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Wannier functions can be defined as the eigenstates of the position operator projected
onto a given band. Though this definition is equivalent to the usual definition of Wan-

nier functions in a crystal, the present definition is useful in disordered systems as well.

It is shown that if a band is separated from all other bands by a finite energy gap, the
Wannier functions are spatially localized. Although the Wannier functions are typically

too complicated to compute explicitly, they are a useful conceptual tool. As an example

of their usefulness, they are here used to study the charge fluctuations associated with a
fractionally charged topological defect or soliton. It is shown that fractional charge is a

sharp quantum observable, thus confirming the results of previous continuum-model cal-

culations [S. Kivelson and J. R. Schrieffer, Phys. Rev. B 25, 6447 (1982)].

I. INTRODUCTION

The one-electron energy eigenvalues of solids,
especially in one dimension, often form isolated
bands; that is to say, bands of allowed energies
separated from all other bands by a finite energy
gap. The states in a given isolated band a define a
subspace S . Where possible, it is often useful, at
least conceptually, to express states in this subspace
in terms of a spatially localized basis set, which we
will call in general Wannier functions (WF). It is
well known that in a one-dimensional crystal with
a center of symmetry it is always possible' to con-
struct exponentially localized WF's. Moreover, for
many isolated bands in three-dimensional solids it
is possible to find WF's which are not only ex-
ponentially localized but which transform simply
under the operations of the space group of the
crystal as well. The standard proofs of these prop-
erties depend heavily on the analytic properties of
Bloch states. However, Kohn and Onffroy have
shown that in a one-dimensional crystal with a
point defect, WF's exist which have the same a-

symptotic properties as those in the corresponding
perfect crystal. This result suggests that the ex-
ponential localization of the WF s is a direct conse-
quence of the existence of an energy gap, and not
of the existence of perfect crystalline order.

With this in mind, we generalize the notion of a
WF so that no direct reference need be made to the
underlying structure of the solid, crystalline, or
otherwise. Let a be an isolated band in a one-

dimensional solid and let P be the projection
operator onto the subspace of band a. Then the
WF's of band a,

~
R,a), are defined to be the

eigenstates of the projected position operator R„

where

R=P rP

and r is the position operator. This definition of
the WF is intuitively appealing; the WF is the
"best" approximation to an eigenstate of the posi-
tion operator that can be made out of states in
band a.

In this paper we explore some of the properties
of these generalized WF's. In Sec. II we show that
the WF's as usually defined in crystalline systems
are indeed eigenstates of the projected position
operator. In Sec. III we show that an immediate
consequence of the existence of an energy gap is
that the WF's are sufficiently well localized that at
least the second spatial moment of the WF is
bounded. This result is beneficial for some uses of
WF s; in particular, it is a necessary condition for
the existence of a well-defined electron effective
mass. In Sec. IV we prove that for a system
which consists of two semi-infinite pieces of crys-
tal, Ci and Cq, connected by a finite region of
noncrystalline material (see Fig. 1), the WF's are
exponentially localized and become indistinguish-
able from the WF's of the corresponding perfect
crystal exponentially fast as one moves away from
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II. WANNIER FUNCTIONS
IN THE PERFECT CRYSTAL

In a one-dimensional crystal with inversion sym-
metry, it is easy to show that the normally defined
WF's are indeed eigenstates of R . We wi11 con-
sider explicitly only the usual case in which the
eigenvalues of R are nondegenerate, but the gen-
eralization to the case of degenerate eigenvalues is
straightforward. Specifically, consider the usual
WF's which we label according to band (a,P) and
according to the expectation value of the position
operator

(Ra ~r ~Ra)=R .

We will show that

(2.1)

the noncrystalline region D. This result is more
general that that of Kohn and Onffroy in that it is
valid in the presence of topological disorder (in
which Ci and C2 are different) in addition to the
case of a point defect (Ci ——C2) already considered
by them.

Finally, as an example of the usefulness of the
generalized WF's, we consider the quantum-
mechanical charge fluctuations of the fractional
charge associated with solitons in a commensurate
Peierls system. It was shown in Ref. 1 that in a
continuum model of the commensurability 2 sys-
tem, the charge fluctuations vanish in the long-
wavelength limit. However, the continuum model
contains an artificial cutoff to the fermion spec-
trum. In Sec. V, we use the properties of the WF's
to study the fractionally charged solitons. As in
Ref. 8, we show that the charge fluctuations asso-
ciated with the soliton are exponentially localized
to the vicinity of the soliton. We thus confirm the
fact that in the long-wavelength limit, fractional
charge is a sharp quantum observable.

