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Thermalization and diffusion of positrons in solids
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Trapping of thermalized positrons in solids of temperature T by sinks, such as surfaces,
vacancies, or voids, can change the mean kinetic positron energy E+ in the medium so

that (E+ —3k&T/2) &0. The phenomenon of positron heating {p ) or cooling ( & ) of the

positron ensemble in a medium with absorbing boundaries arises when microscopic pro-
cesses of positron scattering and transitions into sink states depend on the positron
momentum in the thermal distribution. Positron heating and cooling always reduces the
positron trapping rate at sinks, the more so the smaller the volume between absorbing
boundaries. The influence of the initial distribution of kinetic positron energies on posi-
tron trapping is investigated, and implications for the study of defects in solids with posi-
trons are analyzed.

INTRODUCTION

When positrons from a radioactive source or a
beam source enter a solid, they thermalize in times
short compared to their mean lifetime with respect
to annihilation with electrons into two 0.511-MeV

y rays. ' Through many tries with single posi-
trons iri a given experiment, positrons ergotically
form a statistical ensemble of noninteracting parti-
cles. In this sense, positrons at the time of annihi-
lation have a Boltzmann distribution exp( —u),
where u =E/kz T is the kinetic positron energy E
in terms of the Boltzmann constant kz and the
temperature T of the medium. ' The mean value
of u is then (u ) T E+ Ik& T= —,——.

The Boltzmann distribution is perturbed if posi-
trons disappear from the volume through trapping
at sinks. Surfaces, defects, or impurities can act
as positron absorbers. ' The mean value of the
perturbed distribution E+, corresponding to an ef-

fective positron temperature T+ =2E+ /3k&, is

higher or lower than T depending on the velocity

dependence of the disappearance rate from the

medium. The disappearance rate from the positron
ensemble-to sinks is reduced irrespective of wheth-

er the microscopic processes leading to trapping
cause positron heating (T+ ~ T) or cooling

(T+ & T) in the medium.

The treatment of the phenomena of positron
heating and cooling is couched in different terms,
but with similar consequences, depending on
whether positron trapping proceeds in the diffusion

regime or the propagation regime. ' The trapping
rate in the former is limited by the diffusion of
particles to the boundaries, whereas in the latter
the trapping rate is determined by the matrix ele-
ment for the transition from an extended thermal
positron state in the medium to a localized state in

the sink. In general, the trapping rate in either re-

gime depends on the positron momentum. Posi-
trons with the highest trapping rate disappear first
from the ensemble, and the mean kinetic energy

E+ of the remaining positrons differs from

3k& T/2, giving rise to positron heating or cooling,
i.e., (E+ —3k~ T/2)+0. The interpretation of the

rate-determining processes in the diffusion or prop-
agation regimes differ in important ways. ' ' Still,
the symptoms of positron heating and cooling in

reducing the mean rates of positron disappearance
from finite media and their influence on detectable
annihilation parameters are the same. We find it
convenient in the following to give our presenta-
tion in the language of diffusion theory. When
cast in the language of transition probabilities, the
results are similar. We address here the question
as to the dependence of positron heating and cool-
ing on the initial distribution of positron energies
and its observable manifestations. Section I sets
the stage by reviewing the slowing-down processes
for positrons. The thermalization process is de-

lineated in Sec. II, and the influence of positron
heating and cooling on positron lifetime spectra is
derived in Sec. III. The results are discussed in

Sec. IV in terms of their impact for positron an-

nihilation studies of real solids.
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I. POSITRON STOPPING TIMES
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Positron slowing-down times owing to electronic
processes have been calculated in various approxi-
mations. We find it convenient to consider S, in
two energy ranges relative to the maximum of S,
at E=Em». The stopping power in the range
Em,„&E&E,is given by the Bethe(8) theory with
corrections for the Bhabha positron-electron cross
sections and for relativistic effects. ' As given in
Ref. 4, the stopping times in this energy range can
be estimated accurately with the formula

