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We have considered the competing effects of the electron-electron Hubbard repulsion
and the electron-phonon interaction on the properties of a one-dimensional electron gas
both within perturbation theory and by exact numerical solution of finite-length rings.
%e find that the perturbation-theory results provide a qualitatively correct description of
the system over a considerable range of parameters. Among the more interesting con-
clusions we draw is that, so long as the repulsion U is less than a critical value which de-

pends on the strength of the electron-phonon interaction, the predictions of the Su-
Schrieffer-Heeger model of polyacetylene are not profoundly affected by the electron-
electron repulsion. A small splitting between the charged and neutral soliton-creation en-

ergies and minor shape changes are the principle effects.

I. INTRODUCTION

It has been proposed recently by Su, Schrieffer,
and Heeger (SSH) that many of the properties of
the quasi-one-dimensional conductor polyacetylene
(CH)„can be understood in terms of a simple
model of coupled electrons and phonons, the SSH
model. ' This model is very appealing in that it is
able to provide a qualitatively accurate description
of many of the magnetic resonance and transport
experiments that have been performed on (CH)„.
In light of the model's extreme simplicity, its
tremendous success may seem puzzling. For in-

stance, (1) it treats the lattice degrees of freedom
classically, (2) it ignores the effects of electron-
eltx:tron interactions, and (3) it is a purely one-

dimensional model with no interchain coupling.
Su has examined the consequence of treating the
lattice quantum mechanically. It is the limited
goal of the present paper to study the possible ef-

fects of electron-electron interactions on the predic-
tions of the SSH model. From a broader perspec-
tive, this paper is the beginning of a more general
systematic study of the competition between
electron-electron and electron-phonon interactions
on the properties of a one-dimensional electron
gas.

Since many properties of a one-dimensional met-
al are only sensitive to a few parameters describing
the interactions at the Fermi surface, we can sensi-

bly hope that a simple model system will exhibit
the same interesting qualitative features as more

realistic models. Thus we will treat the simplest
nontrivial model in which the SSH Hamiltonian is
augmented by an on-site (Hubbard) repulsion U be-

tween electrons.
Similar considerations underlie the recent work

of Nakano and Fukuyama on the spin-Peierls sys-
tem. However, their work is based on an approxi-
mate transformation to a spin Hamiltonian in
which half the degrees of freedom of the system
are transformed away. This approximation is only
valid when the electron-electron repulsion is large
compared to the one-electron bandwidth. This is
almost certainly not the case in (CH)„. However,
the insights obtained from the work of Nakano
and Fukuyama compliment the weak-coupling
(perturbation theory) results discussed in the
second and fourth sections of the present paper.

This paper is organized as follows: In Sec. II
the model is solved approximately by first obtain-
ing a solution in the unrestricted Hartree-Fock
(HF) approximation and then doing perturbation
theory about the Hartree-Fock solutions. The re-
sults are summarized in Figs. 2, 7, and 8. Perhaps
the Inost interesting effect to emerge from these
calculations is an increase in the dimerization as U
increases from zero. This result is reminiscent of a
similar result obtained by Chui et aI. for a contin-
uum model of the incommensurate electron gas.

In Sec. III the results of numerical calculations
on finite-ring systems are discussed and compared
with the perturbative results. Comparison is also
made with the exact results of Lieb and Wu for
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the pure Hubbard model and with exact results ob-
tained in Appendix B for a completely dimerized
system. It is concluded that the present perturba-
tive results provide a reliable description of both
the ground-state properties and the low-energy ex-
citations of the system.

Section IV contains a discussion of the effect of
weak electron-electron interactions on the proper-
ties of the soliton or kink excitations that SSH
have previously examined in the absence of interac-
tions. This one section is not self-contained but
draws heavily on the results of SSH. Finally, Sec.
V contains a discussion of the implications of the
present calculations for our understanding of po-
lyacetylene. It is concluded on the basis of a com-
parison between theory and experiment that (CH)„
is probably a "small-V' system, and that, there-
fore, the results of SSH are qualitatively correct,
even in the presence of interactions. The most im-
portant modifications in the properties of the soli-
tons due to the presence of electron-electron in-

teractions are a surprisingly small energy splitting
between a charged and neutral soliton and minor
changes in the soliton width depending on its
charge state. It is also shown that the Hubbard in-
teraction decreases the soliton-creation energy.
This may have the effect of increasing the impor-
tance of quantum fluctuations of the lattice. The
mathematical manipulations necessary to under-
stand the Hartree-Fock equations are summarized
in Appendix A.

II. ANALYTIC RESULTS

As in the SSH model, we consider a tight-
binding Hamiltonian with one state of each spin

per site (corresponding to the carbon norbital). .
The electrons are coupled linearly to the ionic dis-

placements through the hopping-matrix elements
between orbitals on adjacent sites. In addition,
there is the following on-site "Hubbard" repulsion
between electrons on the same site:

H = g [to+a(u„—u„+i)j(c„,c„+i,+H.c. )

+ U g (c„,c„,, ——, )(c„,c„,——, )

+ —,k g (u„—u„+i)

where c~ is the creation operator of an electron of
spin s on site n, and u„ is the displacement of the
nth ion. In this section we will consider only the
properties of the half-filled band, that is, the case

(2)

V2
Kz(N) for N =4n, (3a)

fp

where Ei and Ez are constants. The first term in

Eq. (3a) comes from the zero-energy states, and
the second term comes from all the rest. For
N =4n +2, there is a gap of width 2tosin(m IN)
between the highest-lying filled state and the
lowest-lying empty states. Thus the first, patho-
logical term in Eq. (3a) is not present and

in which there is one electron per site. As in SSH
the phonon dynamics are ignored through the
neglect of the ion kinetic energy in (1).