H= ~a
2 +V(x), (3.1)

the position operator obeys the commutation rela-
tion

fi
[[H,r],r]=

e
(3.2)

From this, it is possible to place an upper bound
on the average second moment [l~] of the WF's
in band a,

[l ] =—g (Ra
~

(r —R)~~Ra),
R

(3.3)

where X is the dimension of S . The derivation
proceeds along lines similar to those of the usual
proof of the f sum rule. A similar approach was
used in Ref. 6 to obtain an estimate of the band-
edge effective mass (which was found to be related
to l ). For simplicity, we will consider only the
lowest band, a. We note that

F.=g ~R,a)(R,a( (3.4)

where A,~=+1. Thus,

(R,a )
R

~
O,a) =(R,a

~

r"
~
O,a)

= —(A, ) ( —R,a ~r ~O, a)
(—O, a

~

r"
~

-R,a)
=—(R,a

(
r

) 0, a) =0, (2.5)

where in the latter three expressions, we have in-
voked inversion symmetry, translational symmetry,
and reality, respectively.

III SECOND MOMENT OF
~
Ra)

As long as the solid under consideration is well
described by a one-particle Hamiltonian with a
velocity-independent potential,

(Ra
i
R

i
R'P) =5~p5gg R .

That R
~
R,P) ~ 5 & is immediately apparent from

the definition of R . The translational invariance
of the crystal and the orthogonality of the WF's
imply that

(2.2)

(R,a
~

R
~

R',a)
=R5„„.+(R R', a ~R. ~O, a—) . (2.3)

To complete the proof, we note that the WF's can
be chosen to be real and to be eigenstates of the in-
version operator W:

and that

(3.5)

where
~ P) is any state in S~+S . With the use

of these relations, it is easy to show that

—g (R,a
~
[[H,r R],r R]

~
R,a)— —

R

2=yg g g [E (j)—&p(k)]
( (a,j~ r"

( p, k ))',j~ k
Jr

i
R,a) =A,

i
R,a), (2.4) (3.6)
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Ep(k) E~—(j ) & Es .

Thus,

(3.7)

—g (aj
~

r (1 P)—r
( a,j) &

J. 2M, Eg

(3.g)

Since (r —R)
~
R,a) =(1 P)r —

~
R,a), it follows

that

[I ]'&
g

(3.9)

Equation (3.9) is suggestive of an electron bound
state with binding energy Es. It is, therefore,
tempting to speculate that the existence of an ener-

gy gap implies that

where
~
aj ) is an energy eigenstate in band a with

energy E (j ). Since, by assumption, band a is
separated by a finite energy gap Es from all other
bands,

crystals happen to have coincident gaps. However,
of more interest is the case in which C, and C2 are
topologically distinct versions of otherwise identi-
cal crystals [an example of such a system is shown
schematically in Fig. 1(b)]. Therefore, we will con-
fine our discussion to the cases in which Ci and

C2 are either identical or only topologically dis-
tinct. The case of unrelated crystals can be treated

by the same techniques, but it is considerably more
complicated.

In order to determine the properties of the WF's,
it is convenient first to establish the properties of
the projection operators P . In this we reproduce
in greater generality the results of Kohn and
Onffroy. The projection operator is most con-
veniently defined in terms of an energy integral

P.= f. dEy ~y»(E E,)(y—
~

a—1

= ——Im f dE6(E), (4 1)E-i

(x ~R,a)-exp( —~x —R
~
/lo), (3.10) where

where lo ——A'/+2M, Es. We will derive a result of
this sort for a specific class of model systems in
the next section. However, a general demonstra-
tion that an energy gap implies exponential locali-
zation of the WF's has not yet been found.

