dE, (13)

We keep this formulation because it is easily gen-
eralized for our purpose. But in practice, because
the calculation of the determinant requires too
many operations and is unstable, the ak and bk
coefficients are calculated recursively from the mo-
ments.

III. THE GENERALIZED-MOMENTS
METHOD

that are obviously linear on n (E). The interesting
situation corresponds to alternate signs of the coef-
ficients of Qi(E), i.e., at the order I, lower-
moments contributions are subtracted. However, it
is, in general, impossible to compute directly the
modified moments by formulas analogous to (5).
It is why we define a more restricted family of
modified moments that we call the generalized mo-
ments vI.

The generalized-moments method consists of de-
fining a new type of moments that are linear on v2k i

——I Pk(E)Pk i(E)n(E)dE (14a)
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and

v2k = I Pk (E)Pk(E)n (E)dE (14b)

In order to limit the memory storage to two vec-
tors &0

~
Pk i(H) ~i & and &0

~
Pk(H)

~

i &, as in the
case of the power moments, we assume a three-
term recursion relation on the Pk's, i.e.,

Pk+j(H) =(H —ck+i)Pk(H)

dkPk i(H—), k =0, 1,2, . . . (16)

where Pk(E) is a polynomial of degree k.
The generalized moments of even order are posi-

tive by construction, like the power moments to
which they reduce when Pk(E) =E . Moreover,
they can be calculated by formulas analogous to
(5'):

»-i= X &oIPk(H) Ii &&i IPk-i(H)10&

I

P;(E)= g CiE, /&i, C;;=1
I =0

yields

(19)

below, one takes a polynomial sequence which is
close to the polynomial sequence orthogonal with
respect to the density of states n (E). This idea
will be made clearer in the section devoted to the
illustrations of the method.

The second step of the calculation is the deter-
mination of the continued fraction coefficients
from the generalized moments vk. This step fol-
lows exactly the same procedure as that used for
the power-moments method. Defining the Gram
matrix G~ by

(Gi, )J ——I P; (E)PJ(E)n(E)dE,

0&i and j&k (18)

and employing the expansion

with the initial conditions
Gk =CHkC, (20)

P i(H) =0 Pp(H) =I (16')

dk =k (2k —1) '(2k+1)

where I is the identity operator. The polynomials
Pk(H) are in addition monic, i.e., the coefficient of
H is unity.

Let us recall that most of the known families of
polynomials satisfy a three-term recursion relation.
For example, the Chebyshev polynomials of second

1
kind are defined by ck ——0 and dk ———,, the Hermite
polynomials by ck ——0 and dk ——k/2, the Legendre
polynomials by cI, ——0 and

where Hk is the Hankel matrix given by Eq. (9).
Since C is a lower triangular matrix with diagonal
elements (and hence a determinant) equal to unity,
we obtain

det(Gk) =det(H~ ) =6k . (21)

Similar arguments applied to the Gram matrix
Gk" defined by

(Gk");~ = f EP;(E)PJ(E)n(E)dE,

0 & i and j& k (22)

An extensive list can be found in Ref. 18. The
vectors &0

~
Pi(H)

~

i & are generated by a recursion
relation deduced from (16):

yield

det(Gk") =i4" . (23)

&oIPk+i(H) Ii &= g &oIPi(»
I j&&jIH Ii &

—c„+,&0(P, (H)
(

i &

—dk & 0
[ Pk, (H)

[
i & .

(17)
The coefficients ck and dk can be chosen arbitrari-
ly but their choice is crucial for the numerical sta-
bility of the method. In practice, as we shall see

Hence, in (9) and (10) the replacement ju,k~vp
may be employed.

If the polynomials P;(E) are orthogonal with
respect to n (E) (in the case ck =ak and dk bk), ——
the Gram matrix is obviously diagonal:

Gk ——diag(l, bi, b, b, , . . . , b, b2 bk), (24)

and (12) is an identity. In addition, the matrix
Gk" is tridiagonal and symmetric
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Gk =(1)

a& b)

a2b)

b&b2

bib2

a3b)b2 b)b2b3 (25)

b)b2 bk akb)b2 . . bk

The determinant of Gk" is the product of a Hankel
determinant and an orthogonal polynomial calcu-
lated at E =0, i.e.,

det(Gk") =~k —iPk(0) .