We wish to examine the competition between the
electron-phonon interactions (finite a effects) and
the electron-electron interactions (finite U effects)
in determining the nature of the ground state of H.
Let

~
f(u) ) be the electronic ground state of the

system for a given ionic configuration u. The
ground-state ionic configuration is then obtained

by minimizing the energy with respect to u,

5(g(u) ~H
~
g(u))

5u„

It is generally assumed that the uniformly
dimerized configuration is the ground state. In or-
der to determine the extent of dimerization, we
find the electronic ground state

~
P(uo) ) in the

presence of the configuration u„=(—1)"uo. To
obtain

~
P(uo) ) we first solve for the HF ground

state and then treat the remaining interactions by
perturbation theory. The energy is then minimized
with respect to uo as in Eq. (2).

We will do calculations for rings containing N
sites (with N electrons) as we will be interested in
both finite and infinite rings (limit as N~ oo ). In
this section we will consider only the case of even

N. Rings with odd N behave qualitatively dif-
ferently from even-numbered rings, even in the
large-N limit, as they are topologically constrained
to have a soliton in the ground state. We will con-
sider odd-numbered rings in Sec. IV. For small N,
there is also a qualitative difference between n =4n
and N =4n+2. To understand the origin of this
difference, consider the ground state of the nonin-

teracting system a = U=O. For N =4n, there are
two zero-energy states (of each spin) with wave
numbers k =+n./2a, where a is the lattice constant
(see Fig. 1). For the half-filled band, the zero-

energy states are half filled. If we now introduce
almost any sort of small perturbation of magnitude
V, these two states will be split to first order in V,

so the change in the total energy of the system will

be of the form
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FIG. 1. Level structure for an eight-membered ring

(representative of the N =4n class) and a six-membered

ring (representative of the N =4n+2 class).

with respect to the coefficients h„, ~, is equivalent
to variation with respect to the single-particle wave
functions in

~
1( "(h) ). The variational HF

ground state is obtained by minimizing E with
respect to h„, ~. It is shown in Appendix A that
for the Hamiltonian in Eq. (1) it is sufficient to
consider the HF Hamiltonian

K = g tn (cnscn ~ ls +H. c. )

EE V'
K2(N) for N=4n+2 .

o
(3b)

As can be seen, the difference vanishes as N~ ao.
However, for fixed, finite N =4n, the first term in
Eq. (3a) is the dominant term for sufficiently small
V ( V & tp/N). Thus for finite rings with N =4n,
there exists a range of interaction strengths for
which perturbation theory is unreliable. For this
reason we will be more interested in the results for
N =4n+2 where this pathology does not exist.

+2tp gxnscnscns (4)

which depends on the parameters t and x rather
than on the full matrix of parameters h. The
minimization condition allows us to express the
usual Hartree-Pock self-consistency conditions in a
form analogous to Eq. (2):

(I(,""
I
K

I
I(,"") &(

A. Hartree-Pock results

To begin with, we solve the problem in the unre-

stricted HF approximation. As we will see in the
next two sections, the description of the low-energy

excitation spectrum so obtained is good over a
wide range of parameters, while ground-state prop-
erties are poorly described. For instance, the HF
results incorrectly imply the existence of long-

range spin correlations in the ground state of the
pure Hubbard model (u„=0). Presumably, these

correlations mimic the true short-range correlations
which affect the excitations. However, at long dis-

tances, the spin-spin correlation should properly
decay like I/R. Thus the HF results are primarily
useful for obtaining the excitation spectrum (which

generally cannot be obtained by perturbation
theory alone), but must be augmented by perturba-
tion theory to obtain reliable ground-state energies.

With this in mind, we construct the HF ground
state as a product of one-electron states, chosen so
as to minimize the expectation value of H. It is
convenient to construct these states by the follow-

ing procedure. First, we define the most general
one-electron Hamiltonian,

Because the band is half-filled (commensurabili-
ty 2), there is a strong tendency for the system to
develop a new periodicity with two sites per unit
cell. The U term tends to produce an antifer-
romagnetic spin-density wave while the a term
tends to produce bond alternation, or "dimeriza-
tion. " In Appendix A we show that a self-
consistent solution to (5) is obtained with

t. =tpl 1+(—1)"yl (6a)

x~ =+(—1)"x, (6b)

where + ( —) refers to spin up (down), x is a
solution of the equation

x =xAUf i(1—z )l(1+x )' (6c)

y =(—1)"(2altp)u„=(2altp)up, (7a)

and fi is the lattice sum defined in Eq. (8) below.
If at this point we minimize the energy with
respect to y, we obtain the HF value for the
ground-state dimerization. Then x and y are
simultaneous solutions of Eqs. (6c) and (7b),

A, U ——(U/2tpm. ), and z =(x +y )/(1+x ). Herey
is the dimensionless dimerization

~ "n's', ns ~n's'~ns
8 ll
$$

Its ground state
~ P "(h) ) depends parametrically

on &~sos ~. Variation of

"=(y "(h)
~

K
~

1( "(h)),

y=yA (1+x )'~

X[f,(1—z ) —f2(1 —z )]/(1 —y ), (7b)

where A =(4a /tpkn). The functions f, .and fi
are the lattice sums
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fz(q) =— g [1 r—jsin (2mn/N)]+'~
—N/4&n &N/4

where the —(+ ) refers to j=1 (2). The normali-
zation has been chosen so that in the limit X—+ oo,

fi and f2 become, respectively, the complete elip-
tic integrals of the first and second kind. The total
energy per electron of the system in the HF ground
state is

(yH" I~
~ y ")

N

2to y x+
A~ AU

L

—2(1+x )'~ f2(1—z )

Finally, the energy gap for charge excitations, that
is, the energy required to add an electron to the
system minus the energy to add a hole, is

Es,~ 4to(x +y ——)'~ (10)

Before proceeding to the perturbative calcula-
tions, it is interesting to consider some of the prop-
erties of the HF ground state. Although, as dis-

cussed above, the properties are not correct for the

purely one-dimensional model, it has been

shown '" that in anisotropic three-dimensional sys-

tems that are not too one-dimensional, the one-

dimensional HF results are valid. Thus they are
interesting in their own right.

