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Recent developments have enabled pseudopotential methods to reproduce accurately the
results of all-electron calculations for the self-consistent electronic structure of atoms,
molecules, and solids. The properties of these potentials are discussed in the context of
earlier approaches, and their numerous recent successful applications are summarized.
While the generation of these pseudopotentials from all-electron atom calculations is

straightforward in principle, detailed consideration of the differences in physics of various

groups of atoms is necessary to achieve pseudopotentials with the most desirable attri-
butes. One important attribute developed here is optimum transferability to various sys-
tems. Another is the ability to be fitted with a small set of analytic functions useful with

a variety of wave-function r'epresentations. On the basis of these considerations, a con-

sistent set of pseudopotentials has been developed for the entire Periodic Table. Relativis-
tic effects are included in a way that enables the potentials to be used in nonrelativistic
formulations. The scheme used to generate the numerical potentials, the fitting pro-
cedure, and the testing of the fit are discussed. Representative examples of potentials are
shown that display attributes spanning the set. A complete tabulation of the fitted poten-
tials is given along with a guide to its use.

I. INTRODUCTION

Pseudopotentials were originally introduced to
simplify electronic structure calculations by elim-

inating the need to include atomic core states and
the strong potentials responsible for binding them.
Considerable success was achieved in describing
the band structure of semiconductors and simple
metals with the use of the empirical pseudopoten-
tial method. In this approach, the total effective
potential acting on the electrons, including
Coulomb and exchange-correlation contributions as
well as the ionic parts, was represented by just a
few terms in a Fourier expansion. The coefficients
were adjusted to agree with some experimentally
determined features of the energy bands. ' In an al-
ternative approach, a simple function representing
the ion-core potential was adjusted to fit the exper-
imental ionization potential of the hydrogenic ion.
The function typically consisted of a Coulombic
tail at large radius discontinuously changing to a
constant inside some "core radius. " These poten-
tials were then screened using a linear dielectric
function method, and gave band structures in
reasonable agreement with the empirical potentials,
provided the poorly convergent higher Fourier
components were set at zero. '

Aspects of these two approaches were combined
to deal with more complicated systems such as sur-

faces. A parametrized smooth model potential,
with the appropriate Coulomb tail and a rapidly
convergent Fourier expansion, was adjusted to fit
experimental band energies in a fully self-consistent
calculation. ' The charge density given by the
square of the pseudo-wave-functions was treated as
the real valence charge, and used directly to com-
pute the Coulomb and exchange-correlation poten-
tials (the latter within the local-density-functional

approximation ). These model potentials were then
assumed to be transferable, that is, able to accu-
rately represent the ion potential in other geome-
tries such as surfaces, where the potential cannot
be represented by a few Fourier components, and
where a self-consistent treatment of the screening
is essential. Considerable success was achieved in
describing the electronic properties of such sys-
tems, and the current work is an outgrowth of
this approach to the use of model potentials.

Paralleling the application of pseudopotentials, a
theoretical justification for their use was devel-

oped. ' This was initially based upon the
orthogonalized-plane-wave (OPW) method of band
structure. In this method, plane ~aves were com-
bined with Bloch sums of core wave functions in
such proportion that each basis function was
orthogonal to the core states. These combinations
then formed a rapidly convergent basis for the
valence wave functions. If the linear combination
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of OPW's forming a band eigenstate was taken
without including its core orthogonalization terms,
the resulting smooth wave function could be identi-
fied with the pseudo-wave-function. Phillips and
Kleinman showed that the effective potential
which has such plane-wave pseudo-wave-functions
as its eigenstates could be derived from the all-
electron potential and the core-state wave functions
and energies. Thus a nonempirical approach to
finding a pseudopotential was introduced. This
potential was nonlocal, in the sense that each
angular-momentum component of the valence
pseudo-wave-function about an atomic center felt a
different potential (arising from different core
states). Approximate self-consistent band-structure
calculations were carried out for Si and other semi-
conductors with the use of this approach.

The wave functions of Phillips-Kleinman pseu-
dopotentials have a certain problem. The norrnal-
ized pseudo-wave-function and the normalized
OPW eigenfunction have the same shape in the re-
gion of space outside the cores, but have different
amplitudes. The pseudo-wave-function is typically
smaller than the OPW because neglect of the so-
called "orthogonality hole" puts too much of its
total charge in the core region. ' This problem is
serious in the case of a self-consistent calculation,
since the incorrect distribution of valence charge
between the valence and core regions will cause er-
rors in the Coulomb potential. In principle, the
pseudo-wave-function can be orthogonalized to the
cores before the charge density is calculated, but
this cumbersome procedure obviates most of the
advantages of using a pseudopotential.

The problem of the orthogonality hole is not, in
fact, a necessary consequence of replacing an all-
electron potential by a valence pseudopotential. It
is a consequence of the Phillips-Kleinman con-
struction, but that is by no means unique. Suppose
we have a self-consistent local density calculation
for the ground state of some atom at hand. A
pseudo-wave-function for the atom need have just
two properties to be consistent with our intentions:
it should be nodeless, and it should, when normal-
ized, become identical to the true valence wave
function beyond some "core radius, "R, . Such a
function can be constructed in arbitrarily many
ways. For any particular such pseudo-wave-
function, the radial Schrodinger equation can be
inverted to yield a pseudopotential which has the
function as its eigenfunction at the correct eigen-
value. (Note that the nodeless property permits in-
version with no further constraints on the func-
tion. ) By this construction, it is clear that the

pseudopotential and full potential are identical
beyond R, . The pseudopotential inside R, correct-
ly mimics the scattering property of the full poten-
tial inside R, at the eigenvalue energy (and, of
course, for the particular angular momentum of
the wave function under discussion). We have
used the term "norm-conserving" to describe pseu-
dopotentials constructed in this fashion.

The ability of a pseudopotential to reproduce a
single atomic state alone does not make it useful.
To be useful, the core portion. of the pseudopoten-
tial must be transferable to other situations where
the external potential has changed, such as in mol-
ecules, solids, or for excited atomic configurations,
and where the eigenstates of interest are at dif-
ferent energies. An identity related to the Friedel
sum rule, and previously discussed in connection
with pseudopotentials by Shaw and Harrison' and

Topp and Hopfield, " can be used to show that any
norm-conserving pseudopotential satisfies an im-

portant transferability criterion. The identity is (in

atomic units)
r

—2m (rP) lng =4m J P r dr,
de dr

where P is the solution of the radial Schrodinger
equation at energy e (not necessarily an eigenvalue)
which is regular at r=0. The radial logarithmic
derivative of P is simply related to the scattering
phase shift. ' The consequence of (1.1) is that if
two potentials v i and v2 yield solutions Pi and P2
which have the same integrated charge inside a
sphere of radius R [for Pi(R) =$2(R)], the linear
energy variation around e of their scattering phase
shifts (at R) is identical. The requirement on the
atomic pseudo-wave-function that it agree identi-
cally with the full wave function for R & R, when
both are normalized guarantees that the integrated
charge is identical for R y R„and thus that the
scattering properties of the pseudopotential and
full potential have the same energy vari'. tion to
first order when transferred to other systems.
Since a given atomic valence state participates with
the most weight in molecular orbitals or energy
bands that are distributed around the atomic ener-

gy level, this optimizes transferability to leading
order. Band-structure methods based on muffin-
tin potentials such as the augmented-plane-wave
(APW) method and Korringa-Kohn-Rostoker
(KKR) method depend only on the logarithmic
derivatives of the potential at the muffin-tin ra-
dius. While such methods are not customarily
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used for pseudopotentials, it is clear that the ener-

gy range over which the pseudopotential logarith-
mic derivatives track those of the full potential
directly measures the range over which the pseudo-
potential bands are accurate. The norm-conserving
construction as defined so far does not guarantee
that the logarithmic derivatives track over any use-
ful range. The loosely defined constraint that the
pseudo-wave-function and the potential be smooth
and physically reasonable in shape in fact yields
logarithmic derivative agreement over a wide ener-

gy range. ' This close tracking for practical
pseudopotentials ensures, through (1.1), that the
core-region integrated charge is accurately repro-
duced over a range of states. Conditions for exact-
ly matching the second energy derivatives have re-
cently been derived, and may be useful for further
refinement. '

Wave functions of norm-conserving pseudopo-
tentials are designed to reproduce full-potential
wave functions accurately in the valence regions.
Their definition makes no reference to the core
states. Orthogonalization of these wave functions
to the core states will not yield a well defined ob-

ject, in contrast to the Phillips-Kleinman case.
While it may be desirable to reproduce the core-
region structure of the all-electron wave function
in some after-the-fact manner to address questions
like nuclear hyperfine coupling, a rigorous pro-
cedure consistent with the use of norm-conserving
pseudopotentials has not yet been devised.

The first use of the norm-conservation concept
was carried out within an empirical model poten-
tial framework for Na by Topp and Hopfield. " A
smooth function with a 1/r tail for large r was fit
to reproduce the experimental 3s-electron binding
energy. It was then observed that the lowest excit-
ed states had approximately correct energies, and
that this constituted a finite-difference approxima-
tion to the energy derivative in (1.1). The impor-
tance of obtaining the correct valence-region am-
plitude for the normalized pseudo-wave-function
was discussed in the context of chemical bonding. "

Systematic development of pseudopotentials
based on ab initio atomic all-electron calculations
was first undertaken by Goddard and co-work-
ers. ' ' They followed the Phillips-Kleinman ap-
proach and expressed the pseudo-wave-function as
a linear combination of the valence function and
core functions. The coefficients of the core func-
tions were chosen to satisfy smoothness and expan-
dability conditions, which included the requirement
that itii(r) go to zero as r +' at small r (the centri-
fugal barrier enforces only r' behavior). The

ab initio calculations on which these pseudopoten-
tials are based are Hartree-Fock calculations, so
that the radial equations for the. . wave functions
contain nonlocal exchange operators. This compli-
cates the problem of finding a local pseudopoten-
tial to replace the core. These authors dealt with
this complexity and the need to find a practical
representation for the pseudopotential by introduc-
ing a pseudopotential basis set (powers of r times
Gaussians). They vary the coefficients to minimize
the error in integrals of the nonlocal Schrodinger
equation satisfied by the pseudo-wave-function
with members of the wave-function basis set used
for the atom calculations' ' This criterion for a
fit also allows them to ignore the r divergence at
small r of the exact pseudopotential (which arises
from the r'+' behavior of the wave function) with
minimum error.