In most experiments, positrons are implanted
with an exponential depth profile into a material
from a radioactive source with kinetic energies

ranging up to a maximum source energy E, that is
typically of the order of 1MeV. ' Positrons slow
down mainly by two mechanisms. The electronic
stopping power S, of the medium is due to ioniza-

tion and excitation of electrons in the medium. It
is shown for aluminum in Fig. 1 as the solid curve.
At epithermal energies below some critical value

E„phonons absorb most of the energy. This can
be expressed through a phonon stopping power S„h
of the medium. It is indicated as a line of dashes
in Fig. 1. In the continuous slowing-down approx-
imation, the time t for a particle of mass m to lose

energy in a medium of stopping power S from an

initial value E; to a final value Ef is given by

and Eq. (1) yields

105 ~F 186.5
2 2 28a Ef Qpf r

(4)

expressed in psec, where we have introduced

Qpf=Ef/kgTp at Tp=—316 K so that
ks To 1.00)& 10—— (a.u. ) =0.0272 eV and

EF 1.84r, ——(a.u. ) in terms of the one-electron ra-
dius r, (a.u. ) defined as (4m. /3)r, (pao) = 1, p being
the effective conduction-electron density and

ao ——fP/me =0.529 A. For epithermal energies

Ef of interest here, tz is always &ts. Values of r,
are collated in Table I. We take tz to represent
the electronic stopping time for positrons in the
medium.

We note in passing that if positron-phonon in-

teractions were to be unimportant, i.e., if one can
set uof= 1, Eq. (4) simplifies to

186.5

in units of psec, where the density d of the medi-
um is given in units g/cm; mc =0.511MeV and

1 psec=10 ' sec. Since E;/mc &E, /mc -1, we
find that ts &3 psec in Al and ts & 1 psec in met-
als like Mo, Pb, and Au.

The slowing-down time tz, in the low-energy
range E &EF-E,„can be calculated in terms of
the electron-gas theory of conduction electrons
with Fermi energy Er. Following Ritchie (R), S,
for E &EF is given by

m 2 E
' 3/2

105 A m E

ts=7.7d '(E;/mc )'2 (2)
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FIG. 1. Stopping of positrons in aluminum. Solid curve: electronic processes from Refs. 3, 4, and 14. Curve of
dashes: phonon processes according to Eq. (6). At positron energies below E„phonon processes dominate. The arrow
at kg To refers to energies at TO=316 K.
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TABLE I. Critical positron energies E„Eq. (7), below which thermalization occurs by phonon scattering. Listed are
the density d, the one-electron radius r, of the conduction electrons in units of ap, E„and the reduced energy parame-
ter Qp, =E /kg Tp=E, (10 ' a.u.), where Tp ——316 K and k&Tp ——27.2X10 ' eV. The E, and up, values are calculated
for the deformation potential W =bEp with b=0.575; Since b falls in the range —&b & —,this introduces an uncer-
tainty of +50% in up„as indicated by the horizontal bars in Fig. 3.

d
Solid (g/cm3)

E,
(eV) up, ——E, (10 a.u. ) Solid

d
(g/cm ) rs

E
(eV) pp, ——E, (10 a.u. )