IV. IMPERFECT CRYSTALS

In this section we consider a system of the type
pictured in Fig. 1 which consists of two semi-

infinite crystals, Ci and Ci, separated by a finite
"defect" region D. Crystals Ci and C2 need not be
the same, but there must be a finite energy gap in
the combined spectrum of Ci and Cz separating
the band of interest from all other bands. Such a
situation can occur accidentally if two unrelated

WZDM~A

I I

(b)
-8 -? -6 -5 -4 -3 l-2 -I 0 I ( 2 3 4 5

Cz

FIG. 1. {a) Schematic representation of the allowed

type of defects. {b) Schematic representation of a topo-
logical defect or soliton in a charge-density-wave system
with commensurability 3. The double bond represents a
region of charge buildup and the single bond a region of
charge depletion. C& and C2 are related to each other

by a one lattice constant shift of the double bond.

G(E)=(E+irI H)— (4.2)

cos(Ka) =p(E), (4.3)

where E (K)=E and p(E), considered as a func-
tion of complex E, is an entire function of E.
Equation (4.3) can be taken either to define the
multivalued function E(K), which, for real K, is
equal to E (K) [each a corresponds to a different
branch of the function E(K)] or to define the com-
plex wave number as a function of the energy
K(E). We will see that the optimal choice of lim-

its to the integral in Eq. (4.1) are the energies E~
at which dp/dE vanishes,

dp
dE E=E

(4.4)

and I ~ g) ] are a complete set of eigenvectors of
the Hamiltonian K. In a perfect crystal the exact
choice of the cutoff energies, E, is unimportant so
long as E lies in the band gap between band a
and band a+1. However, in an imperfect system
there are often localized states in the forbidden

gap. The choice of E~ then determines which lo-
calized states are to be associated with band a and
which with band a+1. As we shall see, there is a
unique optimal choice of E which makes the pro-
jection operators P as short range as possible. It
was shown in Ref. 2 that in a perfect crystal the
energy E~(K) of an electron in band a with wave
vector K satisfies the equation
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In Ref. 2, it is shown that E~, which lies in the
forbidden gap, is the value of E(K) at the branch
point, K =K, which connects the branch of E(K)
corresponding to band a with that corresponding
to band a+1. Note that since K(E) is a mul-

tivalued function of E,

K~ =g~+2nn /a+ih~, (4.5)

where g =rr/a for a even and 0 for a odd. It is
easy to show (see Appendix A and Ref. 4) that for
the perfect crystal, the behavior of the projection
operator P~ is determined by the position of the

~(c)

branch points j'~,

(x ~P' '~x'}-exp( —~ ~x —x'~ ),
where

a =min(h ~,h ) .

Here, by the expression

f(x)—exp( —ao~x
~
),

we mean that for any a & ao

lim f (x)exp(a
~

x
~

) =0 .
)x )

~co

(4.6)

(4.7)

-exp (4.8)

and that the projection operator approaches that of
the perfect crystal exponentially rapidly with dis-
tance from the defect,

The principal mathematical result of this section
(which is actually proven in Appendix A) is that
by choosing E~ according to Eq. (4.4) we ensure
that P~ is equally localized in the imperfect system
as in the crystalline system,

(x
i
P

i
x') =P (x,x')

(4.9) show that our choice of the limits of integra-
tion in defining P~ were, indeed, optimal. It
should be stressed that Eqs. (4.8) and (4.9) hold re-

gardless of the nature of the defect region. In par-
ticular, even if the electronic spectrum includes
states in the gap which are localized in a region
large compared to a ' (for instance, a state with

energy very near the band edge), the projection
operators still satisfy these equations.

From the properties of P, it is easy to derive
the properties of the WF's by perturbation theory.
Because the difference between the projection
operators in the imperfect system and crystal are
exponentially small away from the defect region,
so is the difference between the projected position

~(c )
operators R and R ' . Thus, we can construct
the WF's by perturbation theory in 5R' ' =R

~(c.)—R~ ' starting with the crystalline WF's,
(c)

~
R,a) ' as the zeroth-order wave functions. It

has been shown by Kohn' that

(c)(x ~R,a& ' -exp( —a. Ix —R
I

) . (4.11)

It follows then from Eqs. (4.8) and (4.9) that

(x
~

M J'
~
R,a) ' -exp( —a.