The above method for choosing pseudo-wave-
functions was introduced in the context of calcula-
tions based on the local-density-functional ap-
proach by Topiol et al. ' These authors dealt
directly with the numerical potential produced by
inverting the Schrodinger equation, which is local
in this case.

In both of the above approaches, the "ortho-
gonality-hole" problem persists, since the pseudo-
wave-function is strictly a sum of orthogonal core
and valence wave functions. In both cases, norm
conservation was later introduced with a minimum
departure from the original approach. Redondo
et al. modified the Goddard group's approach by a
method which explicitly depends on the use of a
basis-function set in the original all-electron atom
calculation. ' The basis functions are partitioned
into two groups, with longer and shorter range.
The coefficients of the longer-range basis functions
are fixed at their values in the normalized valence
wave function. Members of the shorter-range
groups are added with coefficients varied to satisfy
nodelessness, normalization, r +' behavior and
smoothness for the resulting pseudo-wave-function.
The fitted potential is then found as previously
described. ' This construction makes no explicit
use of the core functions (which are particular
linear combinations of the short-range basis set).
The pseudo-wave-function converges smoothly to
the valence function around a radius determined by
the division of the basis-function set. This in prin-
ciple provides additional flexibility in optimizing
the pseudo-wave-function, but this was not dis-
cussed by the authors. '

Zunger retained the Phillips-Kleinman construc-
tion used in his earlier work with Topiol and
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Ratner' in adding norm conservation to local-
density-functional pseudopotentials. ' The linear
combination of core states added to the valence
state was fixed to satisfy r'+' behavior and
smoothness. A function of the form r +'e " was
then added with a coefficient varied to give the
correct tail amplitude for the normalized pseudo-
wave-function. Choice of a gives some control
over the smooth transition to the valence function,
but a minimum radius is set by the range of the
least-bound core function. '

An alternative approach to pseudopotential con-
struction was introduced by Christiansen et al.
specifically in the context of treating the norm-
conservation problem. These authors chose the
pseudo-wave-function to be identically the
Hartree-Fock valence function beyond some
matching radius, and to be a polynomial inside. A
five-term polynomial with r +' as the leading

power was chosen to give the correct normaliza-

tion, and to match the value and first three deriva-

tives of the valence function at the matching ra-

dius. The matched derivatives ensure continuous
behavior of the pseudopotential, but some kinks

may occur in the potential in the core region. '

This construction does not guarantee a nodeless
pseudo-wave-function, but the choice of matching
radius can be varied to achieve this goal.

All the above constructions give pseudopoten-
tials which diverge with repulsive r behavior at
small r. This is a consequence of the r'+'
behavior of the pseudo-wave-function, which ap-
pears to be an arbitrary requirement. For pseudo-
wave-functions which are based on linear combina-
tions of the valence (and possibly core) functions,
however, the alternative to relaxing this condition
is a Zlr attractive sing—ularity at small r, where

Z is the nuclear charge, due to the cusp condition
satisfied by the wave functions. ' In addition, the
r +' requirement serves to minimize the core con-
tent of a Phillips —Kleinman-type pseudo-wave-
function, ' ' and hence minimize the orthogonality
hole problem. The retention of the r'+' require-
ment in norm-conserving methods which do not
use eigenfunctions of the full potential at small r
(the Redondo et al. ' and Christiansen et al.
methods) seems to have purely historical origins.

A method very similar to that of Christiansen
et al. was applied to local-density-functional
atoms by Kerker with attention to the above is-
sue. Choosing polynomial or exponential of poly-
nomial functions with ar +br + leading behavior
inside the matching radius guaranteed a nonsingu-
lar pseudopotential, which is a significant advan-

tage whenever a basis-function expansion of this
potential is to be used. Pseudo-wave-function con-
vergence is also improved. The use of the ex-

ponential form guarantees nodelessness, but the
matching radius cannot be too small if a physically
reasonable pseudo-wave-function is to be obtained.

The pseudopotentials which are presented in this
paper, which were introduced by two of the au-

thors, 9 are nonsingular and intended for use in
density-functional calculations. They are con-
structed in two steps from the results of an all-

electron atom calculation. First, the full potential
at large r is smoothly merged into a parametrized
potential inside a radius r, . The (single) parameter
is adjusted to reproduce the valence eigenvalue, and
hence eigenfunction for r & r„ for the highest-

energy bound state of each angular momentum /.

The norm is then corrected by the addition of a
short-range term to this eigenfunction, and the
Schrodinger equation for the resulting pseudo-
wave-function is analytically inverted, yielding a
(typically small) correction to the potential. Non-

singular pseudopotentials can also be constructed
for coreless (hence nodeless) valence states.

Pseudopotentials constructed according to this
prescription have been used in self-consistent
band-structure calculations, and shown to accurate-
ly reproduce the results of all-electron calculations.
Self-consistent band energies have been compared
for Si, 3 Nb, ' and CsAu, with errors in the
range of 0.05 eV for Si and 0.1 —0.2 eV in the oth-
er cases.

More extensive use has been made of these pseu-
dopotentials in total-energy calculations. They

have been shown to yield lattice constants, cohesive
energies, bulk modulii, and phonon frequencies
with accuracies of a few percent compared to ex-
perimen. t for Si, ' diamond, ' Ge, GaP,
GaAs, ' AlAs, ' the Si2 molecule, and others.
The excellent results obtained in these studies de-

pend, of course, on much more than the ability of
the pseudopotentials to reproduce all-electron cal-
culations. The accuracy of the local-density ap-
proximation itself for such systems is critically

tested by these comparisons. In addition the
rigid-core approximation, which is central to any
pseudopotential, must be accurate. This has been
established analytically by showing that first-order
corrections to the total energy associated with core
relaxation cancel identically, and numerical tests
indicate errors in the 0.05-eV range for the more
difficult case of transition metals. Moreover, the
nonlinear density functional of the exchange and
correlation potential induces errors if the pseudo-
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potentials are used for different systems than the
reference atom. This, too, leads to second-order
corrections in the total energy. We shall come
back to these problems below.

In treating heavier atoms, it is necessary to con-
sider relativistic effects. For valence states in the
valence region, the relativistic Dirac equation
reduces to the nonrelativistic Schrodinger equation.
This suggests that relativistic effects on the valence
electrons, which occur in the core region, can be
lumped together with other properties of the core
in creating a pseudopotential which can be used to
treat heavy atoms in a nonrelativistic formalism.
This approach was applied to relativistic Hartree-
Fock calculations by several groups using a
Phillips-Kleinman construction. ' The method
used in this paper to construct norm-conserving

pseudopotentials for local-density-approximation
calculations was generalized to the relativistic case
by Kleinman and subsequently tested for a
variety of atoms.

For the relativistic atom, each electron's orbital
angular momentum and spin must be coupled, and
different energies and wave functions are found

for the two possible values of the total angular-

momentum quantum number, j =I + —, and

j =I ——,. Two different pseudopotentials are thus

found for each 1. The most convenient form for
application is to take the weighted sum and differ-
ence of these potentials. ' " The j-average poten-
tial then yields results which are similar to those
obtained using a "scalar" version of the Dirac
equation in which the spin-orbit term is removed.
We have carried out tests on heavy atoms compar-
ing the valence levels based on the j-average poten-
tial (derived from the fully relativistic atom) with
those of completely "scalar relativistic" atoms.
The results typically agree within a few hundredths

of an eV. This also establishes the fact that the
scalar method closely reproduces the fully relativis-
tic core charge. A further test of the j-average
pseudopotential was carried out by comparing the
self-consistent band structure of CsAu with the use
of this potential and with a scalar relativistic full-
potential method. The agreement found, typical-
ly 0.1 —0.3 eV, was excellent.

The "difference" pseudopotential is in fact a
spin-orbit pseudopotential which should formally
appear multiplying the operator L S. It
reduces to zero outside the core, since the pseudo-
potentials for all j converge to the full potential.
Unlike the true spin-orbit potential, which diverges
as r at small r, the spin-orbit pseudopotential
can be smooth and nonsingular in the core region.

(Note that it would be completely inconsistent to
apply the full potential spin-orbit operator to a
pseudo-wave-function. ) The approach used here
gives spin-orbit pseudopotentials which are often
nearly constant over most of the core region.

A number of workers have already successfully
constructed and used pseudopotentials based on
Ref. 9. It is clear, however, that experience is very
helpful in choosing all-electron atom reference con-
figurations, core radii, cutoff functions, etc., and
that extensive testing is mandatory for the best re-

sults. The principal purpose of this paper is to
make a good set of these pseudopotentials for all

the elements in the Periodic Table available to oth-
ers. For many applications, analytic fits to the po-
tentials are necessary. Here again, much exper-
imentation and testing is necessary to find an accu-
rate but economical fitting basis. The quality of
fit which could be achieved played an important
role in guiding the choices to be made in the con-
struction of the numerical pseudopotential. The
fitted form was also devised to permit its publica-
tion in a compact table without loss of accuracy.