Both x and y are functions of the two dimen-

sionless coupling constants AU and A . In the ab-

sence of electron-electron interactions, AU ——0, the
Peierls or SSH Hamiltonian is recovered from Eq.
(1}. For N = oo and AU =0, and x =0, the value of
y which minimizes Eq. (2) has the asymptotic
behavior

4 exp( —1/A~ —1), A~ && 1

y(A~, AU ——0)- '1

AU ——AN/(1+A~) . (13)

This equation determines a critical Hubbard-
interaction strength U, (A ) for each value of the

0.750

Au

0275

and is nonzero for any nonzero value of the cou-

pling constant.
When A and AU are both nonzero, the competi-

tion between finite a and finite U effects produces
the "Hartree-Fock phase" diagram shown in Fig. 2
for N = oo. This figure describes the nature of the
HF ground state in the parameter space spanned

by AU and A~. Following a vertical line from the
A~ axis we find that for small AU (that is, for
weak electron-electron interaction) the HF ground
state is the same as for U=O, with x =0 and

y =y(A, O). As the strength of the electron-
electron repulsion is increased, a coexistence region
is crossed in which 0&y &y(A~, O) and
0 &x &x (O,AU). In this region both types of in-

teractions play a role in determining the ground
state. Finally, as AU is increased still further, a re-
gion in which the electron-phonon interaction is
unimportant [y =0 and x =x (O,AU)] is encoun-
tered. For small AU the coexistence region is ex-
tremely narrow, of order x (O,A&), and the phase
diagram can be thought of as having two phases,
one in which electron-phono@ interactions can be
ignored and one in which electron-electron interac-
tions can be ignored. The boundary between the
two regions, ignoring corrections of order
x(O,AU), is the line

For A~ =0, H in Eq. (1) becomes the Hubbard
Hamiltonian, hence y =0 and

4exp( —1/AU}, AU «1
(ir/2)AU, AU))1 .

0
0 0.5

Ao
I.O

(12)

In both eases the order parameter is a monotoni-
cally increasing function of the coupling constant

FIG. 2. Hartree-Fock "phase" diagram for an 1V= oo

ring. The nature of the ground state is plotted in the
parameter space spanned by AU and 3 . In region I,
x =0 and y =y {A,O); in region II, 0 &x &x (O,A U) and

0&y &(A,O); in region III, x =x(O,AU) andy =0.
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electron-phonon coupling A~. For U & U„ the
electron-electron interactions have no effect on the
HF ground state, and for U& U, the electron-
phonon interaction has no effect on the ground
state.

—0.050

B. Perturbative results —K

E (l( "~8~$ ")
N N

U2
E(x,y),

2to
(14)

where E is given by Eq. (C5) in Appendix C.
Schematically,

iM;(x,y)
iE(x,y) =g

AE~ x,y
(15)

where the sum on j runs over all excited states
with one particle and one hole of either spin, MJ is
the appropriate matrix element, and AE& is the ex-
citation energy. Since we are predominantly in-
terested in the region of parameter space where x
is zero, only the y dependence of E concerns us.
This dependence is shown in Fig. 3 for various
values of N. Notice the divergent nature of E for
small y when N =4n As suggested .in Eq. (3),

~NE (y, O) = +If~(y, O)
Ny

(16)

where AN ——0 for N =4n +2 and 1 for N =4n, and
K is well behaved in the limit y~0. This patholo-

To obtain an improved estimate of the ground-
state properties, we will calculate the ground-state
energy in second-order Goldstone. perturbation
theory about the HF ground state. For the pure
Hubbard model (y =0) perturbation theory is not
convergent, even for small UI2to, due to the pres-
ence of vanishing energy denominators. For finite

y, there is a gap in the excitation spectrum which
insures that the perturbation theory has a finite ra-
dius of convergence. In Ref. 3 we will show that
perturbation theory is convergent for
U&atol

~
lny ~. Thus for small U and finitey,

which is the case of primary interest to us in this

paper, our results are, in this sense, rigorous. Even
in the pure Hubbard model, an asymptotic expan-
sion for the ground-state energy in powers of
(UI2to) exists, of which the second-order pertur-
bation theory results are the leading-order term.
Thus even in the limit y~0 we expect the present
results to be reasonably reliable.

The second-order corrections to the HF energy

[Eq. (9)] are obtained by straightforward calcula-
tion

—0.045
0 l.0

FIG. 3. Correlation energy for various N. Plotted is
—K(y, x =0) as defined in Eq. (1S). Notice that the
curves for N =4n and 4n +2 bound the asymptotic
N~ Do curve as suggested in Eq. (16).

gy vanishes as N —+ oo.
The most striking result in Fig. 3 is that for

small y, E is an increasing function of y. The
minus sign in Eq. (14) implies that in the presence
of finite U, the Peierls instability (that is, the ten-
dency towards dimerization) is enhanced. This re-
sult was obtained previously by Horsch' on the
basis of a partial summation of the second-order
contribution to the ground-state energy. The
present treatment is exact to second order, and is
hence more accurate (see Sec. III).

The y dependence of E in Fig. 3 results from a
competition between two effects. As y is increased,
the gap in the excitation spectrum is opened. This
tends to increase the energy denominators in Eq.
(15), and hence to decrease IC. Owing to the
short-range nature of the Hubbard interaction,
there are substantial contributions to the sum in
Eq. (15) from high-lying excited states. Thus for
small y the effect on K of the increased energy
denominators is small. The other effect of a finite

y is to double the unit cell or introduce half-sized
reciprocal-lattice vectors. This permits a new class
of intermediate states j with total lattice momen-
tum +ala (umklapp processes) to enter the sum in
Eq. (15). For small y, the umklapp terms dom-
inate the y dependence of E.

We note that for small y and N —+ oo, E is ap-
proximately linear in y. Although the actual ana-
lytic form of E involves logarithms on y, it is
simpler for purposes of future calculation to make
the approximation
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&=&o+ l~ I&& (17)

where kp ——0.0339. . . and E~ =0.03. This approxi-
mation form of K is valid for x =0 and y & 0.2 as
can be seen from Fig. 3.