~

x —R
~

)

and that

(x
i

5R' '
i R,a} ' -exp( —2a

i
R

i ),

(4.12)

(4.13a)

where we take CJ =C~ for R &0 and C~ =Cz for
R & 0. Since the perturbation itself is exponentially
localized it follows to any finite order in perturba-
tion theory that

iP (x,x') P' '(x,x') i—
-exp[ —a (

]
x

[ + (

x'
( )], (4.9)

(x ~R,a}-exp( —a ~x —R
~

)

and that

(4.13b)

where P~ '(x,x') is the projection operator of the
corresponding crystal defined by the relation

(Cl)
( ~P

' ~x'} for x,x'&0
P' '(X,X') = (x ~P

' ~x' for x,x'&0

.0 otherwise .

(4.10)

It is clearly impossible for the projection opera-
tor to be more localized in the imperfect system
than in the perfect crystal. Thus, Eqs. (4.8) and

((x (R,a) —(x [R,a} ' )-exp( —2a (R
(

) .

(4.13c)

Like the projection operator itself, the WF's in the
imperfect solid are exponentially localized with the
same fall-off distance ~ ', as in the appropriate
perfect crystal, and they approach the WF's of the
perfect crystal exponentially fast away from the
defect.

V. APPLICATION TO FRACTIONAL CHARGE

There has recently been considerable interest in
the observation that the soliton excitations in com-
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mensurate charge-density-wave systems can have
fractional expectation value of the charge associat-
ed with them. The question naturally arises:
What is the meaning of this fractional charge? Is
it a sharp quantum observable? After all, fraction-
al expectation value of the charge shows up all the
time in quantum mechanical systems such as, for
example, the H2+ molecule where each hydrogen

1
has an average of —, electron in the ground state.
However, this is not a particularly interesting type
of fractional charge; any experiment that measures
the charge on one H atom will find charge equal to
+ 1 half the time and charge equal to 0 the other

half. In other words, the charge fluctuations

[~g]=((g') —
& Q )')'"=—,

'
(5.1)

are the same magnitude as the charge itself

(g&=-,' . (5.2)

PERFECT CRYSTAL

~D-
A A A A A

CRYSTAL WITH SOLITON
(b)

A A — R A
FIG. 2. Schematic representation of the lattice and

the valence-band WF's of a CDW with commensurabili-
ty 2. The double bonds represent regions of charge ac-
cumulation. The WF's in the perfect crystal are sym-
metric (bonding) about the bond centers.

In this section we will consider the WF's of a
commensurate charge-density-wave (CDW) system
in the presence of a soliton. As shown schemati-
cally in Fig. 2 for the case of commensurability 2,
the soliton is a domain wall between regions of two
different, energetically equivalent ground-state con-
figurations of the CDW. The WF's for the valence
band are also shown schematically in the same fig-
ure.

There are two technicalities involved in applying
the analysis of the preceding section to the present
system. The first is that, although the one-electron
problem should properly be expressed in terms of
the Schrodinger equation [Eq. (3.1)], the most po-
pular models, for instance the Su, Schrieffer, and
Huger (SSH) model that we will consider explicit-
ly in Appendix B, are tight-binding models. Thus,
the analytic structure of E(E) is somewhat dif-
ferent in the model systems than in the case we
have considered. Nonetheless, in Appendix 8, we
show that the analytic structure E(E) in the tight-
binding model is sufficiently similar to the

where P(x) is the charge-density operator,
(c

i p(x) i
c) is the expectation value of the

charge-density operator in the perfect crystalline
(soliton-free) case, and f(x) is a slowly varying en-

velope function of much larger spatial extent than
the soliton. It has been shown previously that the
expectation value of the charge that should be as-
sociated with the soliton is

Q=e[(N/M)+n] .

N is the number of allowed spin polarizations, M
is the order of commensurability, and n is a small
integer. Thus, the charge associated with the soli-
ton in Fig. 2 is —,e for spinless electrons (N =1).
In the language of WF's, it is apparent from the
figure that, whereas in the perfect crystal there is
one WF associated with every two sites in the pres-
ence of the soliton, one site has no WF associated
with it. Since the WF's approach those of the
crystal exponentially fast and are themselves ex-
ponentially localized, it is clear that

(s
i Q, is) =Ng (R,vb

I g, IR,vb)