In Sec. II, the physics involved in choosing
reference configurations and pseudopotential con-
struction details for various groups of elements are
discussed. The fitting approach is motivated, and
the testing procedure for the tabulated results is
described. Section III presents examples illustrat-
ing the several classes of behavior encountered in
various groups of elements. Section IV explains
the arrangement and use of the pseudopotential
tables. In Sec. V some cases with ambiguous
core-valence separation are discussed. Section VI
concludes the paper.

II. THE CONSTRUCTION
OF PSEUDOPOTENTIALS

This section is divided into three parts: the
description of full-core atom calculations from
which the pseudopotentials will be derived, the
construction of numerical pseudopotentials from
energies, wave functions, and potential of a refer-
ence full-core atom, and the procedure of fitting
simple analytical functions to the set of num. erical
pseudopotentials.

For both the underlying full-core atom and the
subsequently constructed pseudoatom, electron in-

teraction effects are described in the local-density-
functional framework. In this scheme the
ground-state energy of a system of interacting elec-
trons in an external (nuclear) potential is written as
functional of the electron density p(r):
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E[pl= T[pl+Eco i[p]

+f V,„,(r)p(r)dr+E„, [p],
where T[p] is the kinetic energy of the nonin-

teracting electrons,

(2.1)

E„,[p]=fp( r)E„,(p(r) )dr, (2.5)

The use of reliable approximations for the
exchange-correlation energy E„,[p] in Eqs. (2.1)
and (2.2) is of central importance. In the local-
density approximation,

the usual electrostatic Coulomb energy of the elec-

trons, V,„,(r) = Zl—r, the nuclear potential, and

E„,[p], the exchange-correlation energy. Accord-

ing to Kohn and Sham, a variational solution of
Eq. (2.1) can be obtained by solving a set of
Schrodinger-type equations self-consistently:

[T+V(r)]g;(r) =e;P;(r),

V(r) =f, dr'+ + V,„,(r),
p(r'), &E..[p]
r r'—5p r

(2.2)

occupied
states i

To account for relativistic effects in a consistent

way for all atoms in the Periodic Table we use
Dirac's formulation of the kinetic energy. ' Thus,
the Schrodinger equation [Eq. (2.2)] is replaced by
a pair of coupled equations for minor and major
wave-function components G; (r) and F;(r), respec-
tively, which in their radial form are

dF;(r)
F;(r)+a [—e; —V(r)]G;(r) =0,

(2.3)

&c= '

—0. 1432

1+1.0529~r, +0.3334r,
—0.0480+0.0311lnr, —0.0116r,

+0.0020rs lnrs for rs ( 1 .

for r, ) 1

Here r, is related to the density through

p '=(4al3)r, . The exchange-correlation poten-
tial can be obtained from Eq. (2.6) as

where e„,(p) is the exchange-correlation energy per
electron of a homogeneous system with density p.
Among a variety of interpolation formulas avail-
able for e„,(p) here we use the recent results of
Ceperly and Alder as parametrized by Perdew
and Zunger. This choice was motivated by
several factors: (i) Ceperley and Alder's results are
based on a stochastic sampling of an exact solution
of the interacting electron gas, (ii) their results are
interpolated by Perdew and Zunger to yield correct
high- and low-density limits, and (iii) a consistent
extension to finite spin-polarization exists.

For the unpolarized gas we have (in a.u. )

0.4582
e„,=e +e, with e =—

rs

(2.6)

dG;(r) „2+ G;(r) —a — +e;—V(r) F;(r)=0 .
d7"

~&xc
Pxc xc ~s ~

d~s
(2.7)

We use atomic units A'= m =e = 1 and
c =o. '=137.04. K is a nonzero integer quantum
number

K= ~

1

I, for j=l ——,

—(l+1), for j=l+ —,

(2 4)

occupied
states i

For one-electron potentials Dirac's equation in-

cludes all relativistic effects and yields spin-orbit
splitting energies.

The charge density is given by summing over both
components, i.e.,

A detailed comparison of the interpolation formula
for e, given above and other existing prescriptions
(i.e., Wigner, Hedin-Lundquist, Gunnarson-
Lundquist, etc.) can be found in Ref. 43. On the
basis of several test calculations for atoms and
solids we found only very small differences be-
tween using, e.g., Ceperley-Alder or Wigner expres-
sions. The two expressions intersect each other for
r, =2, i.e., for average atomic or crystalline densi-
ties, while they deviate significantly from each oth-
er in the low- and high-density regimes.

To account for relativistic quantum-electro-
dynamical corrections to the Coulomb interaction,
and to be consistent with the Dirac treatment of
the free-particle kinetic energy, we modify the non-

relativistic density-functional exchange-correlation
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energy e„, as proposed by MacDonald and

Vosko. This amounts to multiplying exchange
energy e„and potential JM„by density-dependent
correction factors f, and f„,respectively,

f, (r, )=1——3 (1+P)' In[P+( I+/ )' ]
P p2

1 3 1n[P+(1+P )'~ ]
2 2 P(1+P )

(2.8)

where the dimensionless expansion parameter
P=O 0140. /r, measures the density-dependent Fer-
mi velocity in units of the speed of light. The
correction which is due to retardation and magnet-
ic effects decreases the effective exchange interac-
tion appreciably only for rather high densities, i.e.,
in the atomic core. For example, inclusion of the
correction increases the total energy of atomic Pb
by about 44 a.u. of which 42 a.u. result from the
1s electrons. The 6s valence electrons are affected
by less than 0.1 eV. We nevertheless include the
correction consistently in all atomic calculations.

For the full-core atom the Dirac equations [Eqs.
(2.3)] are solved using a modified version of the
original Liberman-Waber-Crier program which
uses a logarithmically spaced radial integration
mesh. The numerical accuracy is about 10 a.u.
Atomic states are specified as usual by orbital oc-
cupation numbers. The atomic ground state within
the local-density-functional (LDF) framework is
defined by occupying the lowest-lying orbitals.
For the purpose, however, of obtaining eigensolu-
tions for both spin-orbit components, j=I+—,, we

always occupy both components, regardless of their
orbital energies, weighted by noninteger values ac-
cording to their multiplicities. Valence-electron
wave functions and energies with angular momenta
that are present in the ground state are obtained
from ground-state calculations. Higher-angular-
momentum wave functions are calculated from ap-
propriately excited atomic states (see also below
and Table II). For convenience, the atomic core
charge is allowed to relax. The most consistent
way to generate these excited configurations would
be to keep the core charge frozen in its ground-
state form. However, tests indicated that allowing
core relaxation in the excited-state configurations
which we used had negligible effect on the pseudo-
potentials. Valence-electron eigenfunctions and

1

eigenvalues for j=l+ —, up to l =2 (l =3 for ele-

ments with Z~ 55j, as well as the corresponding
self-consistent potentials V(r) [Eqs. (2.2)], are cal-

culated for all elements from Z= 1(H) to Z=94
(Pu).

The norm-conserving pseudopotentials are con-
structed in five steps.

(i) Dirac's equations are solved for a chosen
atomic reference configuration labeled by v. The
output is a set of one-electron eigenvalues (for the
valence states) and radial wave functions (F and G}
as well as the self-consistent LDF potential. As
pointed out by Kleinman and later elaborated by
Bachelet and Schliiter, Dirac's equations [Eqs.
(2.3)] can formally be replaced for valence elec-
trons outside the core region by a Schrodinger-type
equation for the major wave-function component
G„(r):

+ V"(r) G„(r)=eG„(r), (2.9)
2 dr 2r"

+c&'f
rcj

V', ~(r) = V"(r) 1 f-
rcj

(2.10)

where f (r jr,J ) is a smooth cutoff function which
approaches 0 as x~ oo, cutting off around r =r,j
and approaching 1 as r —+0. The constant cJ' is ad-

justed, so that the lowest nodeless solution w &~(r}

of the radial Schrodinger equation containing V&l

has an energy equal to the original eigenvalue e~".

The normalized function w&J(r) agrees with the
full-core valence wave function beyond r,j within a
multiplicative constant yJ,

(2.1 1)

since both satisfy the same differential equation
and homogeneous boundary conditions for r g r,j.
The choice of the cut-off function,

with v given in Eq. (2.4). This replacement is
correct up to terms of order a . The minor wave-

function component F„(r) is strongly admixed with

G„(r) only in the core region of heavy atoms.
Equation (2.9) can thus be thought of as the start-
ing point for the construction of pseudopotentials
and pseudo-wave-functions. The construction steps
are carried out independently for each angular-
momentum (lj) quantum state. For convenience
this state is labeled by j only in the following dis-
cussion.

(ii) We construct a first-step pseudopotential V&J.

by cutting off the singularity near r =0 in the
screened full-core potential V:
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TABLE I. List of parameters ccI that determine the
optimum pseudopotential cutoff radii rd through

r,I
——r,„/cc~, where r,„ is the radius of the outermost

peak in the radial wave function.

short range of the intermediate pseudo-wave-
function wij(r) to

w2J(r) =yj'[w ij(r)+5&"r'+'f (r/r, j )], (2.13)

Elements

lH~2He
3Li
4Be~ )pNe

))Na
)2Mg~ )gAr

i9K~30Zn
31Ga~36Kr
37Rb~4gCd
49In~54Xe
55Cs

56Ba

57La~7~Lu
72Hf —+gpHg

g ITl~ g6Rn

g7Fr

ssRa~94Pu

I=O

3.0
2.0
1.8
2.0
1.8
1.8
1.8
1.8
1.6
1.8
1.8
1.45
1.6
1.6
1.6
1.6

3.6
3.0
3.0
1.8
1.45
1.6
1.7
1.7
1.7
1.7
1.7
1.6
1.6
1.7
1.6
1.6

3.6
3.5
3.5
3.5
2.2
3.0
2.0
1.6
2.0
1.45
1.45
1.45
1.45
2.2
1.45
1.45

l=3

4.5
3.0
3.0
3.0
3.0
4.5
2.0

f(r /r, j ) =exp[ (r /r, j )"], — (2.12)

with A, =3.5 was found to yield optimum results in

tests on a variety of atoms. The exponent A, =3.5
guarantees nonsingular pseudopotentials for r =0
and was found to allow better analytic fits than
larger A. values. The "quality parameter" or cutoff
radius r,z defines the range over which pseudo-
wave-function and full-core wave functions are al-

lowed to deviate from each other. It is not to be
regarded as an adjustable parameter but can be
used to define the "quality" of the pseudopotential.
Large r,j values produce rather smooth and j(l)-
independent pseudopotentials at the expense of
larger inaccuracies of the pseudo-wave-function
away from the core region. Small r,j values pro-
duce stronger and more j(1)-dependent pseudopo-
tentials with maximum accuracy. A strict lower
limit for r,j is the position of the outermost node
in the full-core valence wave function, but numeri-

cal instabilities appear already for slightly larger
r,j values. Optimum r,j values are obtained by
scaling down from the radius (r,„)of the outer-
most peak in the radial function 6„, r,~ =r,„/cc,
where cc is typically in the range of 1.5 —2. We
present in Table I a complete list of optimum cc
values used for the present calculations. Cutoff ra-
dii for the two spin-orbit components j=l+ —, were

chosen to be identical and equal to the average ob-
tained from r,„/cc.