A final, fortuitous property of E is that for large
U it can be shown that E-1/U . Thus for strong
interactions U the second-order corrections to the
energy vanish, and the asymptotically correct HF
result is recovered.

The second-order corrections to the excited-state
energies can also be calculated. This is done expli-
citly in Appendix C for the lowest-lying excited
state. The results can be summarized by the equa-
tion

'2
HF

s~v
=

g~v + p(x,y)
2to

(18)

where E~,~ is given by Eq. (10), and P(x,y) is
found numerically to be less than 1 for all values
of x and y. Thus for small U, where the perturba-
tion results are meaningful, the second-order
corrections to the low-lying excitation spectrum are
small. In what follows they will be ignored.

We summarize the results of this section in
terms of an effective Hamiltonian H',

U2
H~ =H " K(xy—) (19)

2fp

where H "is given in Eq. (1), and x is a function
of y and U as determined from Eq. (6c), and for
small y and x =0, E is approximately given by Eq.
(18). The equilibrium dimerization y can now be
obtained by minimizing the energy in Eq. (19) with
respect to y. The self-consistency expression is the
same as that for U =0 [Eq. (7b)] with A replaced

by an effective electron-phonon coupling constant,

=3 /[1 An%~(U/2r—o) (I/y)] . (20)

The low-lying excitation spectrum of the system
can also be determined quite readily from H',
since it is a one-electron Hamiltonian.

exact analytic solutions can be compared to the
perturbation calculations and to the finite-ring cal-
culations of part B. Finite-size effects in the ring
calculations are discussed. Part 8 compares, in
greater detail, the perturbative results to the results
of exact numerical solutions of an six-membered
ring and identifies the nature of the correlation ef-
fects neglected in HF.

A. Exact analytic results; N= ce

Es,z ——(8/m )+Utoexp( —I/A~) . (21)

The HF results reproduce this essential singularity
exactly [Eqs. (10) and (12)] although the HF pre-
factor is U independent. For U/to of order 1, this
discrepancy is unimportant.

At large U the dimerization vanishes in the HF
approximation and becomes vanishingly small in
the finite-chain numerical solutions. This almost
certainly is not correct in the N~ 00 limit.
Nonetheless, for U » to the dimerization is ex-

3
tremely small and decreases with the —, power of
to/U. To see this, we take advantage of the well-

known result that for large U/to charge fluctua-

Ee.s
tp

In the limiting A~ =0, Eq. (1) becomes the Hub-
bard model and has been solved exactly by Lieb
and Wu. The exact ground-state energy of the
Hubbard model as a function of U is compared
with the perturbative results in Fig. 4. In the limit
of small U, the exact result for the band gap in the
Hubbard model is

III. EXACT RESULTS

In Sec. II we obtained a simple qualitative pic-
ture of the physics of the combined Peierls-
Hubbard system. In this section we will consider
some exact results, which take full account of
correlation effects, so as to test the validity of the
perturbative results.

This section is divided into two parts. Part A
considers limiting cases in parameter space where

-6
0

U/tp
IO

FIG. 4. Ground-state energy Eg/tp vs U/tp for the
N —+ ap Hubbard model. The solid curve is the exact re-
sult and the dashed curve is the result of perturbation
theory.
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tions are suppressed, and the Hubbard chain maps
into an antiferromagnetic Heisenberg model with
exchange constants

J„„+i———[to+a(u„—u„+i)] IU
—( t0IU) [tp +2a (u „—u „+i ) ]

Thus while the stiffness constant k in Eq. (1) is
unaffected by U, the electron energies are reduced

by a factor of tolU. The dimerization is a result
of the competition between electronic energy
(which favors dimerization) and the elastic energy
(which opposes it). A large U reduces the effective
coupling constant A by a factor of toIU Cr.oss
and Fischer" have obtained an expression for the
energy of the Heisenberg model as a function of
the dimerization. In our units, their result
translates into the expression

E(y) E(y =0) 1 4/3

1V N A

long as U &g4tp this compares favorably to the
perturbation theory version of the same criterion,

4 1 U
A~ p —1+—

2 8tp

B. Exact numerical results; N =6

Exact numerical solutions' have beeri obtained
for six- and eight-membered rings, N =6 and 8.
We have been limited by computer size to N (8.
Owing to the 4n periodicity in the ground-state
properties of finite rings, we have not been able to
determine the finite-size scaling behavior of our
solutions.

The results are best summarized by showing the
correlation energy e" as a function of y for vari-
ous U's. e" is, by definition, the difference be-

tween the U =0 and the finite U ground-state ener-

gies for fixed dimerization y,

(22a)
e""(y,U)=[E(y, U) E(y,0)]I—N . (24)

This result is believed' to be "exact" for small y
except for possible logarithmic corrections. Thus
the value of y which minimizes the total energy is
found to be

The exact N=6 results for e" are compared with
the perturbative results in Fig. 5. The agreement is

-6 x lO

y =0.13

3/2
a

(22b)

U)~0=0.2

The model in Eq. (1) is also exactly solvable in
the unphysical, completely dimerized limit in
which y =1, where the system breaks up into
noninteracting diatomic molecules. The solution is
obtained in Appendix B. It is found that the elec-
tronic energy of the ground state is given by the
expression

-7.67 x I 0

-6.33x 1 0

O

' 2 1/2—= —2tp 1+
8tp

which agrees with the perturbative results

gHF 1 U=—2t 1+—
2 8tp

(23)

-7.33 x lO

-0.5

up to corrections of order ( UI8to) . We have also
performed a stability analysis about this limit by
allowing the system to "undimerize" a little,
y =1—5 for small 5. We find that as long as

' 2 1/2

A-. —' 1+ ',
8tp

the total energy is an increasing function of 5. As

-0.75
0

I

0.5
Y

1.0

FIG. 5. Correlation energy vs y for X=6 and vari-
ous U/tp. The circles are the exact numerical results
and the solid curves are the perturbative results.
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quite good for U &2tp. This is in agreement with
the results of Ref. 3, where it is concluded that the
perturbative results can be used with confidence
or

U & irtp/
~
lny )

-2tp .
For N =8 the exact results are also in good agree-
ment with the perturbative results as long as

y &x (U,A =0). For smaller y serious disagree-
ment occurs. We trace this to the breakdown of
perturbation theory due to the degeneracy at the
Fermi level. For this reason the results for N =8
have not been shown.