Ag
Al
As
Au
B

10.5
2.7
5.73

19.3
2.34

1.53
2.12
1.76
1.49
1.83

0.22
0.14
0.18
0.16
0.29

8.0
5.3
6.8
5.9

10.6

Li
Mg
Mo
Mn
Na

0.53
1,74

10.2
7.2
0.97

3.21
2.70
1.53
1.71
4.24

0.08
0.07
0.22
0.18
0.02

3.0
2.7
8.1

6.6
0.7

Ba
Be
Bi
C
Ca

3.51
1.85
9.80
2.0
1.54

3.74
1.78
2.17
1.66
3.06

0.01
0.38
0.06
0.47
0.05

0.5
13.9
2.1

17.4
1.8

Ni
Pb
Pd
Pt
P
Sb

8.9
11.3
12.0
21.4

1.53
6.68

1.80
2.26
1.51
1.55
5.45
2.06

0.13
0.04
0.21
0.13
0.01
0.09

4.6
1.6
7.7
47
0.2
3.3

Cd
Co
Cr
Cs
CQ

Fe
Ga
Ge
In
K

8.64
8.9
7.2
1.87
8.92

7.86
5.9
5.35
7.30
0.86

2.13
1.91
1.55
5.88
1.83

2.07
2.26
2.02
2.59
3.6

0.07
0.10
0.26
0.003
0.12

0.08
0.07
0.11
0.03
0.04

2.4
3.7
9.7
0.1

4.3

2.9
2.5
4.1

1.2
1.4

Se
Si
Sn
Sr
Ta

Te
T1
Tl
V
W
Zm
Z1

4.79
2.33
5.75
2.54

16.6

6.25
4.5

11.9
5.96

19.4
7.14
6.49

1.84
1.97
2.23
3.32
1.71

1.91
1.93
2.89
1.68
1.55
1.97
1.88

0.18
0.21
0.07
0.02
0.10

0.12
0.15
0.02
0.22
0.14
0.10
0.13

6.4
7.9
2.6
0.9
3.8

4.6
5.5
0.6
8.0
5.0
3.8
4.8

D. Isaacson, Table of r, values, New York University Radiation and Solid State Laboratory Report, 1972 (unpub-
lished).

(6)

in terms of the lattice deformation potential W. In

still in units of psec. This formula is in excellent
agreement with the numerical results calculated in
many-body perturbation theory and displayed by
Carbotte and collaborators. We estimate that only
in a few elements (Ba,Cs,Na, Rb,Sr,Tl; cf. Table I)
does electronic stopping dominate the thermaliza-
tion process all the way down to room tempera-
ture.

Usually, then, as positron energies approach
—,AT, phonon processes dominate the energy loss,
with a stopping power given by

ZmWE
A4d

metals, one may set W=bE+, where —, (b (—,.' '
The electronic stopping power falls below the pho-
non stopping power at energies E (E, where the
critical energy E, is at the demarkation Sph Sp
(cf. Fig. 1). In terms of Eqs. (3) and (6), we obtain

E3/2 ]05b 2 ~~2 EF
2' "H fi'

For definiteness we set b =0.575 and find for
uo, ==E,jks To the values 5.3 (for AI), 5.9 (Au), 8.1

(Mo), and 1.6 (Pb). Other values are given in
Table I.

We insert Eq. (6) into Eq. (1) and integrate over
the interval (E, —3k& T/2) & 0 with the result
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4d
P 31/2m 5/2b 2~2(k Z. )1/2

3k~ T
2Ec

If also D, and yE are constants and related as
D„=(kRT/m )yE, the solution of Eq. (10) for a
particle of initial velocity v; is '

Comparison of the phonon thermalization time
with the electronic stopping time tR [from Eq. (4)
with Ef=E,],

1/2

tph
——4 ( —,up, )'/ —1 tR,T

shows that for most metals listed in Table I the
phonon thermalization times are larger than the
electronic stopping time and decrease slowly with
increasing temperature of the medium.

In summary, we estimate the total stopping
time,

ts =4+4+trh
in terms of Eqs. (2), (4), and (8) at room tempera-
ture to be 13 psec in Al and 45 psec in Pb. More
detailed treatments do not change these results
significantly with regard to the present context.
The stopping times are short compared to the an-

nihilation time in metals, -200 psec. ' ' We
find them to be comparable to the thermal relaxa-
tion times symptomatic of positron heating and
cooling.