(iii) The second step involves a modification at

V2, (r) = Vi1(r)+
2wzi(r)

'2A,

—[2)Ll+ k(A, + 1)]
Tqj.

p
2

+ 2ej —2Vii(r) (2.15)

such that the normalized function w2i(r) agrees
with the full-core valence wave function for r & r/.
This requires that 5J be the smaller solution of the
quadratic equation

(yJ) f [w iJ(r)+5''+'f (r/r z)] dr =1 .
(2.14)

The magnitude of the norm correction (yi) —1 is

typically small (-10 —10 ). While the ex-
istence of a solution 5J is guaranteed, unphysical
results can occur for weakly bound and therefore
extended excited states. "Bumpy" pseudo-wave-
functions (and potentials) for angular momenta
present only in excited states (e.g., l =2 for Si) can
be avoided by using appropriately ionized excited-
atom configurations (e.g. , for Si 3s' 3p

' 3d )

which tend to increase wave-function localization.
This improves the transferability of the pseudopo-
tential to systems of interest where the wave-

function components corresponding to excited
states are confined by surrounding atoms.
Nevertheless, the high-l-component potentials are
less accurate and should not be used as local refer-
ence potentials. Note that the atomic ground state
is used for all angular momenta present in the
ground state. This also minimizes systematic
transferability errors. Table II contains a list of
atom reference configurations used in the present
work.

(iv) In the third step the final screened pseudo-
potentials V2J(r), producing the nodeless eigen-
functions w2J(r) at eigenvalues ei, are found by in-

verting the radial Schrodinger equation. This can
be done analytically, knowing Vij(r) and w2J(r):
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TABLE II. Atomic valence configurations (v) used to derive the l,j-dependent pseudopo-

tentials. Only excited-state configurations are shown. Angular momenta present in the (as-

sumed) ground state are derived from the ground state given in the Sargent-Welch table

(Ref. 47) and no configuration is indicated here. Potentials for I =3 are derived only for ele-

ments with Z )55. The symbol (~) indicates the systematic increase by 1 electron per in-

creasing nuclear charge, i.e., for Si one has s'p 'd while for Ar the configuration is
$'p "d '. Ground states of the Sargent-Welch table are modified for the following few ex-

ceptions: &6Pd from s d' tos'd9, 57La from d'f to d0f', and»Np from dlf to d0f5.
Moreover, for all rare-earth elements (Z =57—71) the 6$ - configuration is replaced by
the 5$ 5p 6$ - . configuration (see text}.

Elements

1H

2He

5Li —+Qe
58
6C

7N —+80
9F

10Ne

11Na

12Mg

13Al

14Si~18Ar
19K

2pCa

2lsc~50Zn
31Ga

32Ge~36Kr

37Rb

38Sr

39Y~48Cd
49In

50Sn~54Xe

55Cs

56Ba

57La —+71Lu
72Hf ~80Hg

81Tl
82Pb~86Rn

s7Fr
88Ra

89Ac

9pTh

9]Pa~92U
93Np —+94Pu

0.5

Sp.sp 0.2

0.25d 0.25

0.25d 0.25

$0.5 0.25d0. 25

p
0.25

S0' 5 0 25d 0 25

$0.75 0.25d 1

p
0.25

$0.5 0.25d0. 25

$0.75 0.25d 1

p
0.25

0.75 0.25

S0.75 0.25d 2

0.25

$0'75 0 25

$0.75 0.25d 1

0.25d1.5f 0.25

l 0.5d0.5f l~

, 0.5 0.5d 0.5f5.5 '

Angular momentum
l=2
d"

S0'8d 0'2

as l=1
1d0.2

$0.75 1d0.25

I 1.75d 0.25

S 1.25 2.5d 0.25

S
1 2.75d 0.25

as 1=1
as 1=1
$0.75d0. 25

1 0.75 d0.25

d 0.25

as 1=1

S0.75d0. 25

s' 0'75'd0. 25

d 0.25

as I =1

$0.75d0. 25

$1p0.75 d0.25

d 0.25

S0.75d 0.25

s p d'f'

0.75d 0.25

$1 ' 5 d025

d 0.25

$0.75d 0.25

as I =1
as I =1

l=3

f0.25

$0.75 0.25

s0.75d 1 ~f0.25

s0.75f0.25

s0.75 0.75'f0.25

f0.25

s 0.75f0.25

s0.75d lf0.25

as l=1

The second term in Eq. (2.1S) is a smooth correc-
tion which cuts off

-f=exp
~CJ

No numerical instabilities are associated with this
procedure.

(v) Finally, in the last step the screened poten-

2
w q~(r)

p"(r) =
occupted

valence states

tials V2f(R) are unscreened using the nodeless
pseudo-wave-functions w 2J(r):

p"(r'), &E-I:p"1
VI+1/2(r) V2j(r)—

5p"(r)

(2.16)
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Vi'"(r) = [lVJ' in(r)+(1+1) Vi+i/z]2l+ 1

(2.17)

weighted by the different j degeneracies of
the I+ —, states. This average potential is appropri-

ate for scalar relativistic use. Note, that the defini-
tion of Vi""(r) in Eq. (2.17) differs from Eq. (2.12)

of Ref. 36; it is, however, consistent with Eq. (13)
of Ref. 37. A difference potential Vi"(r) describ-

ing the strength of spin-orbit effects can according-
ly be defined as

(Vi'+rii—Vi' "in) . -
21 +1

(2.18)

Thus the total ionic pseudopotential to be used in

relativistic calculations is

V","(r)=g
~

l)[Vi""(r)+Vi"(r)L S] &1
~

l

(2.19)

The potential is appropriate for Schrodinger equa-
tions yet contains relativistic effects to order a .

The pseudopotentials [Eqs. (2.17) and (2.18)],
two (one for l =0) for each angular momentum for
a given atom, are derived on a numerical radial
grid. To facilitate their tabulation and use, howev-

er, it is desirable to find high-precision fits involv-

ing few analytic functions. For this purpose
we decompose Vi'"(r) into a long-range Coulomb
part (l independent) and a short-range l-dependent
pseudopotential part. We have

As pointed out in Ref. 48, this valence-

unscreening procedure, though exact by definition
for the reference atom, represents a linearization of
the exchange-correlation energy as a function of
charge density. The systematic error occurring for
different valence configurations, though small for
paramagnetic systems, increases with decreasing
valence electron density in the reference state. For
systems with few valence electrons such as the al-

kali atoms, highly ionized reference configurations
should thus be avoided. The bare-ion pseudopo-
tentials Vi+i&z(r) of Eq. (2.16) are, to first order,
independent of changes in the atomic prototype
configuration v. We therefore drop the index v in

all further discussions.
It is convenient to define an average pseudopo-

tential

Vcore(r) = Z 2
&coree &core 1/2

(2.21)

and therefore smoothly approaches a finite value
for r~0. Z„denotes the valence charge. The
remaining potentials b, Vi'"(r) and Vi"(r) are both

expanded in Gaussian-type functions, e.g.,

3 —C 'T
b, V,""(r)=g (A, +re, +,)e (2.22)

Thus each atom is characterized by
(i) a valence charge Z„and two sets of linear

coefficients and decay constants describing the

(ii) for each 1 value two sets of three linear coef-
ficients each, A; and A;+3 corresponding to the de-

cay constants u;, I', =1,2, 3 for the average poten-
tial, and

(iii) a similar set as (ii) for each spin-orbit differ-
ence potential, provided the spin-orbit splitting of
the eigenvalues is larger than a chosen threshold
value of 0.05 eV.

The choice of error function, Gaussian, and r
times Gaussian functions was made to maximize
the number of calculational techniques which can
make direct use of the fitted form. Plane-wave
matrix elements can be calculated analytically.
The one-, two-, and three-center integrals needed
for Gaussian linear combination of atomic orbitals
(LCAO) calculations can be expanded as sums of
analytic functions, as can mixed-basis Gaussian-
plane-wave matrix elements.

The core parameters are the starting point of the
fitting procedure. For this purpose the self-
consistent full-core potential V'(R) is first formal-

ly unscreened by the valence electrons. We write

p„,i(r') 5E„, p„„
V;,„( )= V'( ) —J, d '—

(2.23)

V;,„(r) has the form —Z„lr for large r, but devi-

ates from this form in the core region to attain a

Zr„ii lr behavi—or for r —+0. The function V„„,(r)
[Eq. (2.21)] is then fitted to V;,„(r) using the cutoff
function

Vi'"= V„„,(r)+b, Vi'" .