IV. THE CASE OF THE SOLITON

SSH predict that soliton excitations, which are
boundaries between regions of two different senses
of dimerization, y =+yo and y = —yo, play a cen-
tral role in determining the properties of (CH)„.
In particular, they find that the energy needed to
create a charged soliton is less than the energy
needed to add an electron (hole) to the conduction
(valence) band. They therefore conclude that dop-
ing proceeds via the formation of charged solitons.
In this section we will examine the effect of finite
U on the SSH picture of (CH)„. We will restrict
ourselves to the upper right-hand portion of the
phase diagram in Fig. 2, where the Hartree-Fock
ground state is unaffected by U. We are interested
in finding the effect of the electron-electron in-

teractions on the shape and creation energy of
charged and neutral solitons. We will do this by
calculating the properties of the soliton solution in
the Hartree-Fock approximation. Although we
have found that order U effects can change the
value of the dimerization for a given A~, in other
words change A into a larger A', we also found
that the low-lying excitations are treated quite ac-
curately within the HF approximation. Thus we
expect the HF results to be valid for small U.

In the presence of a soliton, the Hartree-Fock
self-consistency equations (2) and (5) become con-
siderably more complicated than in the uniform
case and must be solved numerically. Although
this presents no difficulty, it is advantageous to ob-
tain approximate analytic results first so that the
structure of the solutions can be studied. Thus we
will first examine the soliton solution in the re-
stricted HF approximation.

SSH have shown that there is a localized mid-

gap state of each spin associated with a soliton. In
the case of a neutral soliton this state is singly oc-

cupied, while for the negative and positive solitons
it is doubly occupied and unoccupied, respectively.
The local electron density of spin s is given by the
expression

(c e )=—,[1+A,, iP (n)
i ], (25)

where Pp is the normalized amplitude of the local-
ized mid-gap state at site n, and A,,=+1 or —1 if
this state is occupied or unoccupied by an electron
of spin s. For a soliton of width l of the form

u„=( —1)"uptanh(n /l),
Pp is given by

Pp(n)=l '~ cos(n.n/2)sech(n/l) .

Since the U =0 ground state is a product of one-

electron states, the first-order correction to the to-
tal energy of the system can be computed easily.
If we define hE to be the first-order correction in

U to the energy of the system, then hE =0 for the
half-fulfilled, uniformly dimerized chain,

bE= —U' (I)/4 (26a)

for a neutral soliton, and

b,E=+U'"(I)/4

for a charged soliton of either charge, where

U' = U g ~
Pp(n)

~

—U/l .

(26b)

(27)

For the uniformly dimerized chain with an addi-

tional hole or electron, AE =0. The charged soli-
ton differs from the neutral one in occupation of
the mid-gap state. Thus the energy splitting be-

tween the two solitions can be interpreted as the ef-

fective Coulomb repulsion U,///2 for electrons in

the mid-gap state.
There are two features of these results which

warrant attention. The first is the smallness of the
effective interaction strength U' due to the large
size of the soliton [1-7for (CH)„]. The second is
that the effect of U is to reduce the creation energy
of a neutral soliton. The neutral soliton spin po-
larizes the electron gas in its vicinity which
reduces the electron-electron repulsion somewhat.

Since U' (I) is a decreasing function of 1, the to-
tal energy of a neutral soliton is reduced by a
slight contraction and the total energy of a charged
soliton by a slight expansion. In the absence of U,
the energy per soliton as a function of the width l
is given by the expression

E(l)=E&+2rp
&

kp(1 —lp) + ' (28)

~here E,=4toyo/m is the soliton-creation energy,
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Io-(1jyo) is the U =0 soliton width, and k2 is the
dimensionless soliton-stretching stiffness constant
(k2 can be calculated numerically as a function of
A~ as in SSH). Thus for small deviations,

I
I —lo

I
« lo, the change in the soliton width due

to the presence of U is approximately U/to= 9

(a)

I
I —lo I

= U"(Io)/4k2IO ~ (29) (b)

The full, unrestricted Hartree-Fock ground state
was found numerically for a 41-atom chain. The
topological constraints insure that there must be a
soliton in the ground state of any dimerized odd-
membered ring, and Su' has shown that there is
also a soliton in the ground state of an odd-
membered chain. While the absolute formation en-

ergy of a soliton cannot be derived by this pro-
cedure (since a soliton produces a change in the
boundary conditions), the change of shape and en-

ergy of the soliton as a function of U can be calcu-
lated. Since SSH have already calculated the
soliton-creation energy in the U =0 limit, the
change of soliton energy as a function of U is all
that we require. The numerical results are in good
general agreement with the results in Eqs. (27) and
(29) so long as A~&AU [U& U, (A )]. For AU

very near A~, the first-order results break down
since the soliton loses its integrity as the phase
boundary 3U~„ is approached. The soliton
shape and the spin density is shown in Figs. 6 and
7 for fixed A and various AU &AU . For calcula-

C

tional convenience, A was chosen such that
y (A, O) =0.25 rather than the physical

y (A,O)=0. 14 in (CH}„. Note especially the slight
sharpening of the neutral soliton with increasing
U, and a slight spreading of the charged soliton.

CQ
K

C)

CL

U/to= i.

(c)

U/to= i.

(a)

0-

U/to=

20
SITE NUMBER

FIG. 6. Profile of a neutral soliton for various U.
The tanh-like curve is the staggered ion displacement
f(n) =(—1)"u„. The saw-toothed lines are the stag-
gered spin-polarized charge density G, (n) =(—1)"
((c c ) —

2 ), for spin up (upper) and spin down
i

(lower), respectively. The chain length was X=41. No-
tice the very slight broadening of the soliton.