f(v, t;v;)=
2m.k~ T 2y~t

(1—e )
m

' —3/2

Q exp
m v —v e —yet
2kE T(1—e )

m

2~kg T
—E/k~ T —y~te e (12)

as thermal equilibrium is reached in the limit

yEt gal. The spatial distribution spreads concom-
mitantly as governed by a mean spatial diffusion
coefficient D, from 5(r —r;) at the initial site r; to

(4 D )
3/2 —

~

r —r,. ~
/4Dr

(13)

The thermal history of a positron is uncertain at
least to the extent that 5v;5r; )A'/m in compli-
ance with the Heisenberg relation. That is, Eqs.
(11) and (13) describe positrons only for times

(11)
From the initial distribution f~5(v v; ) whe—n

yEt « 1, Eq. (11) approaches the Boltzmann distri-
bution

3/2

II. THERMAL RELAXATION t )A/(4DyEmkE T)'/ —1 . (14)

The results of the preceding section suggest the
following picture. Positrons in penetrating into a
metal slow down very rapidly, in tens of pi-
coseconds or less, to energies E comparable to E,
far below the Fermi energy EF of the conduction
electrons. From then on, positron-phonon interac-
tion controls the final thermalization process.
Under laboratory conditions, there is never more
than one positron present in the medium. Positron
behavior is described in the ergodic sense by a
time-dependent distribution function f of nonin-
teracting particles in velocity and space. The ap-
proach to thermal equilibrium is then prescribed
by the Fokker-Planck equation that we can write
in the form

expressed in psec. Epithermal positron wave pack-
ets begin to evolve in times comparable to electron-
ic stopping times, Eq. (4), and the thermal history
is largely unaffected by the way in which positrons
arrive at the initial epithermal phase-space point
(r;, v;) with energy F. &F,

When absorbing boundaries impose conditions
on the distribution function f and the spatial dif-
fusion coefficient D depends on the positron veloci-

ty v, Eq. (10) has to be modified. The Boltzmann
equation for the isotropic part fp of the velocity
distribution, in terms of the energy variable
u =E/kz T, becomes

y. 5 „, . af,+yRfo=, /2
u cp' fo+Bt BQ

Qf
+yRf =V-„(D„V-, f +yE vf), (10)

where v is the velocity of a positron of energy
E=—,mu &E„D„the diffusion constant in veloci-

ty space, and yE the thermalization rate. The posi-
tron annihilation rate yz in the metal bulk in this
energy range is known to be independent of E.

+YE g Vpfp

The first term on the right-hand side of Eq. (15)
corresponds to Eq. (10). The second term describes
the spatial behavior of fp as a function of the re-
duced space variable p = r/AE, where AE is the
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thermalization length related to the thermal relaxa-
tion rate yE or to the thermal relaxation time
1F=7g as AF. (2=Dr~)' . The velocity-
dependent spatial diffusion coefficient has the
form

To begin with, we describe the thermalization of
positrons in an infinite medium. The last term in

Eq. (15) and q in Eq. (18) vanish and, setting
R„(p)

~ „~——1, Eq. (17) becomes

U2
&(U)=——

3 N

in terms of the positron-phonon scattering frequen-
cy co. Equation (15) contains the reduced scatter-
ing frequency co*=co/coo in terms of the frequency
mo at E=k&T or u =1.

The general solution of Eq. (15) can be expanded
in the form

fp e——' g A(Fr(u)e
(=1

Specifically for n= —1, we have

F =u ' "H (u' )g=Q e 2g ~
Ll

with the thermalization rates

a.
g
——(g —1)yE,

(19)

(20)

(21)

fp
e~ Q——A„(R„(p)F„((u)e

vg
(17)

where H is the Hermite polynomial of order m.
If the positrons have an initial distribution g(u, u, )

with regard to the characteristic value

The coefficients A ~ are fixed by the initial condi-
tions. The function R„(p) is the vth eigenfunction
of the equation

u~ =E jkgT =up~(Tp/T)

where uo, is listed in Table I and To ——316 K, then

V-R(p)= —q R(p) . (18) fp ~ ~ p= QAgF~(u )=g(u, u, )

It imposes spatial boundary conditions on fp. In
particular, one has fp ——0 at positron-absorbing
walls. This sharp boundary may not be fulfilled
near vacancies and could lead to an overestimate of
the diffusion heating or cooling effect. To each
R„(p ), v = 1,2, . . . , belongs an eigenvalue q,
which appears in the rate x, ~ and in the function
F,r(u ) which determines the energy distribution of
the positrons in the presence of absorbing walls.
The general form of F„~(u) is given in Eq. (19) of
Ref. 9.