The calculation of the determinants of Gk and Gk"
given by (24} and (25) is obviously well conditioned
in opposition to the calculation of bk and b,k". In
practice, formulas (11) and (12) are not useful.
The ak and bi, coefficient are computed recursively
from the generalized moments.

The closer one is to orthogonal polynomials, the
better conditioned is the algorithm of calculation
of ak and bi, . This stability of the calculation of
ak and bi, from the generalized moments is identi-
cal to the stability of the calculation from the
modified moments that have been discussed previ-
ously in the literature. ' '

Another way to express that consists of looking
for the minimum value of the generalized moments
(the nonredundant contribution to the moments' ):
If we formally differentiate vzk relatively to the
polynomial Pk(E) orthogonal with respect to n (E)
we obtain

IV. EXAMPLES OF GENERALIZED MOMENTS
AND APPLICATIONS OF THE METHOD

In order to shed some light on the properties of
the generalized moments, let us first consider the

problem of the electronic states of an ordered,
one-dimensional crystal described in the tight-
binding approximation as a linear chain of atoms
with nearest-neighbor interactions only. The elec-
tronic density of states of this system is given by

(28)

ak ——0, k=1,2, . . .

bk ———,, k=2, 3, . . . .
(29)

by assuming that the origin of the energies coin-
cides with the diagonal elements e& of the Hamil-
tonian (4) and the unit of energy is equal to half
the bandwidth (in these units, the hopping integrals

Pz are equal to —,). The coefficients ak and bk of
the continued fraction (8) related to the density of
states (28) are

and

»2k
&Pk f Pk(E)n (E)dE

&Pk

=2 f Pp(E)n(E)dE =0, (26)

In order to show how the generalized moments de-

pend on the polynomial sequence Pk(E} chosen for
their calculation, let us consider the recursion
equation (16) with coefficients ck and dk propor-
tional to the ak and bk coefficients given by Eq.
(29). More precisely, we take

v2k
——b)b2 bk . (27) ck ——0, dk ——5 bk, k =1,2, ~ ~ ~ (30)

Consequently, the minimum value of the general-
ized moment of even order corresponds to the
orthogonal polynomials (a priori unknown). This
situation corresponds to the recursion scheme of
Haydock et al. , which is consequently the most
stable algorithm, but as the coefficients ck and dk
are self-consistently determined in the course of the
calculations, the corresponding generalized mo-
ments are no longer linear on the density of states
(in fact ck=ak and dk bk which are thems——elves
functions of the density of states).

where 5 is a real parameter. When 5=0, the gen-
eralized moments are the classical power moments,
while when 5=1, the moments are minimal.

The polynomials Pk(E) defined in this way are

Pk(E)=2 — Tk —,k =1,2, . . .E
2 5

(31)

where Tk(x} are the Chebyshev polynomials of the
first kind. The generalized moments of the density
of states (28), computed from their definition (14)
using the polynomials (31), vanish for odd order
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FIG. 1. Variation of the first generalized moments of
a perfect linear chain of atoms computed from the poly-
nomial sequence defined from Eq. (31). The generalized
moments of even order are minimal for 5=1, when the
polynomials Pk(E) are orthogonal with respect to the
density of states. and

c& ——a& ——(0~II
~

0) =0,

d( b) ——(——0
~

H
~

0) —a )
——12,

(35)

method to the case of perfect fcc crystal. The
hopping integrals P;J of the tight-binding Hamil-
tonian (4) are set equal to —1 when i and j are
nearest neighbors and 0 in other cases. In these
units, the bandwidth 8'is equal to 16. In other
words, the coefficients bk of the continued fraction
(8) converge towards (8'/4) =16 as k tends to in-

finity. If the zero of energy coincides with the
atomic levels e;, the electronic band is centered at
the energy —4 and the asymptotic value of the ak
coefficients is equal to that value. In order to
compute the ak and bk coefficients of the contin-
ued fraction (8), we have applied the generalized-
moments method, taking as "trial" coefficients the
values

and are positive for even order. When 5=1, the
polynomials (31) are orthogonal with respect to the
density of states (28) and the corresponding gen-
eralized moments of even order v2k are simply
given by the product of the bk coefficients [Eq.
(27)], i.e.,

2k —1 (32)

The first generalized moments are plotted in Fig. 1

as functions of the parameter 5. The curves clear-
ly have a minimum at 5=1, the minimum values
being given by Eq. (32). When 5+1, analytical ex-
pressions are difficult to give in a closed form, ex-

cept when 5=0 where we have the classical power
moment of the linear chain

(2k)!
(2"k ')

(33)

The redundant information that characterizes
the power moments may be evaluated from the ra-
tio of the minimum moments, given by Eq. (32),
and the p2k, i.e.,

(k!) v'4nk.
(2k)!