=(e/M)m+O(e " ), (5.4)

itinerant case that all the same theorems stated in
Sec. IV hold for the tight-binding model as well.
The second point is that a rather interesting ambi-

guity can arise for the special case of commensura-
bility 2 in defining the spaces S„b and S,b, corre-
sponding to the valence and conduction bands,
respectively. So long as the model has charge con-
jugation symmetry (as, for instance, the SSH
model), there will always be a bound state at exact-
ly midgap associated with the soliton. The same
symmetry implies that the cutoff energy E,
separating the valence-band states from the
conduction-band states, lies at exactly midgap [see
Eq. (4.1)]. Thus, it is ambiguous whether this
bound state should be associated with the valence
band or the conduction band. Hence, rather than
arbitrarily associate it with either band, we have
kept it separate, defining it to constitute a one-state

midgap band So. For this reason there is no
valence band WF associated with atom 0 in Fig. 2.

We are interested in the ground-state properties
of the system, that is the state in which all the
states in S„b are occupied and all other states are
empty. Equivalently, this is the state in which all
the valence band WF's,

i
R,vb), are occupied.

Following Ref. 8, we define an operator Q, which
measures the charge of the soliton

Q, = I dx f(x)[P(x) (c iP(x) ic—)], (5.3)
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where
~

s ) is the electronic ground state of the
soliton-bearing system, ~ ' is the decay length of
the WF's, and L is the spatial extent of the en-

velope function f(x). (In Appendix B the WF,
and in particular a, are calculated explicitly for the

SSH model with commensurability 2.)
Now, we wish to calculate the charge fluctua-

tions in the presence of the soliton 5Q to determine
whether the fractional charge is meaningful. We
define the charge fluctuations in the usual way,

[5Q]'= &s
I [Q,]' I

s &
—(s

I Q, i
s)'

=N g (R,vb
~ Q, [1—P„b]Q, ~

R,vb)
R

=N g J dx dx'f (x)f(x')ptt(x —R)pg(x' —R)[5(x x') —P„b(x—,x')],
R

where (x
~
R,vb) =Pz(x —R). Note that there is no contribution to 5Q from regions in which f(x) is a

constant since

J dx P~(x —R)[5(x —x') —P„b(x',x)]=0 .

(5.5)

(5.6)

To best illustrate the behavior of 5Q, we will consider an envelope function which is constant over a re-

gion of width 2L about the soliton, f(x)= 1 for
~

x
~

&L, and then drops to zero over a region of width l.
5Q can be expandtxl in powers of df (x)Idx to yield the expression

[5Q] =N e g [[f'(R)] a A)(+ 2
f"(R)f'(R)a. Ag)+. . .

]
R

=N e [A 8(a'a) '(tel) '+0((al) )], (5.7)

where a is a lattice constant and A„and B are the pure numbers

A„~ = J dx dx'[a(x —R)]"[~(x'—R)] ((}~(x—R)gx(x' —R)[5(x x') P„b(x—,x')]— (5.8)

and

a= —' g[f(R)]'. (5.9)

Since Pz(x —R) is localized in a region of width
' about x =R, A„ is of the order 1 and like-

wise, since f'(R) is nonzero only in a region of
width l, B is also of order 1.

We have thus shown that if f(x) is a sufficiently
slowly varying function of x, [5Q] tends to zero,

[5Q] -(~l) '. Since charge is typically defined
only in the long-wavelength limit, this shows that
the fractional charge is in fact a sharp quantum
observable. However, we expect a stronger result
to hold, since the disturbance in the electronic
structure due to the presence of the soliton decays
exponentially with distance from the soliton. We
would expect the portion of the charge fluctuations
that are due to the presence of the soliton to be ex-
ponentially small. Thus, we are led to examine the
dependence of [5Q] on L, [5Q]~. Since the con-
tributions to the integrals in Eq. (5.5) come only
from the regions in which f(x) is varying, it is
clear that for L( )L2))sc

[5QQ, ,
—[5Q]t.,-e

All but an exponentially small portion of the
charge fluctuations have nothing to do with the
soliton. They are the charge fluctuations associat-
ed with a finite gap semiconductor. The ease with
which we established these results demonstrates the
usefulness of WF's as a conceptual tool.

Note added in proof The proof o. f the sharpness
of the fractional charge in Ref. 8 has recently been

extended to include a general commensurability m

continuum model by Y. Frishman and B. Horovitz
(unpublished).
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APPENDIX A: THE PROPERTIES
OF P (x,x')

In this appendix we will show that for any one-
dimensional system with a defect (topological or
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not), such as that shown in Fig. 1(a), the projection
operator onto band a satisfies Eqs. (4.8) and (4.9).
The proof is in three parts.