The functions R and I"„~ were analyzed for
models of m* by setting co* =u '+, where 0. is a
parameter that depends on the scattering process in
an average way and is assumed here to be indepen-
dent of u. Scattering such that n &0 results in
diffusion heating (E+ y —,k&T), and a &0 in dif-
fusion cooling (E+ & —,k&T). Only for a =0 is

Eq. (12) the exact solution of Eq. (15) and

E+ ———,k&T, irrespective of constraints. As sum-

marized in Table I of Ref. 9, a varies from o. —1

for positron-electron scattering to a ———for
2

positron-phonon scattering and a ———, for
positron-defect scattering. In the following, we
emphasize the model a = —1, because it falls
within the range of a values of interest for epither-
mal processes, namely positron-phonon (a = ——,),
positron-impurity (a = —1), and positron-defect
(a = ——, ) scattering. For this value of a, more-

over, the Boltzmann equation can be solved exact-
ly.

with the normalization condition

OO

„,I g(u, u, )u'"du=1. (23)

The coefficients are given by the orthogonality re-
lations of Hermite polynomials as

A =[2 ~ '(2g —1)im' )

X I H2~ ~(u' )g(u u )du . (24)

1

Noting that H~(x)=2x, we find that A& ———, in-

dependent of g(u, u, ), and Eq. (19) becomes

fpe e "[1+A2u ' H3(u' )e

+A3u ' H5(u' )e + . . ]

(25)

Equation (25) describes the fact that at r =0 exact-
ly one positron resides in the intial velocity distri-
bution, according to Eqs. (22) and (23), and that fp

in an infinite medium always tends to the
Boltzmann distribution exp( —u) in times larger
than rE=yE .

In restricted media, q & 0 in Eq. (18), the ther-
malization Process changes and fp in general aP-
proaches Eq. (17), and not the distribution exp( —u)
with mean value ( u )r ———, . Positron heating and
cooling imparts deviations from this value that
grow, through q of Eq. (18), with the spatial con-
straints imposed on the medium by positron sinks.
Inasmuch as positrons trapped in sinks annihilate
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in discernibly different ways from positrons that
annihilate in the bulk of the medium, annihilation
measurements are affected by positron diffusion
heating and cooling. In the following we discuss
as an example the extent to which such effects re-
veal something about the initial positron distribu-
tion in positron lifetime spectra.

III. POSITRON LIFETIME SPECTRA

Positrons in a homogeneous medium have only

one annihilation rate y~. It is given by the overlap

between the extended positron wave function and

the electron wave function of the medium. It is

independent of u at epithermal energies. Integra-

tion of Eq. (25) yields the probability ptt(t) that the

positrons survive in the bulk at time t,

pe(t)=, , J u' 'fo(u, t)du =e . (26)

Great care has been given over the years to the

preparation of samples so uniform that the mea-

sured positron annihilation probabilities can be
described by Eq. (26) and positron lifetimes ye
can be extracted that are basic material con-

stants. ' ' *'

The interest in media with positron traps arises

from the fact that positrons have proven to be very

sensitive probes for the exploration of surfaces and

defects of solids. The positron lifetime spectrum
reflects alternate modes of annihilation in traps.
As we pointed out recently, the trapping process
affects the energy distribution in the bulk in such a
manner that the rate of diffusion to the traps be-

comes smaller the smaller the solid or the larger
the trap concentration.