(34)

a result which has to be compared with Eq. (7).
As Fig. 1 shows, the use of carefully chosen gen-
eralized moments instead of power moments
reduce the redundant information: In this example
this happens in the neighborhood of 5=1.

Secondly, we apply the generalized-moments

dk ——b„=16, k =2 3, . . . .

(36)

An alternative choice, comparatively successful,
would have been the Bethe-lattice coefficients [with
coordination (12)]. The results we have obtained
are presented in Table I together with the values of
the ak and bk coefficients we have computed using
the standard recursion scheme. All these calcula-
tions have been performed on an IBM 370-158
computer using a single-precision arithmetics (32
bits). Table I shows that the generalized-moments
method is numerically well conditioned, which
gives a numerical precision as good as the recur-
sion method. The computation time of the recur-
sion algorithm is 10% higher than for the calcula-
tion of the generalized moments. This is essential-

ly owing to the normalization of the basis in the
recursion method (let us say that the normalization
is not essential in the recursion; without this opera-
tion, both the recursion and the generalized-
moments methods are characterized by the same
computation time).

As a third application of the generalized-
moments method, we have considered a disordered
system known as the bond percolation problem in
a simple cubic lattice. The tight-binding Hamil-
tonian (4) of this system is characterized by diago-
nal elements e; equal to zero, while the hopping in-
tegral P,J between two nearest-neighbor lattice sites
are randomly set equal to 1 or 0 with probabilities

p and 1 —p. It is known from percolation theory
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TABLE I. Coefficients aq and bk of the continued fraction expansion of the diagonal ele-
ments of the resolvent operator in a perfect fcc crystal. The coefficients have been comput-
ed using the recursion scheme (Ref. 3) and the generalized-moments method as described in
the text. The exact results are given for comparison. The computation time (in seconds) is
also given.

Recursion
Generalized

moments
Exact
results

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
4

—3.764 71
—4.039 82
—4.015 19
—3.932 69
—4.015 84
—4.008 95
—3.965 70
—4.009 36
—4.00606
—3.978 47
—4.00642
—4.00446
—3.984 93

0
4

—3.764 71
—4.039 82
—4.015 19
—3.932 69
—4.015 85
—4.008 96
—3.965 70
—4.009 36
—4.00607
—3.978 47
—4.00643
—4.00446
—3.984 94

0
4,

—3.764 705 8
—4.039 821 3
—4.015 1912
—3.932 687 5
—4.015 845 1

—4.008 958 3
—3.965 696 7
—4.009 361 5
—4.006064 3
—3.978 4744
—4.006 428 3
—4.004 463 7
—3.984931 6

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

12
16.999 98
16.356 38
15.725 07
16.201 83
16.12448
15.875 10
16.093 89
16.06644
15.92422
16.056 27
16.042 42
15.947 59
16.038 28
16.029 92

12
17.00000
16.35640
15.725 06
16.201 84
16.124 50
15.875 12
16.093 93
16.06647
15.92426
16.056 34
16.04247
15.947 64
16.038 35
16.029 95

12
17
16.356401 3
15.725 065 1

16.201 853 3
16.124 506 7
15.875 120 1

16.093 939 8
16.066481 6
15.924259 2
16.056 340 0
16.042 4760
15.947 637 9
16.038 351 0
16.029 981 5

Time 8.9 s 8.1 s

that the critical probability for the bond percola-
tion problem in a simple cubic lattice is equal to
0.247 (i.e., for p y 0.247, a cluster of infinite size
has a nonvanishing probability). We determine the
averaged density of states of this system. For this
purpose, a large number N of cluster configura-
tions have been simulated on the computer using a
standard pseudo-random-numbers generator. For
each cluster, the first generalized moments have
been computed. The generalized moments have
been averaged over the N configurations and the

bi ——6p, (37)

b2 ——1+4p +4p (38)

averaged density of states has been computed from
the averaged moment using the continued fraction
expansion given by Eq. (8). In that continued frac-
tion, the ak coefficients are equal to zero. The
first bk coefficients may be computed analytically
to give
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10p+15p +16p +16p +44p —16p
b3 ——

1+4p +4p

(39)

value of the energy increases and vanishes for

~

E
~

greater than 3.