The core potential is thought of as originating
from Gaussian-type effective core charges:

(2.20)
g= 1 f= 1 —exp[ (rlr,—&)]—

as a weighting function. Here r,~ denotes the atom
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f (V„„—Vg, )'r 'f w2, J'dr, (2.24)

except in some special cases, like some excited
states with a relatively long range where the wave-

function weighting r
~ w2J

~

was replaced by 1.
Equation (2.24) exhibits strong nonlinearities as a
function of the independent parameters and exhi-
bits a large number of nearly equivalent minima.
Random search and conventional simplex pro-
cedures were used to find satisfactory solutions.

Linear dependencies of the fitting functions can
lead to large values for some of the fitting coeffi-
cients A; in (2.22). This effect is reduced by con-
straining the nonlinear fit to maintain a finite
spacing of the a;. Nonetheless, too many signifi-
cant figures must be retained in the A s for practi-
cal tabulation. To solve this problem we have
transformed the coefficients A;, A;+3, i =1,3 of
Eq. (2.22) into a set of coefficients C;, i =1,6 for
an orthonormal basis set,

6

C;= —g AIQ;I
1=1

where the orthogonality matrix

(2.25)

average over the angular-momentum-dependent
cutoff radii r,j given in Table I. V„„(r) thus has
the built-in feature of simulating shallow core
charges that may extend beyond the pseudopoten-
tial cutoff radii r,&. Examples, such as Cs, shall be
described below. Note that V„„,(r) is not uniquely
defined but determines the remainder A VI""

through Eq. (2.20). The choice of V„„(r)dis-
cussed here both simplifies the shape and reduces
the range of b, VI'". In the context of a solid-state
or molecular calculation, matrix elements of an ion
pseudopotential must be taken between wave-

function components which have angular momenta
about that center which are higher than the largest
l value given. The most consistent procedure is to
use the potential for the largest l given for all
higher I. However, the construction of V„„given
here enables this term alone to be used as a "local"
I-dependent potential for higher I's with little loss
of accuracy. (Both approaches depend on the cen-

trifugal barrier to keep the high-I components out
of the core region).

The nonlocal short-range components b, VI'"(r)
and VI (r) are each fitted by nonlinear least-

squares procedures constraining the longest-range
components to remain roughly within r,&.

The weighting of the fits was chosen to mini-
mize the error in potential matrix elements, i.e.,

QI=

0 fori&l
1

1/2

Ss —g Qk;
2

k=1

Sl —g Qk~Qki

for i =I

fori &i .

(2.26)

The overlap matrix is defined by

S;I ——I r'@; (r)& I(r)«,

—a, r 2

e ' for i =1,2, 3

2

r e ' fori=

(2.27)

The Gaussian exponents n; are rounded to two
decimal places prior to a final linear fit determin-

ing the 2;. The coefficients C; in Eq. (2.25) are
rounded to four digits. To test the overall accura-

cy of the fitting procedure including the rounding

as tabulated, the potentials are reassembled by first
performing an inverse matrix transformation,

6

A;= —g C(Qs ',
1=1

(2.28)

and then using Eqs. (2.20), (2.21), and (2.22).
The minus signs in Eqs. (2.2S) and (2.28) corre-

spond to a particular choice of phase. The quality
of the fits can then be assessed by comparing two
independent pseudoatom calculations for identical
configurations using the original numerical pseudo-
potentials and the fitted analytical version. Typi-
cal results for a variety of atoms are shown in
Table III. The test results illustrate two different
and unrelated features: (i) transferability, i.e., the
quality of describing atomic excitations (eigen-
values and total energies) by pseudopotentials that
have been derived from a different reference state,
usually the ground state, and (ii) the quality of the
fitted potentials.

The issue of pseudopotential transferability has
been discussed before. ' ' Transferability is
determined by the "frozen-core" approximation
underlying the construction of all pseudopotentials,
by the linearization of core and valence exchange-
correlation contributions, and by the norm-
conservation feature. As can be, seen from Table
III, transferability is generally excellent. The error
increases typically for "two-shell" systems, in par-
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TABLE III. Results of test calculations for a variety of representative atoms. State 1 is
reference state for the pseudopotential construction, state 2 represents the (de-) excited state.
Differences in total energy are given in columns 4 (full-core atom), 5 (numerical pseudopo-
tential atom), and 6 (fitted pseudopotential atom). Columns 7 and 8 show the differences in
eigenvalues between the numerical pseudopotential case and the fitted pseudopotential case
for states 1 and 2, respectively. All energies are given in eV.

Element State 1 State 2

Excitation energies
Full core Pseudo Pseudo and fit

AE„, AE„, aE...
(eV) (eV) (eV)

Eigenvalues
he Ae

(eV) (eV)
State 1 State 2

Si

Ni

Pd

pt

Sm'+

$2p 2
sp

$2p 2
sp

s 2p 2
sp

$2p 2
sp

d's' d's'

d's'

d's'

d10 0

d10 0

f6d0 f5d1

8.23

6.79

8.01

7.02

—1.66

—1.47

—0.03

4.32

8.22

6.79

8.00

7.01

—1.57

—1.43

—0.003

4.56

8.25

6.79

7.97

6.96

—1.36

—1.17

+ 0.06

4.43

s 5X10
p 2X10 '
s 1X10
p 2X10 2

s 4X10
p 1X10
s 7X10 2

p 2X10
s 3X10 2

d 2X10-'
s 1X10 2

d 2X10-'
s 1X10
d 5X10-2
d 2X10-'
f 2X10

4X10-'
3X 10-'
1X10-'
3X 10-'
4X 10-'
1X�1-'
07X�-'
2X 10-'
4X10-'
2X 10
3X10-'
1X10-'
1X10-'
3X10-'
3�X1-'
02X�

ticular for the 3d transition elements and the 4f
rare-earth elements. The extreme localization of
4f electrons in the rare-earth series necessitates the
inclusion of the Ss,5p "core" electrons into the
valence shell (see Sec. V). This inclusion restores a
core which remains "frozen" to a much better ap-
proximation and decreases the error for a 4f5d-
valence excitation from 1.7 to 0.2 eV."

The error due to fitting the analytical functions
generally varies between 10 and 10 " eV. Ex-
ceptions are again the 3d and 4f elements whose
d (f) pseudopotentials are extremely strong. Abso-
lute errors in the d (f) eigenvalues range from 0.1

to 0.3 eV for the 3d elements and from 0.2 to 1.1
eV for the 4f elements. These errors illustrate the
limitations given by the small set of six Gaussian-
type fitting functions. Relative errors, however, in
both excitation energies and changes in eigenvalues
are considerably smaller. Note that the neglect of
spin-polarization for the magnetic 3d and 4f ele-
ments amounts to systematic errors of equal or
larger magnitude. We point out in this context
that the present pseudopotentials which are derived
for paramagnetic reference atoms cannot be used
for spin-polarized situations. The strong non
linearities associated with the spin-polarized
exchange-correlation functionals require sys-

tematic modifications. ' . An extended version of
the present work to include spin-polarization ef-
fects and improved fits involving more parameters
will be published shortly for 3d and 4f elements. '

-40.0

O

c -20.0a

-30.0

I

1.0
I

2.0 3.0

R (a. u. )

I

5.0 6.0

FIG. 1. Ion-core pseudopotential for oxygen. Dashed
line corresponds to —Z„/r, the dotted line to V (r) as
defined in the text.
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2.0

to.o
4

I
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10.0
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O -2.0

-4.0—
l

1.0
I

2.0
l

3.0
R (a. u. )

I

4.0 6.0

S.O— FIG. 3. Ion-core pseudopotentials for aluminum.
Conventions as in Fig. 1.
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0

-4.0-

20.0
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«I
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1
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l ~ I

III. EXAMPLES OF REPRESENTATIVE
PSEUDOPOTENTIALS

In this section we present some illustrative ex-

amples of pseudopotential behavior. Figure 1

shows the ion-core potentials (I =0, 1,2) for oxy-

gen. The nonlocality or 1 dependence is strong
since only s valence electrons experience ortho-

gonality repulsion in the core region. The dashed
curve corresponds to Z„lr. Spin-orb—it splitting
is smaller than the chosen threshold value of 0.05
eV and only one potential Vi+"~~q for both j =1+—,

is shown. Fitted and original numerical potentials
cannot be distinguished on the scale of the plot.

I

Cs

10.0

0.5 1.0 1.5 2.0
-1.0

0 (a. u. ) d 5/2

FIG. 2. Angular-momentum-dependent pseudopoten-
tial components 4V~ (r) for oxygen. EVI""'"'=VI (r)
—P (r) Numerical p. otentials are given by the full

lines, the analytical fits by the dashed lines.

-2.0
0 1.0 2.0

I

3.0
R (a. u)

I

4.0
I

5.0 6.0

FIG. 4. Ion-core pseudopotentials for cesium. Con-
ventions as in Fig. 1.
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Figure 2 shows the nonlocal differences AVI"" for
l

oxygen as defined in Eq. (2.20) and as fitted to the
Gaussian-type series.

A weakly I-dependent example is shown in Fig.
3 for Al. The remaining weak nonlocality is a
consequence of optimizing the quality of the
pseudo-wave-functions, i.e., minimizing the range
(r,j-) of nonlocality. Relaxing this constraint from
a range of -2.5 a.u. (present case) to -3.0 a.u. de-

creases the I dependence dramatically. The Al po-
tentials are representative for "free-electron"-like
s-p materials in the upper right-hand side of the
Periodic Table.

