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Coherence dynamics of cross-relaxing triplet spina
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(Received 30 March 1982)

The dynamics of resonant cross relaxation between different electron-spin species, viz. , the

F&
+ (S=1) and F+ (S=T) defects in CaO, is studied by optical-spin-echo spectroscopy. For

the F&
+ center in the photoexcited B~ state, the phenomenon of hole burning by resonant

cross relaxation is inferred.

Spin dephasing due to spectral diffusion in ionic
solids has been extensively discussed in the past. ' '
The process is controlled by spin-spin interactions
which, to be specific, are constrained to terms of the
form, S~S,s(t), A and B being representative of the
probed and fluctuating spin species, respectively.
The approach is valid because the A- and 8-spin reso-
nances usually are sufficiently remote to ensure rapid
averaging out of all other terms in the dipolar cou-
pling. However, for the situation of comparable A

and 8 splittings, an additional decay channel is
opened up for the A spins. The phenomenon, well
known as cross relaxation (CR), tends to establish a
common spin temperature for the A- and 8-spin en-
sembles. CR should be manifest in the coherence
dynamics of A spins.

Relatively few experiments on CR dynamics in
electron-spin systems have been reported. In part
this is because of the fact that one cannot spectrally
resolve either of the cross-relaxing species by stan-
dard magnetic resonance techniques. This difficulty
may be overcome when double-resonance methods
can be applied. 4' In this paper we report the first
study of CR dynamics by using optically detected A-

spin coherence as a probe. Our experiments concern
the resonant energy exchange, in CaO crystals,
between F~'+ centers in the phosphorescent Bi state,
and F+ centers in the spin doublet ground state.
Here the triplet spins act as A spins, the doublet spins
form the 8 spins; CR is achieved in the presence of
an external magnetic field. The sensitivity of the
method enables one to study the cross-relaxation pro-
cess in some remarkable detail. For example, for the
A-8 system in this work, it is inferred that a hole is
burnt in the inhomogeneously broadened A-spin sig-
nal as the A and 8 spins become resonantly coupled.

As shown recently, in the presence of an external
magnetic field along the crystallographic [100] direc-
tion, the Bi 'A no-phonon line emission at 683
nm, which is characteristic of the F~'+ vacancy-pair,
exhibits a sharp (polarized) intensity change when
0 =HCR=—363 G. The effect reflects an abrupt vari-
ation in the (non-Boltzmann) triplet spin alignment
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FIG. 1. Coherence- and population-decay characteristics
for the F~ +center, in the Bi state, in an applied magnetic
field along a f100] axis of the CaO crystal. CR with F+
centers occurs for H =HCR. T =1.2 K. (a) Field depen-
dence of the phase-memory time, TM, as obtained for the

~P) ~y) (triplet) spin transition, (b) and (c) decay rate
constants, k& and k~, respectively, as a function of H, as
determined after triggering a population inversion at co& .

and occurs because rapid CR into the bath of abun-
dant F+ center spins (having S = —,) is possible.

Now, using the probe-pulse technique" at 1.2 K, op-
tically detected Hahn-echo amplitude decays for the
~P) ~y) triplet spin transition were obtained as a
function of the strength of the magnetic field, the
latter being directed along the [100] axis. For H
values between 200 and 400 G, the spin echoes
showed a monoexponential decay. A plot of the
characteristic decay time, T~, vs 0 is given in Fig.
l(a). Typically, T~= 23 + 2 It,s, except for H =363
G: under CR conditions T~ becomes 13 + 2 p,s; i.e.,
TM is decreased by almost a factor 2.
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To discuss the shortening in the triplet spin de-
phasing, we recall that the time dependence of the
echo amplitude, Si(t), is governed by the memory
function, K(t, t') In. the lowest Born approximation
we have

(s&lx (t) (I -P)x (t') Is,)
(s, Is, )

where X"(t) = UXp4Ds U ', U = exp [ i (X"+Xs) t ], X"
and XB denote the spin Hamiltonians for the A- and
8-sPin ensembles (referring to Fzz+ and F+ defects,
respectively), and XDD represents the AB-dipolar in-
teraction. P is a projection operator defined by
P = Ist)(siIsi) '(SiI; Xand P operate in Liouville
space, ~ in which Ist) is a ket. For H =Hca, A and 8
spins exhibit equal energy eigenvalue splittings.