The first step is to show that the Green's func-
tion of the imperfect system [see Eq. (4.2)] can be
expressed in terms of the Green's function of the
crystal according to the expression

6»» (E)= (x
i
6(E)

i
x')

= G„','(E}

+ f. dx) f», ~DdxzG», »', «)
X T, „(E)6„"',(E),

where

(Al)

(x ) (E+ig H' )
'—

~

x')
for x,x' &0

6(c) E (C2)' (x )) (E+i i) H' ) —'
~

x')
for x,x'&0

0 otherwise.

(A2)

The T matrix is an analytic function of E in the
upper-half E plane, and the xi and xp lntegrals are
confined to the defect region [D in Fig. 1(a)].
Equation (Al) defines the usual T matrix of
scattering theory if D is a nontopological defect.

That Eq. (Al) applies to the case of a topologi-
cal defect is easily shown. First we consider the
Green's function for a system that consists of per-
fect crystal Ci for x &0 and C2 for x & 0, with an
infinite barrier between them. The Green's func-
tion 6 for this system can easily be shown to be

G~ (E)= G~'(E)

-exp( —«)x —x'~ ) . (A4)

To do this, consider the E integral. Since both G
and f are analytic in the upper half plane we can
deform the contour of integration as shown in Fig.
3(a) so that

E )+i oo

I»» = f«dE6 ~'(E)f(E)
E +i co—f 6' '(E)f(E) .

Thus, we are interested in the behavior of 6' ' for
argument E~+ie. Let y~«(x)e' be the Bloch
state with energy eigenvalue E (K) [p « is a
periodic function qr «(x) =p~«(x+a)]. Kohn)
has shown that as a function of complex E, there
exists a function tp«(x) which is a multivalued
function of I(. such that for real E, tp«(x)
=+p~«(x). y«(x) has a similar analytic structure
as E(«); it has branch points at the points I(. =E
defined in Eq. (4.5}, and is analytic everywhere

else. The only difference is that where E(E) has
first-order branch points, (p«(x) has third-order
branch points. With this in mind, it is easy to see

that

(A5)

Ea

(b)

follows from the fact the retarded Green's function
6 is analytic in the upper half plane.

The second part of the proof is to show that if
f(E) is any function which is analytic in the upper
half plane (and does not blow up as E~ ao ), then

I~= f G~'(E)f(E)dE

6(c)(E)[6( )(E)]—16( )(E)

(A3) a»l

where G~ =0 if x & 0 and x' &0 or if x &0 and
x'& 0. Now, the difference between the artificial
system and the system with the desired topological
defect D can be treated as a scattering potential
with the result that 6(E) can be expressed as in
Eq. (Al) in terms of 6 (instead of G' ') and an ef-
fective T matrix T (instead of T). However, with
the aid of Eq. (A3), an expression for 6 in terms
of 6(c) of the form of Eq. (Al) can be obtained.
That T(E) is analytic in the upper half E plane

(c)

a=c b a»v b a=c b a=v b

FIG. 3. Contours of integration in the complex E
and E planes.
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~«dK y*«(x)y «( x')exp[iK(x —x')]

dK p«(x)qr«(x')exp[iK (x —x') ]
c 2n Ep+ie E—(K)

(A6}

(A7)

where the contour of integration is shown in Fig. 3(b). Note that y„(x) and E(K) have values y «(x) and
E (K) along the segment of the real K axis labeled a. The portion of the integral around the branch cuts
cancel due to the K~ —K symmetry (ensured by Kramer's theorem). This integral can be evaluated simply

by closing the contour at 00. The result is

G' '(Eti+is)=i exp[igti(x x—') «t—t(e)
I
x —x'

I ]qr. . .(x)y«~z +,,~(x')P, (AS)

xexp[ —«N(e)
I
x —x'

I ], (A9)

where a again represents unimportant factors that
are periodic in x and x'. From Eq. (A5) is is clear
that