In Fig. 4 we show an extreme example of a large
alkali atom, Cs. The pseudopotentials are weak
but long range. Spin-orbit splitting effects give
rise to different potentials for different values

j=I+ —,. Cs exhibits shallow (-—13.6 eV) 5p
"core" electrons. The charge density due to these
electrons extends to -5 a.u. as is illustrated by the
large difference in the Z„/r potent—ial (dashed
curve) and V""(r) (dotted curve). In spite of this
large core radius, core polarization and exchange
nonlinearity effects are relatively small since the
valence states (6s, 6p*, 5d*,4f*, etc.) are also spa-
tially rather extended and core overlap is small.
This is in contrast to the rare-earth series which
begins with La only two atomic numbers higher
than Cs. As mentioned in Sec. II for rare-earth
elements even 5s and 5p "core states" are strongly
polarized by 4f valence excitations.

Figure 5 shows the ion-core pseudopotentials for
Au. The 5d electrons experience a strongly attrac-
tive potential. This potential, however, is consider-

ably less attractive than for 3d or 4d transition or
noble elements due to ir creased orthogonality ef-
fects. Strong spin-orbit-splitting effects are present
with decreasing amplitude for p, d, and f electrons.
The Au valence wave functions are illustrated in

Fig. 6. The 6s and Sd wave functions are calculat-
ed from the atomic ground state (5d' 6s ') while
the 6p and 5f states are obtained from excited
states, respectively (Table II). Only the j=l ——,

spin-orbit components are shown. The multishell
behavior, typical for transition- noble-, and rare-
earth elements is clearly visible.

I.O-

0.5

0
)
-„-

0.5 "

I

il

0.5

0
s I
i ~
~ O

~ ~
I

~ ~
~ ~
Oy

-O.S-
Cl

-5.0 O.S-

0 —...- I l

0
-40.0

-O. S "

1.0 f..O 5.0
I

4.0 5.0
l

4.0

-15.0— I;
II:a: I

1.0
I

2.0 4.0 6.00 5.0
R (a. u. )

FIG. 5. Ion-core pseudopotentials for gold. Conven-
tions as in Fig. 1.

FIG. 6. Valence wave functions for gold. Dashed
curves correspond to the Dirac large component for the
full-core atom, the solid curves to the pseudopotential
(see Fig. 5) atom.
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TABLE IV. Pseudopotential parameters for atoms hydrogen through plutonium. Use of the table is explained in de-
tail in Sec. IV in the text.

atom Z Za v c1 c2 c3 c4 c5

H core 16.22
17.08
1.71
2. 44

23. 54
3.86
3.30

25. 42
8.08
4. 47

1.1924
0. 0950

-0.2475
-0.6887

—0. 1924
-0.0842
-0.2727
0.0913

—0. 0443 —0. 0519 0. 0084 0.0122
—0. 0301 -0.0094 -0.0291 0.0018
-0. 1809 -0.0881 —0.0541 0.0058

He 2 2 core 56. 23
65. 16
7.89
0.93

19.24
80.72
22. 12
15 ~ 09

89.81
1. 1998
0. 1418

25. 92 -0. 5936
23. 06 —1. '1 044

—0. 1998
-0. 1252
-0.2780
-0.6780

-0.0670 -0. 0749 0. 0110 0.0166
0.0535 0. 1278 0. 0246 0.0124
0. 0847 0. 2954 —0. 0699 0. 0057

Li 3 1 core 1.84
1.10
2. 48
0. 33

0.73
1.23
7.47
0.46

2. 9081
1.42 —1.4520
8.20 -0.0046
0.62 -0.6347

-1.9081
0. 2543

-0. 1402
—0. 5406

0.0381 0. 0581 -0.0004 -0.0114
0. 1055 0. 1259 0.0241 0.0122

—0. 1712 —0. 0055 —0.0300 0.0316

4 2 core 2. 61
2. 20
2.45
1.14

1.00
2. 46

15.31
1.31

2. 74
24. 62

1.47

1.5280
—1.5794
0. 5140

-0. 5444

-0. 5280
0.4081

-0.0694
-0. 3612

0.0459 0. 0746 —0.0007 —0.0157
-0.0457 —0. 1549 -0.0300 0.0033
-0.0488 -0.0664 0.0129 0.0156

core 6.21
3.85
2. 71
1.97

2.47
4. 24
2. 98
2. 46

1.6546
4.78 -2. 1425
7.48 0. 2076
2. 77 —0.8961

—0.6546
0.4462
0. 0707

-0.5528

0.0505 0. 0894 0. 0031 —0.0166
—0. 1583 0.0919 -0.0411 0.0048
-0.0688 -0.0508 —0.0069 0.0226

6 4 core 9.28
5.99

3.69
6.75 7.84

1.5222
-2. 4586

—0. 5222
0. 5262 0. 0468 0. 0913 0.0037 -0.0171

4. 31
2. 97

4. 74
3.63

11.92 0. 2520
3.97 -0.9890

0. 0952
-0.6244

—0. 1687 0. 1009 —0.0447 0.0046
—0. 1027 —0. 0602 0.0118 0.0223

N 7 5 core 12.87
7.70
6.47
4. 15

5. 12
9. 13
7. 12
4. 95

11.46
17.92
5. 36

1.4504
-2. 7030
0. 3085

-1.1252

—0.4504
0.4479
0. 1260

—0. 6889

0.0930 0. 1109 —0.0006 —0.0208
—0. 1754 0. 1091 —0.0483 0.0050
-0. 1081 -0. 0669 0.0147 0.0292

8 6 core 18.09
11.13

7. 19
13.29

1.4224
16.72 —3.0282

—0.4224
0. 5619 0. 0579 0. 1023 0. 0040 —0. 0 187

9.31 10.24 26. 07 0. 3311 0. 1360 -0. 1867 0. 1150 —0.0504 0.0051
5.87 7. 12 8.05 -1.2035 -0.7542 -0. 1158 -0. 0806 0.0128 0.0274

23.78 1.3974 —0.3974
14.86 17.23 20. 40 -3.2328 0.6759 0. 0344 0. 1089 0.0108 —0.0196
13.00 14.30 36.72 0. 3796 0. 1601 -0. 1932 0. 1203 —0. 0524 0.0054

so 1

7.78
15.51

9.02 10.17 —1.3425
22. 39 28. 43 -0. 0044

-0.8033
-0.0008

-0. 1176 -0.0850 0. 0047 0.0285
0. 0002 0. 0000 0.0000 0.0000

Ne 10 8 core 29. 13 11.58 1.3711 —0. 3711

so 1

17.61
16.05
9. 17

17.64

20. 97
17.66
11.32
25. 73

26. 47
45. 22
12.33

—3.4264
0. 4077

-1.4102
34. 05 -0.0056

0. 6156
0. 1726

-0.8951
—0. 0013

0. 0747 0. '124 1 0.0070 —0.0226
—0. 2057 0. 1283 —0.0560 0. 0054
-0. 1337 -0.09 11 0.0255 0.0450
0. 0002 0. 0000 0. 0000 0.0000

Na 11 1 core 1.71
0.99
0. 51
0. 38

0. 50
1.10
0.65
0. 55

5. 1815
1.24 —2. 4718
0.84 —1.6202
0. 73 -0.9415

-4. 1815
0. 3334

-0.4908
—0.9710

0. 0619 0. 0890 -0.0014 -0.0123
—0. 0861 0. 0375 -0.0161 0.0070
—0. 2336 —0. 0593 —0. 0228 0. 0455
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TABLE IV. (Continued. )

atom Z Z v cx 3 c1 c2 c3 c4 c5 c6

Ng 12 2 core 2. 04
1.38
0.82
0.47

0.81
1.49
1.29
0.66

1.81
1.60
0.88

3 ' 5602
-2.8667
—1.9343
-1.1475

-2. 5602
0.4554

-0.2867
—1.0778

0.0723 0.0876 —0.Q015 -0.0142
-0.0215 0.0264 0.0097 0.0038
—0. 3055 -0.0719 -0.0330 0.0588

Al 13 3 core 1.77
1.92
0.82
1.36

0.70
2. 10
1.13
1.59

2. 39
1.51
1.77

1.7905
-2. 6670
—1.5706
-0.2574

-0.7905
0.7075

-0.2352
-0.5358

0. 0251 0.0608 -0.0134 -0.0161
0. 0327 0.0262 -0.0090 -0.0047

-0.0668 —0. 1835 0.0187 0.0551

Si 14 4 core 2. 16
2. 48
1.24
1.89

0.86
2.81
1.6Q

2. 22

3.09
2. 12
2.48

1.6054
-3.0575
-1.7966
-0. 1817

-0.6054
0.8096

-0.0986
-0.5634

0. 0012 0.0511 —0.0217 —0.0128
0.0424 0.0284 -0.0030 -0.0039

—0. 0944 -0.2168 0.0215 0.0588

core 2. 59 1.03 1.4995
0

1

2

so 1

1.83
2. 39
0.43

2. 15
2.78

—2. 0001
-0. 1719

2. 51
3. 16

0.53 0.70 -0.0073

2.82 3.21 4. 19 —3.3940
-0.4995
0.7363
0.0851

-0.6077
-0.0042

0. 0787 0.0639 -0.0318 —0.0103
0.0377 0.0271 —0.0008 -0.0044

-0. 1112 -0.2485 0.0206 0.0634
—0. 0008 —0.0011 0.0003 —0.0016

16 6 core
0

1

2

so 1

2.99
3.37
2. 09
2.97
0.54

1.19 1.4261 -0.4261

2.67
3.48
0.66

3.51
3.97
0.87

-2. 1440
—0. 1018
-0.0090

0.8028
0.0083

-0.6482
-0.0051

3.71 4.69 -3.6230 0. 1087 0.0697 -0.0439 -0.0062
0.0601 0.0318 —0.0038 —0.0053

-0. 1307 -0.2799 0.0200 0.0672
-0.0011 -0.0013 0.0003 -0.0020

Cl 17 7 core
0

1

2

so 1

3.48
4.94
2.41
4. 04
0.70

1.38
9.61
3.16
4.83
0.86

15.05
4. 73
5.40
1.10

1.3860
—3.6651
-2.3089
0.0968

—0.0112

—0. 3860
1.2609

-0.0556
-0.6838
-0.0059

-0.5528 -0.3237 0.0368 0.0150
0. 0784 0.0357 -0.0080 -0.0060

-0. 1482 -0.3090 0.0218 0.0735
—0. 0010 —0.0015 0.0005 —0.0020

Ar 18 8

1

2

so 1

2.91
5. 10

3.69
5.92

0.90 1.10

core 3.99 1.59
0 4.67 5.28 6.26

6.. 16
6.62
1.45

1.3622
-4. 1009
-2.4688
0. 1771

-0.0139

-0.3622
0.9478

-0.0363
—0.7316
-0.0068

0. 1062 0, 0805 -0.0524 -0.0079
0. 0854 0.0374 -0.0108 —0.0067

-0. 1536 —0. 3351 0.0117 0. 0742
-0.0008 -0.0016 0.0009 -0.0018

19 1 core 1.42
0.58
0.39
2. 84

0.26
0.64
0.56
3. 12

0.71
0.73

55.36

6.3140
-3.9287
-3.2276
2. 0774

-5.3140
0.2938

—0.4254
-0.7044

—0.0613 0. 1062 0.0000 —0.0092
-0. 1754 0.0803 0.0067 0.0111
-0. 1248 -0.3174 -0.0802 -0.0004