Then, XDD contains "static" and "dynamic" secular
terms XDD(s) and XD8(d) respectively, which are
characterized by [X",XDD(s) ] = 0, and

[X",XDD(d) ] = —[X,XDD(d) ] = + rett, XDD(d)

with g= l. For the calculation of K(t, t'), only the
secular terms in X'(t) of Eq. (1) are retained. It fol-
lows, for the case of resonant coupling between A

and B spins, that A-spin dephasing arises not only be-
cause of terms like S~s,s(t) in XDD(s), but also be-
cause of energy-conserving flip-flop terms as

Stt„sis(t) or S„tts s(t) in XDn(d). Explicit expres-
sions for XDD(s) and XDD(d), in XDD =XDD(s)
+XpDs(d), were derived. The evaluation of Kca( tt')

is then straightforward assuming uncorrelated A and
B spins. The result is

K "(t,t') =gjgstt, tt $ 6,(S,s(t)s,s(t'))
fgB 1 +z(

13[zt+(I+zt )' ](Xqs —its) (1 ——3Zjs) I' I zt
, ,i, (S,s(t)s„s(t'))

I AB I+zt2 '"

(2)

In Eq. (2), X~s, etc., is the direction cosine of r&s,
with respect to the x, etc. , axis of the A-spin fine-
structure tensor; zt=g~p, sH* IE I

', H*'= (Ht'
+H') ' ', Ht being the local field for an A spin as pro-
duced by a nearest (nonfluctuating) 8 spin which ef-
fectively lifts the zero-field quenching of the A-spin

magnetic moment; n~ is the number of probed triplet
spina, and, finally, (Ss(t)sis(t')) is the autocorrela-
tion function for B-spin component i. Subsequently,

Kc(t, t') was inserted in the Volterra-type equation
of motion for (Si't(t)), where Su(t) is the spin-echo
amplitude of A spins having a local field HI. Integra-
tion was accomplished assuming (i) an isotropic Mar-
koffian relaxation of the 8 spins, i.e., (Ss(t)s~(t') )
~exp( —R It —t'I) for i =xy, z, (ii) rapid averaging
out of the dipolar coupling between A and fluctuating
8 spins, and (iii) the applicability of the statistical
averaging procedure of Ref. 2. Finally, the (St't(t) )
are weighted because of the inhomogeneous distribu-
tion in HI. For our purposes, it is not necessary to
specify the distribution function for HI, we simply in-
troduce an effective parameter, z, for which

H, = (Hl~„+H2)' 2, where Hl~„ is the weighted aver-
age of Ht, (Ht'). As a final result, the A-spin-echo
amplitude is calculated to decay according to

((Sii(2r))),„~exp[—p(H)g~gspsdsB(r)' '), (3)

where dB is the B-spin density,

B(r) =R (Rr —[1—exp( —R7)]
—

z [I —exp(-R r) ]']

I

and the function, p (H), is representative of the static
AB-dipolar interaction in a magnetic field of strength
H. Evidently, for H =HGR, the computation of
p (H) must be performed using the complete expres-
sion of Kc(t, t') in Eq. (2). On the other hand, for
H A H~~, the memory function consists only of the
first term on the right-hand side of Eq, (2), and

p (H) will vary as z/(I +zz) ' z. 6 For the 38' state of
the F22+ center in CaO, IE I

= 179 MHz and Hh, = 15
6, so one has for H & 200 6, z » 1. Consequent-
ly, p (H) is almost constant for H between 200 and
400 6 [we calculate p (H) = 4.0], except, of course
for H equal to HGR. In the latter instance, the calcu-
lation yields p (Hca) = 9.1, i.e., p (H) is expected to
increase by a factor of 2.3 because of CR.