V. IMPLICATIONS FOR POLYACETYLENE

In this section we will discuss the implications
of the above results for interpreting the properties
of (CH)„ in terms of the SSH model. We have
seen that a good description of the mixed
Hubbard-Peierls system can be obtained by replac-
ing A~ by A~ [see Eq. (20)] and solving the result-
ing Hamiltonian [Eq. (1}]in the Hartree-Fock ap-
proximation. Therefore, if the parameters ap-
propriate to (CH)„satisfy the condition

Vl

z
ID
K

CI

I-

Q.
U/to= I

U/t

(b)

(c)

U& U, (A~} (30)

[see Eq. (14)],or, in other words, if (CH)„ falls in
the "pure Peierls" region of the parameter space in
Fig. 2, then the only major effect of U on the

SITE t4J~R
FIG. 7. Profile of a charged soliton for various U.

The labeling is as in Fig. 6. The spin-up and spin-down
curves coincide. Notice the very slight narrowing of the
soliton.
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ground-state properties is to renormalize the
electron-phonon coupling constant A . Recently,
the dimerization has been measured in x-ray
scattering, and it is found' that up ——0.037+0.003
A. The existence of dimerization is strong indirect
evidence that Eq. (30) is satisfied.

Ideally, we would like to estimate the parameters
A and U from microscopic calculations and verify
Eq. (30) directly. There is general agreement that
tp 2.5 eV. However, it is apparently difficult to
determine A~ to better than a factor of 2, and esti-
mates of U vary by a factor of 5 or more. Thus
the best estimates of these parameters are obtained
by indirect means.

The energy gap in (CH)» has been measured to
be Es,~ =1.4—1.8 eV. From the relation between

A~ and Es» [see Eqs. (10) and (11)],we infer that
A~ is in the range 0.41 —0.45. Thus Eq. (30)
places an upper bound on U, U &4.5 eV. If the
value of the bare A~ were known, then U could be
determined unambiguously from Eq. (20). From
the measured value of up, the electron-phonon cou-
pling constant can be determined to be
a=Es»/Sup ——4.5 —6.0 eV/A [see Eqs. (7a) and
(10)]. The value of the stiffness constant quoted
by SSH is k=21 eV/A . In order that the condi-
tion A (A' be met, this is roughly a lower
bound on k. In order for a value of U near 4.5 eV
to be consistent with the observed band gap, it is
necessary that A~ =3/42~ . This then, implies a k
in excess of 30 eV/A .

Our conclusions as to the importance of U differ
from those of Horsch, which were based on much
larger estimates of U obtained from microscopic
calculations. We note, however, that even if the
observed gap were caused solely by the Hubbard
interaction (A~ =0), a value of U-5 eV would be
deduced from the known dependence of Es» on U.
This then, must surely represent an upper bound
on U, independent of the validity of any approxi-
mation.

For U & U„which seems to hold for (CH)„, the
effects of U on the excitation spectrum are easily
obtained. The presence of a finite U of order 2 —3
eV changes the soliton-creation energies by a small
amount, U' /4-+0. 1 eV, depending on the
charge of the soliton. One of the important con-
clusions of SSH is that when a small number of
electrons (or holes) are added to the system [as in
lightly doped (CH) ], they will produce charged
solitons rather than remaining in the conduction
(valence) band of the perfectly dimerized system.
This follows from the fact that the soliton-creation
energy in the SSH model is roughly 0.25 eV less

than the energy needed to add an electron to the
conduction band. As long as U' /4&0. 25 eV, this
conclusion remains true even in the presence of U.
Thus the major effect of U on the results of SSH is
to increase the energy and width of a charged soli-
ton slightly and to decrease the energy and width
of a neutral soliton. It is also probable that finite
U increases the importance of quantum fluctua-
tions of the lattice.

Note. Most of the first-order perturbation-
theory results on the effect of U ori the soliton en-

ergy were first derived by J. R. Schrieffer but nev-
er published in a complete form (see Ref. 16).
Some of the Hartree-Fock results discussed in this
paper were obtained independently and simultane-
ously by Subbaswamy and Grabowski. '

ACKNOWLEDGMENTS

We would like to acknowledge the invaluable aid
and advice of Dr. J. R. Schrieffer, Dr. D. Hone,
and Dr. Y. R. Lin-Liu. One of us (S. K.) would
also like to thank Dr. J. Hirsch and Dr. P. Horsch
for enlightening discussions regarding exact results
for the various incarnations of the Hubbard chain.
This work was supported by National Science
Foundation Grants Nos. DMR 80-07432, DMR
78-25005, and PHY 77-27084.

APPENDIX A: HARTREE-POCK RESULTS

A simple way of constructing an N-particle
Hartree-Fock trial state

~

f(h) ) is to consider the
N-particle ground state of a general one-electron
Hamiltonian

H ~ 'ns, n's'CnsCn's

n's'

(Al)

(A2)

As the Hamiltonian H in Eq. (1) commutes with
N, =g„c~, the number of electrons with spin s,
the ground state can be chosen to be an eigen-
state of N, and X,. Thus without loss of generali-
ty, the matrix h can be taken to be diagonal in the
spin index.

The Hartree-Pock ground state is found by set-
ting the variation of (f(h)

~

H
~
f(h) ), with respect

to h, equal to zero as follows:

5h „; 5h

5(y~(a a"")~q)—=0.
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The expectation values in Eq. (A2} can be expressed in terms of one-particle correlation functions, since

~ f) is a product state, so that

(C„ic„i—2 )(C„ic„i—i ) ) = ((C„gc„i— ) ((C„ic„i— ) ) (A3)

Thus the variation in Eq. (A2) produces the following set of minimization conditions on h:

0=
)m —m'l

S

5(c c, ) 5(c,c +i, )
( —Itms, m' }++ [tp+a("n n+i) ms, m+»]

5h „, '' ' 5h

+g [tp+a(u„—u„+i)—)'i, i, ]++ [U((c, .c, , ) ——,}—h, , ] .