I -exp( —« Ix —x'I} (Alo)

where « is defined in Eq. (4.5).
The final step in the proof consists of joining the

two previous pieces. Since
E

I' (xx') = J dE G~ (E), (Al 1)
Ea-i

it is clear that from Eqs. (Al) and (A4) that

(»') —~'"(xx')-exp( —&
I
x

I

—&
I

x'
I

)

Equations (4.8) and (4.9) follow directly from this.
One final remark concerns the projection opera-

tors in tight-binding models. The analytic struc-
ture of E(K) and p«(n) is somewhat different for
a tight-binding model than for the Schrodinger
equation. For example, there are only a finite
number of bands, not an infinite number as in Fig.
3(b). Thus, a different contour of integration must
be employed than the one in Fig. 3(b). Nonethe-
less, the analytic structure of E (K) for the various
m-merized versions of the SSH model is quite

where K(E) is defined in Eq. (4.3), i«ti(e)
K(Eti+—ie) gp, an—d gtt is defined in Eq. (4.5).

The terms represented schematically by ~ are
slowly varying functions of E and are independent
of x and x'. Note that «ti(0) =tati [defined in Eq.
(4.5)], and that «ti(e) is a monotonically increasing
function of e. Substituting this expression into Eq.
(A5) we obtain

I~.= de/ f(E~ i+is)
0

xexp[ —a. ,(e)
I
x —x'

I ]

E +is

similar to that of the Schrodinger equation. In
particular, there are a series of branch points in
complex K space which connect band u to band
a+1. For instance, in the dimerized SSH model
(discussed in Appendix 8), there are two bands
with energies

E+(K)/2to=+[cos (Ka)+y sin (Ka)]'~

K=(nm/a)+m. /a+(i. /a)tanh '(y) . (A13)

The appropriate K-space contour of integration to
use to evaluate the projection operator for this
model is shown in Fig. 3(c).

APPENDIX B: WF IN THE SSH MODEL
FOR M =2

In this section, as an example of WF's in a
tight-binding model, we derive the WF, for the
dimerized SSH model

H = —Q [to+( —1)"b,o/2](C„C„+i+ H.c. ) .

(B1)

This is instructive since the simplicity of Eq. (Bl)
allows us to construct the %F's explicitly. The di-
merization doubles the unit cell, so we define a
new Bravais lattice

R„=(2n + —,)a, (B2)

where a is the original lattice constant. The lattice
sites thus lie at the middle of the short bonds as
shown in Fig. 2(a}. There are two WF's associated
with each site, the valence band WF, (n

I
R, + )

=y+(na —R), which has bonding symmetry and
the conduction band WF, q (na —R), which has
antibonding symmetry:

(A12)

Clearly the branch points for this model occur at
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y+(na —R) =+q(R —na) . (B3)

To construct these WF's we first must find the
eigenstates of H, ~», +), with the energy

E+(K)=+Q[2tocos(»a)] + [rosin(»a)]

1
y+(na R—)=—g exp[ —»(na R—)+a„]

K

X&n ~», +), (B4)

This is easily done as in SSH. We then take the
linear combination

where a„ is a phase factor that we Choose to satisfy
Eq. (B3). The resulting expression for q is

' 1/4

f d»;„~ cos(»)+iy sin(») Z 2e lKlM or Z=2n ——,—~» 2n cos(») iy —sin(»)
q&+(na) = '

1/4
d»;~qg cos(» ) iy s—in(» )

—~» 2m cos(»)+iy sin(»)
for Z=2n+ —,

(B5)

where y =(bol2to) The b.ranch points in the» plane which determine the asymptotic properties of q occur
at »= , n(2n—+1)+isowhere the inverse decay length Eo is defined by

Eo ——tanh '(y) . (B6)

Notice that Eo vanishes as the gap goes to zero. Thus, after some manipulations in the complex plane, p
can be written in a form which makes its asymptotic properties apparent:

v2
q+(za)= ( —1)"X '

2'

1/4

f sinh(»)+y cosh(»)dec for Z =2n ——,
»o sinh(» ) —y cosh(» )

' 1/4

(+1) d»e i'i", for Z =2n+ —,
&o sinh(»)+y cosh(»)

(B7)

or, at large distances,

—Ko~z~v2 neq+(za) = ( —1)"2nfz .
/

( ——,)!(y ~z
~

)'~ for Z=2n ——,

( —,)!(y ~z
~

)'~ for Z=2n+ —,'. (BS)
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