When localization occurs at the center of the band
(E =0), it is not difficult to show that the weight
of the localized state is given by

' —1

bi bib3 b]b3bg

Then, at the limit of small p, Eqs. (37)—(40) yield

m-1 —6p as p~0 . (41)

1.0

0.8—

0.6—

0.4—

0.0
w3 -2 2 3 F

FICz. 2. Density of states of a simple cubic lattice
with 759o of broken bonds. The density of states has
been averaged over 2000 configurations using the linear-

ity of the generalized moment with respect to the densi-

ty of states.

We do not dwell any longer on the interesting but
difficult prob1em of localization ' in this system
but just present the result we have obtained for

p =0.25, a value very close to the critical probabil-
ity. For each of the N configurations, 34 general-
ized, moments have been computed by taking ck ——0
for k =1,2, . . . , 17, dk equal to the corresponding

bk coefficients of the averaged density of state for
k =1,2, 3 [Eqs. (37)—(39)] and dk ——2 for k & 4.
The density of state is presented in Fig. 2 when

averaged over N =2000 configurations. It shows a
strong peak (possibly a localized state) at E =0 and
two satellite peaks at E =+1. The density of
states then decreases smoothly when the absolute

V. CONCLUSION

The generalized-moments method improves the
stability of the computation of the coefficients aI,
and bk of the continued fraction expansion (8) of
the resolvent operator. This has already been
shown by numerous authors in the framework of
the so-called modified moments defined by Eq.
(13). Our generalized moments are special modi-
fied moments which may be computed directly
from the Hamiltonian of tight-binding systems.
This is a crucial improvement of the modified-
moments method of Modrak and Jozwiak. The
generalized-moments method gives rise to a con-
tinuous interpolation between two classical tech-
niques, namely the recursion and the (power) mo-

ments methods. Consequently, it keeps the lineari-

ty of the moments method (which allows us to
average the moments and then calculate the contin-
ued fraction coefficients associated with the aver-

aged density of states) and gives a stability which

may be comparable with that of the recursion
method.

There are no general rules for the choice of the
polynomial sequence Pk(E) to which generalized
moments are related. As we have said above, this
polynomial sequence must be taken "close enough"
to the polynomial sequence orthogona1 with respect
to the density of states which has to be computed,
in order to ensure the numerical stability of the
method. I.et us recall that the polynomials Pk(E)
are given by the set of recursion coefficients ck and

dk [Eq. (16)] which are input coefficients of the
method. For the low-order input coefficients one
can take the first continued fraction coefficients ak
and bk of the density of states (in general, it is easy
to calculate at least the a

~ and b, coefficients). On
the other hand, some information may be obtained
on the band limits and, consequently, on the
asymptotic values of the ak and bk coefficients.
These values may be used as high-order coeffi-
cients ck and dk as we have done in Sec. IV. It
should be outlined that a perturbative aspect of the
generalized-moments method has not been investi-

gated along the present paper. Indeed a tight-
binding Hamiltonian is very often used —because
of its simplicity —for the determination of the elec-
tronic properties of crystalline defects (impurity,
surface, etc.). For this kind of application, a na-

tural choice for the input coefficients seems to be
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the continued-fraction coefficients related to the
nonperturbed crystal.