(A4}

h, =O for ~m —m'~ &1,

~ms, m+is im+ls, ms p+a(un n+1) ~

(A5a)

(Asb)

or, in the notation of the text,

m:—p[ +(— ) y ]=tp+a(un —u„+i)

(A5c)

Since this equation must be satisfied for all n, n', s,
the coefficients of each term should vanish individ-

ually. Thus

With this concern removed, the minimization con-
dition in Eq. (2) can be expressed in terms of one-

particle correlation functions in much the same
way as the Hartree-Fock conditions were,

=0=k(u„u„+—i)+a g( (cmcn+is)
S

+ c.c. ) —A, (AS)

and

j.

hms, ms = U( ( cmscms ) 2 )

or, in the notation of the text,

(A6a)
or, in terms of

y„=( —1)"(a/t p )(u„—u„+,),
y„=—( —1)"(a /tpk)

x =( —1) (U/2tp)((c c ) —
2 ) (A6b)

Thus as promised, we have shown that the
Hartree-Fock Hamiltonian in Eq. (3) is sufficiently
general to obtain the Hartree-Fock ground state of
H.

Care must be taken in using Eq. (2) to find the
ionic configuration that minimized the adiabatic
potential energy since the Hamiltonian in Eq. (1) is
formally unstable with respect to a shrinking of
the lattice constant u(n+1)u Wpe are only in-

terested in patterns of lattice distortion that do not
change the overall length of the system. This con-
straint is most easily enforced by adding a
Lagrange multiplier to H,

H~H A, pa(u„—u„+i}—, (A7)

where g„(u„—u„+ i)=51., the change in length of
the system. A, is then chosen such that 5L =0.

T

X g ( (cnscn + is ) +C.C. )—)j.
S

(A9)

To ensure 5L =0, we must take

A, =g ((cmcn+» )+c.c. )/N . (Alo)

To obtain the self-consistent Hartree-Fock
ground state for a nontranslationally invariant sys-
tem, such as the solitons considered in Sec. IV, the
Hartree-Fock equations are solved iteratively.
First values of x and t are assumed and the corre-
sponding Hartree-Fock Hamiltonian, H " in Eq.
(3), is constructed. The ground state of this Ham-
iltonian is obtained and used to calculate new
values of the parameters x and t according to
Eqs. (A5c), (A6b), and (A9}. This process is re-

peated until self-consistency is obtained.
For the uniform ring a self-consistent solution of

the Hartree-Fock equations can be obtained analyt-
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ically. In this case the translational symmetry is
partially broken by a doubling of the unit cell.
This doubling is a consequence of the band being
half filled. We let x~ =(—1)"x„x,= —x, =x,
and t„=tp[1+ ( —1)"y] in Eq. (3), so that

H "=tp g [1+(—I)"y](c~c„+»+H.c. )

which have energy

Ek =+2tp(x~+ek)

Here

ek ——[cos (k)+y sin (k)]'

and

(A13}

+ g ( —1) x (cntcni —cnic„i) (Al 1)

x, +(x, +ok)
[cos(k) +iy sin(u )]

(A14)

The one-electron eigenstates of H " are the Bloch
states

i 2nk f i(2n+1)ke C2~+8 P~C2~+ig
ks in[N(1+

I &k I

'}/2]'"

(A12)

The ¹lectron ground state is the product state of
all the negative-energy Bloch states. The various
one-particle correlation functions can be evaluated
simply in this state with the results

( —1)"x,
((c c }——,)=—,, f (1—'),

(1+x, )'~
(A15)

( 1+ 2)1/2
((c c„+„}+H.c.)=— f2(1—z )

(1—y )

fi(1—z )—z'fi(1 —z') +y( —1)",—f2(1 —z')
(1+x )

(A16)

where, as in the text,

z =(y +x )/(1+x )

and the fz are the lattice sums defined in Eqs. (6c)
and (7b). These expressions for the correlation
functions can be substituted into the self-

consistency Eqs. (A.Sc), (A.6b), and (A.9), to obtain
Eqs. (6a), (6b}, and (7a) in the text.

To become familiar with the behavior of x and y
as a function of the coupling constants, we will

briefly examine the asymptotic behavior of the
self-consistency equations. To do this it is neces-

sary to study f, and f2 in the limits z « 1 and

(1—z )«1.
For a finite lattice it is easy to show that for

Z & 1/N and for N =4n,

electron state cos(k) =0, for the noninteracting
N =4n ring, and the absence of such a state for the
N =4n+2 ring. Equation (A17) ensures that for a
ring of N =4n,

xp(Av)=x(A =QAv)&Q

for any nonzero A v, and

y p(A~) =y(A„Av =0) &0

for any nonzero A . However, for N =4n+2
there is a threshold value of AU and A below
which xo and yo, respectively, vanish. For z near

1, that is, in the strong-coupling limit,

f, (1—z )- +d'(z ),2 2m 2

(A17)

f (1—z )=—[1+(1 z)F+ ], —
1 (A19)

f2(1 —z') —f2(1)+
~

z
~

+&(z'),
N

while for N =4n+2,

where j =1 corresponds to +, j =2 corresponds
to —,and

fi(1—z )

[f2(1—z ) —fi(1}l
'-&(z ) (Al8) —N/4&5 &N/4

sin (2n.n/N)
(A20)

The difference between the N =4n and N =4n +2
cases is due to the existence of a zero-energy one-

In the limit N~ ao, fj becomes the complete ellip-
tic integral of the jth kind.
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APPENDIX 8: THE CASE OF ALMOST
COMPLETE DIMERIZATION

In the limit

y:—( —1)"a(u„—u„+i)/2tp ——1,

1/2
1

2

' 1/2

1+
4)ep/

1/2
1

2

1/2

1—
41' I

(84)

the Hamiltonian in Eq. (1) breaks up into an array
of completely independent diatomic molecules. Al-
though the assumption of linear electron-phonon
coupling implicit in Eq. (1) will break down long
before this limit is reached in any physical system,
the Hamiltonian is exactly diagonizable in this lim-
it and the results can be compared with the corre-
sponding Hartree-Fock results to obtain some feel-

ing for their range of validity. We will also exam-
ine the case of nearly complete dimerization,

y =1—5 with 5 &&1. This allows us to calculate
exactly, the range of parameters over which y =1
is the ground-state configuration of Eq. (1) (we im-

pose the constraint y & 1}. This result can be com-
pared with the same stability analysis in the
Hartree-Fock approximation.