We wish to study the effect of the initial distri-

bution g(u, u, ) on this phenomenon, and chose the
useful example of a= —1 and spherical traps (va-

cancies or voids) of radius rv. We assume that the

traps are uniformly distributed throughout the
medium. Each is placed in the center of a
Wigner-Seitz sphere of radius Rq, at low trap den-

sity 3/4mRr such that Rr &&rr. Equation (18)
has the solution

space and obtain

fo(u, t) =e g AtF~(u )e (29)

This has the same appearance as Eq. (19) except
that now

F~(u) =u ' e "' +' 'H2~ i [(2Pu )' ]

(30)

1 3
g= [(20 , )P ——,]yE—,—

where

(31)

P(q) = (q'+ —, )'/' . — (32)

pI3(t) =e g n~(q)e
(=1

(33)

where n~(q) =—A~(q)Pg(q) depends on u, and on q
through p(q) as

(2P)1/22 —2g

X J e
—'t' —'/2'"H2g )[(2Pu)' ]g(u, u, )du

(34)

and

00

(2g —1)! 2P—1
'g —1

(g—1)! 2P+1
23 I /2

(2P+ 1)
(35)

The total lifetime spectrum of positrons in the
bulk (B) and trapped by the absorbing walls (W)
becomes, with

For q =0 (no boundaries) and thus p= —,, we re-
trieve Eq. (25) and the bulk lifetime spectrum
equation (26).

The lifetime spectrum due to annihilation in the
bulk in the presence of sinks follows from integra-
tion of Eq. (29),

R(p) =(qp) 'sin(qp —P), (27) pe(0)= g ng(q)=l,
/=1

1/2
3rv AEq=
Ry Rp

Since the experiment does not view the space
dependence of fo, we integrate Eq. (17) over all

(2g)

where P=qrz/AF. The first eigenvalue of interest
here is

a'g/(ye+ay —yg——) . (37)

P(t) =PJ3(t)+P~(t)

= g [ng(1 —C&g)e
~ & +(y e ~]

(36)
where
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Similarly, the fractions Ftt and Fs of all positrons
that annihilate in the bulk and the walls, respec-
tively, are given by

n, 1
——

'3
23/2p 1

/2

2P+1
(46)

00 n~
Fs ——1 Fs— ——ysps(t)dt = g(, &+~g~B

where now the subscripts on n refer to the initial
distribution.

(38)

(39)

as can be detected in angular-correlation or
Doppler-shift measurements. Up to this point, our
development is exact.

We restrict the further discussion to the first
component (=1 in Eq. (33)ff. All higher terms

decay so fast that they remain unresolved by typi-
cal instrumental resolutions of annihilation chan-

nels. That is, we write Eq. (36) in the form

p(t)=Il e ' +I,e

2. Uniform distribution:
' 3/2

e(u —u, ),3
g2=

4m u,

where y =[(P——,)u, ]'/ .
3. Delta distribution:

where e(x) is the step function. One obtains

3'�'/2 2P I 2
"2(q)=

4 2 erfy
uc

(47)

(48)

where the intensities

Il ——1 I2 ——n(y—s —I'2) l(l'3 —I'2)

and the disappearance rates

(40)

' 1/2
l m

g3 ——— 5(u —u, ),
2 uc

which gives

(49)

~1 gB ++~ ~2 VW (41)

are related to q and u, through n(q) —=n l (q) and

K(q)—:Kl(q).
We evaluate Eqs. (34) and (35) for (=1, and

drop the g subscript in the following, i.e., we cal-
culate

n(q)—:n l(q)
—=8 l(q, u, )Pl(q)

' 3/2
4p

2P+1
2
1/2

)& f "e 'P ' '"g(u, u, )u' du, (42)

3/2 —Q /Qc
go ——u, e

Equation (42) yields

3/2

nil(q) =
2 +1

(43)

(44)
[1+(P——, )u, ]