Note added in proof. Recently Magnus pointed
out to us that the asymptotic behavior of the coef-
ficients a~ and bI, may also be related to the inter-
nal singularities of the band (if any) in addition to
the band-edge singularities. An interesting feature
of the internal singularities is that they give rise to
an additional term in the k ' expansion of Eqs.
(A10) and (A14), which is an oscillating function
of k multiplied by k '. This phenomenon is clear-

ly shown in Fig. 3 for the bcc density of states
which has a logarithmic peak at the center of the
band: An oscillation of period two is found. The
same kind of oscillations exists for the quantities

v2k related to the honeycomb or the diamond s-
band density of states (not analyzed in the present
paper) which is characterized by a zero gap at the
center of the band.
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APPENDIX

and

a =C=(E„+Ei)/2 (Al)

2 2E —EI
(A2)

where C is the (geometrical) center of the band and
S'is the bandwidth. We shall try to relate the
asymptotic behavior of the continued-fraction coef-
ficients to the band-edge exponents assuming the
density of states to be like

This appendix is devoted to a study of the

asymptotic behavior of the coefficients ak and bk
of the continued fraction (8). This may serve as a
guide for the choice of the input coefficients ck
and dk giving rise to the generalized moments. We
investigate the case where the ak and bk coeffi-
cients have bounded and single limiting values a
and b„as k tends to infinity. In these conditions,
the allowed energy band extends continuously be-
tween finite limits EI and E„related to a„and b„
by the expressions

for E close to the lower band limit Ei, and

n(E) cc (E„E—)~ (A4)

when E is close to the upper band limit E„. In
that framework, reference will be made to the
analytical model density of states

'a
I (a+p+2), E Ei-

r(a+1)r(p+1) W

E —E
(A5)

where a and P are real exponents greater than —1

for integrability reasons.
There are numerous tight-binding systems which

belong to the class of single and bounded limiting
values for the ai, and bi, coefficients. The follow-
ing tables give the continued-fraction coefficients
related to the density of states of the most simple
tight-binding Hamiltonian (4) when the atomic lev-
els e; are equal to zero and the hopping integrals

p;1 are set equal to 1 when i and j label nearest-
neighbor lattice sites and equal to 0 in the other
cases. Table II is devoted to some loose-packed
bulk lattices. There are no triangular paths on
these lattices so that the ak coefficients vanish.
The related densities of states are even functions of
the energy and extend from —Z to +Z, where Z
is the coordination number. In Table III, the bk
coefficients are given for the local density of states
on two kinds of surface planes in a cleaved simple
cubic lattice. Two- and three-dimensional closed-
packed lattices have been considered for Table IV;
the band extends from —3 to + 6 for, the triangu-
lar (or hexagonal) lattice and from —4 to + 12 for
the fcc and hcp structures.

Let us now consider the minimum generalized
moments

E„
v2a=bib2. . . by= f~ Pi, (E)Pi,(E)n(E) dE,

I

(A6)

where PI, (E), k =0, 1,2. . . is the monic polynomial
sequence orthogonal with respect to the density of
states n (E). For the particular model density of
states (A5), the Pi, (E) are related to the Jacobi po-
lynomials and the minimum generalized moments
of even order are given by

k!(a+1)g(P+1)i,(a+P+2)i,
&2k = ~2k

[(a+p+2)2i, i] (a+p+2k+1)
n(E) cc (E Ei)~— (A3) (A7)
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TABLE II. Coefficient bk of the continued fraction related to the tight-binding Hamil-
tonian (4} for quadratic, sc, and bcc lattices. Corresponding ak coefficients are equal to zero.

1

2
3
4
5

6
7
8

9
10

Quadratic

4
5

3.8
4.305 263 1579
3.872 731 952 1

4.169205 421 6
3.908 537 161 1

4.114 165 178 8

3.929 248 280 6
4.085 034 411 9

sc

6
9
9 ~k AAA AHA 4
8.555 555 555 6
9.297 020 626 4
8.899 991 649 9
8.942 267 870 9
9.140 569 385 3

8.857 375 0167
9.089 609 073 3

bcc

8

19
14.263 157 894 7
17.316 177 898 6
15.008 264 166 3
16.834 387 813 7
15.312 116847 8

16.606 154 962 0
15.476 604 461 0
16.473 570 243 2

11
12
13
14
15
16
17
18
19
20

3.942 616943 3
4.067 218 458 7
3.951 910047 8
4.055 285 772 3

3.958 721 038 9
4.046 777 732 4
3.963 914245 8
4.040 427 828 3
3.967 997 182 6
4.035 520 5234

8.986 120431 5

8.950 324 641 2
9.079 828 227 6
8.928 753 1307
9.035 674450 8

9.008 318252 4
8.958 485 338 7
9.052 494 870 4
8.960066 263 2
9.012 719947 7

15.579 337 086 6
16.387 218 225 3
15.649 389 241 7
16.326 664 620 7
15.700 099 899 5

16.281 940 629 3
15.738 439 630 4
16.247 611057 3
15.768 400 694 5

16.220 464 1376

4.000000 0000 9.0000000000 16.000 000 000 0

TABLE III. Continued-fraction coefficients bk related to the surface density of states for
(110) and (100) cleaved simple cubic lattices.