The experimental A-spin-echo decay curves were
computer fitted to a function of the form
exp [—C (z)8 (r ) 'i2]. The numerical values for C (z)
and R, obtained as a function of H, are plotted in
Fig. 2. Note that no appreciable change in C(z) oc-
curs until, at H = HcR, its value is enhanced by a fac-
tor of 1.7, i.e., somewhat lower than our earlier pre-
diction. Furthermore, the B-spin dephasing rate, R,
remains constant, even when H =HcR. Apparently,
it is legitimate to adopt isotropy in the B-spin dephas-
ing, a result which further substantiates the previous-
ly invoked phenomenon of exchange narrowing by
random B-spin flip-flops.

Since for the photoexcited triplet spins of the I'2

center the characteristic cross-relaxation time is short
(-30 p,s) on the time scale of the 'Bi state lifetime
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(3 ms), thermalization among A and B spins is rapid.
In addition, the heat capacity of the F+-center spin
ensemble is almost infinitely large compared with
that for the F22+ center spins [note that ds = 10"
cm ' and n~ = 10~ (Ref. 6)]. For the cross-relaxing
A spins we anticipate, therefore, a Boltzmann popula-
tion distribution, whereas, outside the CR regime,
the anomalous spin alignment is preserved. Howev-

er, this reasoning is, for the system studied here, too
loose and should be refined, as can be seen from the
population-decay kinetics.

Population-decay rate constants, k& and k~, were
determined from the time evolution of m- and o-
polarized intensity changes in the phosphorescence,
that arise upon the application of a strong microwave
(180') pulse of frequency ei». Figures 1(b) and 1(c)
show the behavior of k& and k~ as a function of H.
A striking feature is that k& and k~ still differ when
H =HCR, a result which points to spin isolation. The
apparent disparity in the outcome of the coherence-
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FIG. 2. Magnetic field dependence of C(z) ( ~) and B
(0) as obtained from fitting the F2 +-center echo decay
curves to the form exp[ C(z)B(r—) ~ I, as explained in the
text. The sharp rise for 0=363 6 in C(z) is representative
of CR between F~ and F+ centers.

and population-relaxation experiments, is readily un-
derstood, however, on the basis of the significant
difference in linewidth for A- and B-spin resonances.
The characteristic width [full width at half maximum
(FWHM)] for the inhomogeneously broadened
~p) ~ ~y) transition is -15 MHz, whereas the width
for the homogeneously broadened

~ —,) ~+-, ) B-

spin transition of the F+ center has previously been
shown to be ultimately 100 kHz. Thus, when the
F2 +- and F+-defect resonances exhibit overlap, only a
small portion of the A-spin ensemble will be in ther-
mal equilibrium with the B-spin bath or, equivalently,
CR effects hole burning in the A-spin resonance. '

Consequently, in experiments where high-power
resonant microwaves are applied to measure CR
dynamics, an inhomogeneously broadened set of A

spins is excited (of 5—10-MHz width) which, for the
larger part, comprises of A spins that are nonresonant
with B spins. Clearly, the disperse excitation is ex-
pected to reduce effectively the value predicted for
p (Hca), as indeed found experimentally. Likewise,
the thermal isolation of the ~p) and ~y) levels at
H = 363 0 as concluded from the distinct values for
k~ and k„, basically reflects that the microwave pulse
predominantly excited A-spins nonresonant with B
spins. Note that in the experiments of the latter
type, the microwave pulse does not thermally
separate the cross-relaxing 3 and B spins; instead,
the temperature of the combined AB system with
respect to that of the phonon reservoir is elevated.
The slight increase in k& and k„, by 25 s ', when
H =HER, is chaiacteristic therefore of the B-spin
spin-lattice relaxation rate at 1.2 K.

In summary, we have demonstrated that the rate
for resonant energy exchange between different A

and B spins can be determined in a direct manner
from the (optically detected) coherence decay of the
A spins. For the specific color-center system studied
here, a comparison of the phase- and population-
decay dynamics shows that CR generates hole burn-
ing in the inhomogeneously broadened A-spin signal.
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