Note that for u, =1, Eq. (43) becomes the
Boltzmann distribution

(45)

and Eq. (44) reduces to the result given for a= —1

in Table III of Ref. 9,

for three different initial epithermal positron-
energy distributions g(u, u, ) subject to the normali-

zation condition, Eq. (23).
1. Exponential distribution:

n3(q) = 4p
1+2

' 3/2
—(,P—] /2)Q

C (50)

The differences in the relations between n and q
through p(q), Eq. (32), constitute the effect of the
initial positron distribution on positron annihila-

tion characteristics in solids with traps. In this
treatment, both n, Eq. (40), and the trapping rate
K, Eq. (41), depend on the parameter q which in-

creases with trap concentration. Figure 2 illus-

trates nl, n2, and n3 for various values of u, . The
point where n (ql/2) = —, is of particular interest,

because it can be determined with reasonable accu-
racy from experiments. For example, one can plot
the mean annihilation rate I =I1I 1+I2I 2 in the
form

YB Vw
(51)

as a function of the sample treatment that pro-
duces positron traps. Weak trapping implies n=1
and I =yB. When positron heating and cooling is
strong, one finds I & ys, and at I l/2

——(ys+ylr)/2,
conditions corresponding to q1/2 are reached. Fig-
ure 3 demonstrates that q1/2 values of typical met-
als are significantly smaller for g2 or g3 than for
g1. Ignorance of the initial epithermal distribution
limits access to accurate empirical values of v.E and
affects analysis near surfaces and at defect concen-
trations near saturation of positron trapping where
the role of divacancies, defect clusters, etc., be-
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3.5

0
O. I 0.2 0.5

FIG. 2. Relation (for the model a= —1) between n (q) extracted from data by Eqs. (39) and (51) and the parameter
q-A~/L which measures the ratio between the positron thermalization length A~ and the spacing L between

positron-absorbing walls or traps. If the initial positron distribution is the Boltzmann distribution g& (curve of dashes),
n drops to the value n (q&~2) = 2

when q&~2
——2, irrespective of u, =E,/k&'r; for the definition of E„cf.Fig. 1 and Eq.

(7). The parameter q&~2 becomes smaller than 2 with increasing u, if the initial distribution resembles a uniform distri-
bution g2 (solid curves) or a distribution g3 that is peaked near E, (curves of dashes and dots).

comes interesting. It is important, moreover, to
ascertain whether the experiment can provide in-

formation about g(u, u, ) itself.

4iig

I I

AIAU Mp

0.5

0.2

O. I

I 2 5 IO

uc. &C«a
20

FIG. 3. Determination of q&&2 from experiment, e.g. ,
via Eq. (51) and Fig. 2, combined with the u, values of
solids (Table I) can give information about the initial
positron energy distribution below E,. If it is the
Boltzmann distribution gl, q ~~2

——2 irrespective of u„' if
it is a uniform distribution gq or a peaked distribution

g3, the q&~2 of most metals should be significantly small-
er than 2. The upper marks indicate u, values at
T=316 K (Table I). The bars indicate the uncertainty
of the choice of deformation potentials in calculating u,
values and apply to both curves marked g2 and g3.

IV. DISCUSSION

The previous sections have demonstrated, first of
all, that in most metals the electronic stopping of
positrons to kinetic energies E„where phonons
take over, is fast compared to epithermal processes.
This allows us to treat positrons as if their velocity
distribution in a medium of temperature T evolves

from an initial distribution g(u, u, ), at energies less

than u, =E, Ik~T, to a final distribution in times

comparable to a material-characteristic' relaxation
time rz. The final distribution is the Boltzmann
distribution exp( —u) if the medium is uniform
over distances large compared to the mean free
path for thermal relaxation A~. It is related to ~@

as Az (2Drz)' wher——e D is a positron diffusion
constant. The mean kinetic positron energy is then
—,k~T. If the medium is finite compared to A~,
positrons diffuse from the volume to the absorbing
"walls" of the medium before the Boltzmann dis-
tribution is sampled. Since this escape from the
medium occurs first for the fastest diffusing parti-
cles, the mean kinetic particle energy E+ now
differs from —,k& T. We refer to this difference as
the particle diffusion heating or cooling. The net
result is that trapping by the walls occurs accord-
ing to a mean rate that is reduced relative to the
trapping rate for the thermal Maxwell-Boltzmann
distribution, and that this reduction is stronger the
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(52)

from which we extract for a= —1 (Ref. 9, Table
III)