1

2
3
4
5

6
7
8

9
10

(110)

4
6.5
8.423 076 923 1

7.926 238 145 4
8.619443 240 5

8.705 903 025 5

8.551 570 1596
8.947 513214 2
8.719888 245 3
8.861 542 143 7

(100)

5

7.4
8.005 405 405 4
8.318429 841 0
8.579 263 530 5

8.632 475 684 9
8.749 832 434 5

8.790 760 359 9
8.821 944473 4
8.868 270 201 7

11
12
13
14
15
16
17
18
19
20

8.939 106246 9
8.798 511007 0
8.990484 174 8

8.882 910388 3
8.915071 925 8
8.989 947 2162
8.882 851 746 2
8.994730 288 2
8.944065 478 8

8.936 817723 5

8.873 018 699 4
8.901 258 3169
8.912657 795 8

8.919314575 4
8.936 294 158 8

8.936718 964 3
8.947 105 651 8
8.952 590 518 3
8.954 121 755 4
8.962 439 825 0

9.000 000 0000 9.000 000 000 0
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TABLE IV. Coefficients ak and bk of the continued fraction related to the tight-binding Hamiltonian (4) for tri-
angular and fcc (and hcp) lattices.

Triangular
bk

fcc and hcp
bk

1

2
3
4
5

6
7
8

9
10

0
2
1.6
1.438 167938 9
1.437 970 593 9
1.517 849 703 6
1.546 977 349 7
1.507 691 403 0
1.469 467 9976
1.483 714440 4

6.
5

5.24
5.342 054 658 8
5.170674 1537
5.005 336085 7
5.017715 897 2
5.121 249 871 0
5.146433411 1

5.070470 962 1

0

3.764 705 882 4
4.039 821 301 9
4.015 191207 4
3.932 687 525 3
4.015 845 1698
4.008 958 340 2
3.965 696 705 8

4.009 361 586 6

12
17
16.356 401 384 1

15.725 065 182 6
16.201 853 359 5

16.124 506 722 1

15.875 120 174 3
16.093 939 876 2
16.066481 682 3
15.924259 236 9

11
12
13
14
15
16
17
18
19
20

1.518011278 4
1.520 260 162 9
1.493 658 381 9
1.480 873 032 8

1.498 260 972 9
1.515 636439 3
1.507 893 4169
1.489 637 709 6
1.489 105 640 7
1.504 946 353 5

5.018 575 145 9
5.053 534 671 2
5.108 254 7244
5.098 5100197
5.047 323 667 6
5.034 202 796 6
5.071 489 187 8
5.097472 604 5
5.074012 178 3
5.041 5364180

4.006064 376 8

3.978 474452 1

4.006 428 368 1

4.004 463 704 4
3.984 931 691 8

4.004 788 508 5

4.003 468 8360
3.988 713338 8

4.003 755 9314
4.002 799 8309

16.056 340056 0
16.042 476 041 4
15.947 637 944 4
16.038 351 080 8
16.029 981 576 2
15.960952 751 1

16.028 175 476 4
16.022 548 7142
15.969400 772 9
16.021 784 147 3

1.500 000 0000 5.062 5000000 4.0000000000 16.000000000 0

with the use of the Pochhammer's symbol. A sim-

ple calculation shows that the asymptotic behavior
of this last expression is

2~ r(a+ p+ 2)
4 +~+~ r(a+I)r(p+I)

vicinity of the band limits EI and E„ for the fol-
lowing reasons. First, the absolute value of the
factor (E C)" is larger—near the band limits than

1.5

a+p ——,
2 2

X l+
' 2k

W
4

as kazoo .