Ca 20 2 core
0
1

2

1.61 0.45
0.75 1.19
0.67 2. 23
6.92 24. 35

2. 08
2.99

86.59

4.8360
-4.7576
-4. 1513
3.0392

-3.8360
0.3179
0.0156

—1.0190

-0. 1286 0.0279 0.0520 0.0054
-0. 1494 -0.2563 -0.0404 -0.0179
0.2634 0.4961 -0.0295 0.0089

Sc 21 3 core
0

1

2

3.96
0.93
0.72
5.01

0.69
1.25
1.08
5.96

1.65
1.20
6.78

3.7703
-6.0205
—5.0131
2. 3518

-2. 7703
-0.3209
-0.9627
0.4640

-0.4627
-0.7049
-0.3980

0. 1373 0.0055 0.0174
0. 1062 -0.0850 0.0803
0.2076 -0. 1778 0.0562
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atom Z Za v C1 C3 C4 C5 c6

22 4

So

core 4. 68
1.10
0.85
4.47
0.22

0, 94
1.43
1.28
2. 03
0.30

1.88
1.42

14.24
0.36

-6.4327
—5.3910
2. 2908

-0.0202

-0. 3723
-1.1136
-0.9185
-0.0054

3.3889 -2. 3889
-0.5592 0. 1547 -0.0074 0.0191
-0.8023 0. 1263 —0. 1034 0.0851
0.4398 -0.5087 -0. 1470 0.3404
0. 0011 —0.0007 0.0005 —0.0004

V 23 5

So
So

core 5. 14 1.11
1.54
1.33
3.28
1.30

2. 9680 —1.9680
1.23
1.03 1.43

17.66
-5.5539 -0.9047 -0.8758 0. 1629 -0. 1369
2. 4040 -1.2280 0.4141 -0.4851 -0.24052 4. 60

-0.0025
0.0011

0. 57 -0.0011 -0.0001
-0.0004 0.0000

1.36 -0.0221 0.0064
9. 12 12.58 16.56 -0.0074 -0.0022

1.97 -6.6485 -0. 3951 -0.5795 0. 1797 —0.0151 0.0176
0.0810
0.3451
0.0000
0.0002

Cr 24 6

So
So

0.23
9.86

core 5. 19
1.24
0.89
1.42

1.37
1.52
1.33

14.49
0. 34

13.42

1.92
1.67

13.04
0.45

18.09

1.3296 2. 4992
-0.0237 -0.0091
-0.0084 -0.0026

0.6775
0.0010
0.0013

2.8897 —1.8897
-6.5839 -0.7164 —0.6117
-5.4905 —1.6271 -0.9456

0.2379
0.2477
0. 2743

-0.0011
-0.0005

—0.0291
—0. 1257
0. 3172
0.0012
0.0000

0.0185
0. 1132
0. 1432

-0.0005
0.0002

Mn 25 7 core

So
So

6.03
1.39

1.63
1.81

1.17 1.64
2.42
1.77

2. 7024 —1.7024
-7.0281 -0.8509 -0.6464 0.2240 -0.0292
—5.7836 -1.3330 -0.9789 0.2018 —0. 1250

1.73 16.13
0.26 0.37

16.75 1.3989 2. 5937
0.47 -0.0261 -0.0094

-0.6073
0. 0011

0. 2667
-0.0015

-0.3079
0.0013

12.01 16.16 20. 96 -0.0097 -0.0027 0.0012 -0.0005 0.0000

0.0157
0. 1188
0. 1595

-0.0006
0.0002

Fe 26 8 core 6.51 1.91 2. 6179 —1.6179

So
So

. 67 2. 06 2. 33 -7.2356 -0.5601 -0.6868 0. 2287 -0.0271
1.22
1.95

1.77 1.96 -5.8685 —1.5627
20. 17 19.00 1.4849 2. 7562

—1.0392
0.7649

0.2321 -0. 1459
0. 2481 0.2996

0.28 0.40 0.51 —0.0283 -0.0104 0. 0012 -0.0018 0. 0015
15.25 23.70 30.81 —0.0108 -0.0023 0.0009 0.0000 -0.0001

0.0198
0. 1258
0. 1639

-0.0007
0.0001

CG 27 9

So
So

core 6.95 2. 38
1.67
0.98

2. 15
6.55

2.82
9.51

2. 41 23.76 18.38
0.25 0.32

11.21 13.48
0.41

15.68

2. 7407 —1.7407
-7 . 3964 —1 . 0257
-5.5862 -2. 7886

-0.7633
0.6251

1.5732 2. 6419 0.8724
—0.0273 —0.0124 -0.0008
—0.0103 —0.0048 -0.0012

0.2532
0.2217
0. 3015

-0.0022
0. 0000

—0. 0369 0.0198
-0. 1988 -0.0636
0. 3376 0. 1447
0.0021 -0.0019
0. 0001 —0.0001

Ni 28 10 core 7 ' 60 2. 74 2.6949
-7.5612

—1.6949
-1.1512 —0.8213

So
SO

-0.0351
—0. 1929
-0.2986
-0. 0008

0. 2546
0. 2729
0. 2811
0. 0025

1.80 2. 38 3. 17
1.18 2. 10 2. 59 -5.8322 -2.4306 —1.2453

-0.6560
0. 0034

1.5867 2. 9229
-0.0324 0.0022

2. 53
0. 51

23. 55
1.29

26. 60
1.50

31.7518.01 24. 17 —0 ~ 0155 -0.0044 0. 00'16 —0. 0008 0. 0001

0.0228
0. 1633
0. 1867

-0.0003
0.0002

Cu 29 11 core 7. 59 3.02

So
SO

2. 6959 -1.6959
-7.2915 —1.4275 —0.8717 0. 3180 —0. 0558 0. 028975 2. 32 3.09

10.93
27. 47
1.73

—0. 0691
0. 1973

1.25 7.80
2. 78 25. 70
0. 54 1.44

0. 1380 -0.2028
0. 2519 -0. 2938

0.6113
-0 . 75 '16

-5.8592 -2.6799
1.7433 3.0657

-0.0347 0. 0022 0. 0035
0.0012

0.0029 -0.0008 -0.0003
—0. 0004 0. 0000 0.000119.55 28. 16 37.61 —0.0158 —0. 0042



4216 G. B.BACHELET, D. R. HAMANN, AND M. SCHLUTER

TABLE IV. {Continued. )

26

(Y
2

IY
3 C1 c2 c3 c5 c6

30 12 col. e 8. 78 3.49 2. 6313 -1.6313
2. 2. 80 3.67 —7.8453 —1.2476 —0. 90 16 0. 2734 —0.0392 0.0280

SO

So

1.38 2. 54 3. 12 —6. 0406 —2. 6215 —1.3062
3. 09 32. 58 30.83 1.7225 3. 1083 0. 9207
0. 58 1.48 1.72 -0.0374 0. 0024 0. 0041

16.48 18. 18 25. 99 —0. 0165 —0. 0077 —0.0025

0.2663
0. 2519
0. 0029
0.0000

—0.2050 0. 1599
0.2946 0. 1898

-0.0009 -0.0004
0.0001 —0. 0001

Ga 31 core 2. 01 0 F 80 4. 0433 -3.0433
2. 01 2. 23 2. 59 -3.9018 0.8835
1.23 1.71 2. 29 —2. 9715 0. 0100

0.0370 0. 1642 0.0385 —0. 0'110
0. 0161 0.0992 0. 0525 0. 0134

1. 10 1.30 1.48 —3. 1017 —0 1879 0. 0293 —0. 0140 —0. 0692 —0.0181
So 0. 34 0.45 0. 61 —0.0369 —0. 0168 0. 0001 -0.0043 0.0031 -0.0032

Ge 32 4 core 2. 28 0.91 3. 1110 2 ~ 1110

So

2. 22 2. 45 2. 87 -4. 2628
1.79 2. 29 2. 72 —3.2382
1.42 1.53 2. 07 —3.2171
0. 48 0.69 0.88 —0. 0487

0. 8653
0 . 5131
0. 0215

—0. 0181

0. 0826 0. 1446 0.0039 -0.0226
-0. 1044 0.0547 0.0545 0. 0175
0. 0052 -0. 0495 -0.0816 —0.0175
0. 0025 —0.0040 0.0026 —0. 002 1

As 33 5 core 2. 60 1.03 2. 6218 -1.6218

SO

2. 41 2. 77 3.52 —4. 7162
1.74 1.92 2. 42 —3.7141
1.67 1.93 2. 22 -3.3845
0. 67 1.10 1.37 —0. 0624