We start with y =1, in which case we need only
solve a two-site Hubbard model:

1 f 1+g U(cnicnt 2 )(Cnicni

+(2t, /~A, ) g (1)', (84a)

and as a 5-dependent perturbation

H'= tp g( ——I)"5(cz c2„+i,+H.c.)

+(2tp/~A )

+(2t, /nA, ) g ( —25+5') . (84b)

For y =1—5 we can write the Hamiltonian in

Eq. (1) as an unperturbed perfectly dimerized part,

Hp g 2tp(C2nsC2n+is+H. C. )

H= tp g (cpzci, +H.c. )

+ U g(cnicni —
p )(Cnicni —

2 ) . (81)

The ground state of Ho is a product of molecular
ground states of the form of Eq. (82). For small

5, the effect of H can be estimated with the use of
first-order perturbation theory in 5:

The two-electron (half-filled) ground state is easily
found to be the singlet state

[a(aoia ii+a i&aoi }
1 t t
2

tp
5,& =2N5tp

I
&o

I

The stability condition hE &0 is thus

A ) (4/n )(ep/2tp} .

(85)

(86)

+P( o,ap, +a i,a i, )]10}+

which has electronic energy E'p per electron,

(82)
If the same procedure is followed, with the use of
the perturbation-theory ground state instead of the
actual ground state, the resulting stability condi-
tion is

ep ———2tp[1+(U/8tp) ]'
A &(4/ir)[1+ —,(U/8tp)'] . (87)

=2tp[1~ —,(U/8t, )'+ . ] .

The perturbative result for the ground-state energy
is easily found to second order in U,

P'"= —2tp[1+ —,( U/8t p)] .

Again, for U less than the bandwidth, the agree-
ment between Eqs. (86) and (87) is good.

APPENDIX C: CORRECTIONS
TO HF RESULTS

As long as U is less than the bandwidth 4tp, per-
turbation theory gives a reasonable estimate of the
ground-state energy. a and P in Eq. (82) are,
respectively,

In this appendix we derive the first perturbation
corrections to the HF results. Thus we consider as
our unperturbed Hamiltonian, Hp, the HF Hamil-
tonian in Eq. (A11), and as the perturbation,
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1 f 1H'=Up(c„, cn, ——, )( „„,——,)
n

—g( —1) x(c„,c„,—c„,c„,)n + (Cl)

E{2) y I (G IH'
I j) I

a EG —E.J
(C2)

where, since we have added an artificial spin-

density wave term into the unperturbed Hamiltoni-

an, we must subtract it out again in H'. Note,
however, that H=HO+H', so we are at least for-
mally justified in this procedure. For now we will

treat x as arbitrary although eventually we will re-
quire that it satisfy the HF self-consistency condi-
tion Equation (6c). The results of ordinary pertur-
bation theory can be obtained by setting x =O.

The ground state
~

G ) and all the excited states

~
j) of Hp can be obtained as products of the one-

electron eigenstates found in Eq. (A.12). The
second-order contribution to the energy can be
computed from these states according to the usual
result of second-order Goldstone perturbation
theory

~2 2

1r (1+x )' N k g'k

(C3)

and

E(norm)

2tp
(C4)

where

Two types of intermediate states can, in principle,
contribute to the sum in Eq. (C2): (1) those with
one electron and one hole with total spin zero, and
(2) those with a spin-up electron and a spin-down
electron and hole. Note that if x =0, only terms
of type (2) are possible, for which reason we will
refer to the contribution from these states as the
"normal" part and to those from states of type (1)
as the "anomalous" terms. Both'contributions can
be found by straightforward algebra:

Ir: (xy) = 1 1 1

k)k2 [~)++2+~3+@4] [@lg2@3@4]
k3

X ( @)S'28'3$'4 2x g'1@'2+x +c)c2c3c4 2c)c2y3y4+4c) c3y2y4+y, y2y3y4)
2 4

(C5)

and, as in Appendix A, z =(x +y )/(1+x ),
ek =[cos2(k)+y sin (k)]'~, and N'k ——(x +ok)'
In Eq. (C5) we have adopted the shorthand
8'k =g/', yj ——y sin (kj ), and cj ——cos(kj ), and we

J
have defined k4 ——k2 —ki —k3. Notice that when x
is chosen to satisfy the HF self-consistency equa-
tion (6c), or if x =0, the anomalous contribution to
the energy vanishes.

The same procedure can be used to calculate the

I

change in excitation energy of any excited state.
To do this we must calculate the second-order
change in the excited-state energy and subtract
from it the change in the ground-state energy. %e
consider here the change in the gap energy. Hence,
we consider the energy of the spin-zero excited
state with an electron and hole with wave numbers
n/2a. Again, "anomalous" terms vanish when x is
chosen consistently, leaving only the "normal" term:

Es,~
———U P(x,y),

1 —5k, ,ko
P(x,y) = 2x [ep(ei —e2) —e)e2]+2x

k1k2 (~o+ei+~2+~3)(eo&1~2~3)

2Eo+ I~De)~2e3 x [(2sl ~2) 2e)~2+~le3]
&&+~2+ ~3—~o

(C6)

—x +y(2yic2c3 —y2cic3+y)y2y3)]

where ko ——m/2a and k3 ——ko + k2 —ki. p(x,y) and E(x,y) can be evaluated numerically.
(C7)
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matrix of size 4900 for N =8. In practice we saw ex-

cellent convergence in the ground-state energy trun-

cating the matrix at size 40. By adding the ionic
potential-energy term in Eq. (1) to the electronic
ground-state energy we could minimize the total ener-

gy with respect to dimerization as in Eq. (2). The
function y(A~, AU) is the dimerization which mini-

mized the total energy. From Eq. (10) we obtained

x(A,AU) as

x(A „AU) = U

2tp
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