(AS)

y 1.320
2k

(W/4)

1.0-

Q—

(A9)

Let us come back to the general case. Because of
the orthogonal properties of the polynomial Pk(E),
it is obvious that Eq. (A6) may be rewritten as

v2k = J~ (E C)"Pk(E)n(E)—dE,

0.678

0.551
0.5—

0.266
0.186

I I

0 1/32 1/16

I

1/8
1/2k

sc

CCb

(100) sc ~

(110) sc

I

1/4

where C is the center of the band. We explicitly
assume that the ak and bk coefficients of the con-
tinued fraction related to n (E) have single and
bounded limiting values so that the set of all zeros
of all polynomials Pk(E) is dense in the interval
(E&,E„). In these conditions, when k increases in-
finitely, the integral (A9) is only sensitive to the
values taken by the density of states n (E) in the

FIG. 3. Plot of v2k/(W/4) vs (2k) ' for tight-
binding densities of states related to the quadratic lattice
(Q), the simple cubic (sc), and body-centered-cubic (bcc)
lattices and at the (100) and (110) surface planes of the
simple cubic lattice. Straight lines give the asymptotic
behavior of the plots for k ~ Oo and are related to the-

band-edge components of the corresponding densities of
states.
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0 1/32 1/16
1.5 I

1.34

~2k

(W/4)
2k

1.0-

1/8
I

1/2k

(a)

0.82 W ~----~- &cc

k a
I

i=1 W/4

0.0
(b)

—0.44-05-

-1.0-
—1,07 a a ~ —fey

e r ~ 7

(a=P= —,). For surface densities of states, the

asymptotic behavior of vqk/(W/4) plotted in Fig.
3 has been found in complete agreement with the
theoretical band-edge exponents a=P= —,. In the
case of two-dimensional lattices too, agreement be-
tween Figs. 3, 4(a), and the theoretical asymptotic
behavior given by Eq. (A1Q) has been found, taking
a =@=Q.

Equations (A9) and (A1Q) were related to the bk
coefficients only. In order to obtain another ex-
pression depending on the ak coefficients, let us
take the factor (E C)"+—' in the right-hand side
of Eq. (A9) instead of the actual (E C)" o—ne. A
simple recurrence demonstration shows that

E„I (E C)"+'—Pk(E)n(E) dE

I I

0 1/16 1/8 1/4
k

=v2k g(a; —C) . (All)
FIG. 4. (a) Plot of v2k/(8'/4)'" vs (2k) ' for tight-

binding densities of states corresponding to the triangu-
lar (T) and face-centered-cubic (fcc) lattices. (b) Plot of

,(a; —C)/(W/4) vs k ' for the triangular (T) and

fcc densities of states.

k

g (a; —C)= a —P— a —P W

a+P+2k 4

(A12)

For the model density of states (A5), one obtains

near the center of the band. Second, Pk(E) has k
real roots in the interval (E~,E„) so that
(E —C) Pk(E) is a rapid oscillating function of E
between the lower and upper roots of Pk(E), and
that expression is positive at E =EI and E =E„.
From these arguments v2k asymptotically depends
only on the comportment of n (E) near the band
edges. Assuming this comportment to be given by
Eqs. (A3) and (A4), one may conclude from Eq.
(AS) that

a +P ——,
2 2

V2k ——b~b2 . - bk ——B 1+
2k

+O(k ')

'2k

as k~ ~, (AIQ)

where B is a positive constant. This equation
shows that the first term in the k ' expansion of
v2k/(W/4) " vanishes when

~

a
~

=
~
P

~

= —,. This
is clearly shown in Figs. 3 and 4(a) for three-
dimensional densities of states which are character-
ized by square-root singularities at the band edges

a —P W
2k 4

as k~ao . (A13)

In the general case, from the same arguments than
that used above, one may conclude that expression
(Al 1) is only sensitive to the values taken by n (E)
in the vicinity of the band limits and one gets from

Eq. (A13),

k a2 — 2

2kg (a; —C)= A — +O(k )
4

as k —+ae . (A14)

where A is a constant, a and P being the band-edge
exponents of the density of states [Eqs. (A3) and

(A4)]. That last equation is illustrated in Fig. 4(b)
for closed-packed structures. The asymptotic
behavior of the quantities g,. ,(a; —C)/(W/4)
plotted in Fig. 4(b) as a function of 1/k are in
agreement with Eq. (A14) taking a =/3.
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