1 4 2 1/2
01/2 g l( 3 +1/2+E+ 1) —1] (53).

With (y~ —y~)=2 X 10 psec ' and Iz(I, —I 2)
=8X10 psec ' at T-650 K we obtain

~~~2 ——7 g 10 psec '. The "experimental" value
of q&&2 becomes q»2-0. 6. Figure 3 shows that
this is decidedly smaller than the value q»z ——2
predicted for all solids for an initial Boltzmann
distribution g&. In fact at u, (650 K Al)=2. 6 and

q&~2 ——0',6, the measurements are consistent with gz
or g3, i.e., an initial positron energy distribution
that is uniform or peaked near E,=0.14 eV.
There are theoretical arguments in favor of such
initial distributions. Analysis of data in terms of
vacancy formation enthalpies is unaffected by posi-
tron heating or cooling if the experimental condi-
tions are restricted to low vacancy concentrations
where I =yg.

smaller the medium. We would normally think,
for example, of the trapping rate by vacancies in a
metal per unit vacancy density as a constant
volume capture rate. ' Positron diffusion heating
and cooling in fact reduces the volume rate when

the sparing of the traps becomes comparable or
smaller than the material-characteristic length Az
and, thus, makes the volume rate dependent on the
vacancy concentration itself.

The crucial parameter for this effect is q which
is a measure of AE divided by the spacing between
sinks. Internal consistency requires that we deduce
the same q value for a given material from all

types of experiments. To illustrate, in Ref. 9 we
estimated from experimental data of the mean
lifetime and the mean annihilation rate in Al, at
conditions such that n = —,, the thermal relaxation
time ~E-60 psec. From the experimental quantity
I2(I'& —I 2) [Ref. 9, Table II(c)] at n = —, follows

the trapping rate

A new analysis of the data for the diffusion of
positrons in small metal grains of radius R, for
which q =~AE/R, reveals an effect of positron
heating and cooling on D =D,rrrr /Kryo which,

however, is only minor in the R range investigated.

We conclude that high concentrations of posi-
tron traps, or surfaces of small solids, can cause
positron diffusion heating or, considering the im-

portant epithermal scattering processes, more likely
diffusion cooling. Positron heating or cooling
comes about if the trapping process is velocity
dependent so that parts of the thermal positron
distribution are trapped before others. In conse-
quence, the remaining positron ensemble has a
mean kinetic energy E+ different from 3k~ T/2,
and the mean trapping rate from the volume is
then always lower than one would observe if all
positrons were to be trapped with equal probabili-
ty. The trapping-rate reduction is more pronoun-
ced the smaller the volume of the medium between
the positron-absorbing walls. Analysis of experi-
mental data reveals symptoms of positron cooling.
They permit estimates of positron thermalization
times and give indications of the initial epithermal
energy distribution of positrons in the phonon-
dominated regime from which the thermal distri-
bution evolves. We find evidence on one set of
data for Al that positrons are deposited into the
phonon-dominated energy range with a distribution
that is uniform or somewhat peaked toward the
upper limit of the phonon range. Positron heating
and cooling interferes with the linear analysis of
positron trapping by defect clusters at high defect
concentrations. It limits the defect concentrations
or the layers below surfaces where positron trap-
ping is a simple marker of bulk properties. Its
manifestations open new channels for the explora-
tion of the statistical dynamics of positrons in
matter.
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