0.7952
0. 1877
0. 0948

—0. 0173

0. 1146 0. 1326 -0.0152 -0.0269
0. 0987 0. 0830 —0.0171 —0 ~ 0106

-0.0020 —0. 0478 -0.0789 -0.0227
0. 0054 —0. 0023 0.0012 -0.0014

34 6 core 2. 88 1. 14 2. 2934 —1.2934
2. 64 3. 16 4. 27 —5 1201 0. 7585 0. 1318 0. 1236 -0.0295 —0. 0280

So

2. 04 2. 30 2. 83 -4. 0006
1.90 2. 32 2. 59 —3.5118
0. 78 1 ' 22 1.51 —0. 0715

0. 3139
0. 'I 192

—0. 0191

0. 0941 0. 0789 -0.0179 -0.0122
-0.000 1 -0.0485 -0.0758 -0.0224
0. 0048 —0.0021 0.0004 —0.0017

35 7 core 3.20 1.27 2. 1007 -1.1007

So

3.07 3.66 4. 89 —5. 5059
2 ' 37 2. 76 3.29 -4. 3404
2. 26 2. 66 2.97 —3.6741
0. 91 1.53 1.90 —0. 0806

0.9501
0.4232
0. 2350

—0. 0191

0. 0931 0. 1101 -0.0322 -0.0279
0. 0832 0. 0741 -0.0192 —0.0121

-0.0095 -0.0527 -0.0789 -0.0247
0. 0064 -0.0009 -0.0005 -0.0018

36 8 core 3.49 . 39 1.9478 -0.9478
3.45 3.99 4. 73 —5.6969 1.1088 0.0608
2. 70 3.28 3.97 —4. 6594 0. 5027 0. 0713

0. 1088
0. 0671

-0.0277 -0.0306
-0.0210 -0.0113

2. 62 3.05 3.45 —3.8018 0. 3188 —0.0171 -0.0609 -0.0845 —0.0267
So
SO

0. 66 0 . 73 0.93 —0. 08'l 1 —0. 0419 -0.0132 0. 0041
0.60 0.74 0.97 -0.0115 —0. 0053 -0.0005 -0.0009

0.0065 0.0027
0.0009 -0.0003

Rb 37 1 core 1.37 0.21 6.8301 —5.8301
0. 37 0.41 0.57 —4. 6310
0. 35 0. 54 0.71 —4. 0288

—0.5824
-0.4084

-0.0743 0. 1298 -0.0764 0.0240
-0.2697 0. 0623 0.0150 0.0192

1.05 1.17 1.52 -1.4261 —0.4197 0.2694 0. 0335 -0. 1074 -0.0399
SO 0. 08 0 ~ 10 0. 13 —0.0499 —0. 0176 —0.0011 —0.0033 -0.00 13 0. 0003

Sr 38 2 core 1.52 0. 33 4. 8514 -3.8514

So
SO

-0. 1884 -0.0028 0. 07270. 3031-5.49360.61 0.97 2. 17
0. 55 1.05 1.36 —0.2429 -0.0199

-0.0207 —0. 1026
0. 1477—5. 0728 -0.3858

0. 1422
0. 0085

2 ~ 02 2. 26 2. 56 —1.4177 —0. 0612
0. 15 0. 23 0. 28 0. 0027 -0.0039

0.0003
0. 0022-0.0551

0. 53 0.80 0.98 —0. 0083 - -0.0030 0. 0023 —0. 0014

0.0092
0.0028

-0.0369
0.0009
0.0009
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atom Z Za v C
1 C2 C3 C5 c6

39 3 core 2. 06 0.49 4. 1719 —3. 1719

SO

So

0.68
0.60
2. 18

1.24
1.00
3. 16

0. 0024
-0.0849
—0. 0033
0.0002

1.30 -5.8849 -0. 3215
4. 15 -2. 0082 -0. 1203

-0.4611 -0. 1168
0. 1371 0. 0065
0.0092 0.0016
0.0027 -0.0010

0. 17 0. 26 0 ' 32 -0.0643 -0.0024
0.68 1.12 1,40 -0. 0105 -0.0038

1.98 -6. 3823 —0. 0887 -0.2111 0. 0629 0.0746 0.0165
0.0164

-0.0434
0.0009
0.0015

Zr 40 4 core 2. 28 0.66 3.9162 -2. 9162

SO

So

0. 77
0. 85

1.40 2. 52 -6.8451
1.24 1.41 -6. 3813

0. 20
1.09

0. 30
1.48

0.37 -0.0685
1.60 —0. 0136

3. 15 4. 09 4.77 -2. 2570

-0. 1478
0. 2719
0.2031
0 ~ 0012

-0.0024

-0.2403
-0.6486
0.0482
0.0113
0.0030

0. 0514 0.0956
-0.2569 -0.0428
-0. 0 127 -0.0734
0.0020 —0.0039

-0.0010 —0. 0002

0.0188
0. 0025

-0.0457
0.0015
0.0013

Nb 41 5 core 2. 41 0.82 3 ~ 7419 -2. 7419
0.83 1.69 2. 01 -7. 2106 -0.3737 —0. 1856 0. 0776 0. 0762 0.0198
0.68 1.03 1.35 -6.6026 —0.8640 —0.5452 0.0161 0. 0149 0.0212

So
So

0.0288 -0.0238 —0.0757—2. 3809
-0.0799

0. 2602
-0.0241

5.57
0. 29

4. 74
0. 22

3.62
0. 17 0.0036 -0.0033
0.72 0.78 0.92 -0.0134 -0.0081 —0.0021 0. 0002

0.0007
0.0026

-0.0479
0.0008

-0.0024

Mo 42 6

So
So

core 2. 57 1.02
1.00
0.74
4. 23
0. 31

1.55
1.07
5.56
0.87

1

2

1

2 0.77 0.85

2 17
1.36
6.47
1.04
1.07

3.8044 -2. 8044
-7.6953 —0. 1283 —0.3159 0. 0214 0.0723 0.0147
-6.8483
-2. 5781

—1.0260
0. 3659

—0.6387 0.0532 0. 0128
-0.0090 -0.0332 —0.0734

0.0265
-0.0487

-0.0933 0. 0030 0.0032 0.0037 0.0016 0.0010
—0. 0145 -0.0088 —0.0038 -0.0044 —0.0043 -0.0074

Tc 43 7 core 2. 82 1.12
1.32 1.66
0.81 1.16

2. 02
1.53

3.3669 -2. 3669
-7.9427 0.8094 -0.5052 -0.0255
-7. 1478 —1.0526 —0.6331 0.0629

0.0585 0.0144
0.0107 0.0183

So
So

4. 26
0.20

6. 15
0. 25

8. 18 -2. 6530 0.2013 0 ~ 0267 —0. 0522 -0.0924 —0.0489
0.33 -0.0931 -0.0313 0.0012 -0.0048 0.0004 -0.0004

0.86 0.95 1.37 -0.0167 -0.0106 -0.0044 -0.0018 -0.0011 —0.0049

R11 44 8 core 3.00
1.22

1.19
1.75

3.0213 —2. 0213
2.82 -8. 1233 0. 1070 -0.3548 -0.0128 0.0818 0.0112

0.85 1.13 1.42 -7.2337 -1.1230 -0.6771 0. 1463 -0.0095 0.0235

So
So

4.85
0.30

6.67
0.48

9.05
0.54

-2. 6367 0.2226
-0. 1068 —0.0140

1.06 1.19 1.63 -0.0195 -0.0115

0.0153
0.0086

-0.0039

—0.0537
—0.0014

—0.0886 —0. 1145
0.0006 -0.0003

-0.002 1 -0.0004 -0.0044

Rh 45 9 core 3.21 1.28 2. 7857 —1.7857

So

1.26 1.45
1.17 1.57

9.84
—1.3860
0. 2534

-7.2953
-2. 6828

0.86
5.53
0.29

-0.7192 0. 1676 —0.0091 0.0217
-0.0003 -0. 1204 —0. 1344 -0.05737.41

0.49 0.60 -0. 1129 -0.0246 0.0091 -0.0006 0.0006
0.0011

—0.0016
-0.00281.47 1.65 1.84 —0. 0235 —0. 0108 —0.0017 -0.0021

1.84 -8. 3853 —0.0860 —0.3080 0. 1507 0.0181 —0.0144

PQ 46 10 core 3.31 1.32 2. 5256 —1.5256

So
SO

5.67
0.29
1.30

7.48
0. 50
1.47

1.39 1.58
1.02 1.18

1.90
1.36
9.90
0.61
1.86

-8.4880
-7.3583

0. 1180
-0.8758

-2. 5474 0. 1555
-0. 1179 -0.0320
—0.0234 —0.0134

0.0320
0.0091

-0.0045

-0. 1258 -0. 1435 -0.0551
-0.0019 0.0016 —0.0019
-0.0024 -0.0008 -0.0052

-0.2996 0. 1352 0.0299 —0.0156
-0.7000 0.2071 -0.0150 0.0246
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TABLE IV. (Continued. )

atom Z Za v c1 c3 c4 c6

Ag 47 11

SO

1.37
1.06
6.39

1.66
1.23
8.34

0.29 0.49
1.54 1.83

core 3.53 1.41
2. 10
1.38

11.05
0.64
2. 34

2. 3857
-8.6835
-7.4504
-2. 6206
-0. 1220
-0.0269

-1.3857
-0.3273
—1.0227
0. 1731

-0.0388
-0.0147

-0.2831
-0.7357
0.0226
0.0082

-0.0040

0. 1536
0.2462

-0. 1551
-0.0033
-0.0020

0.0235
-0.0283
-0. 1601
0.0025
0.0004

-0.0201
0.0285

-0.0569
-0.0023
-0.0035

Cd 48 12

So
SO

core
0

1

1.56
1.16
7.28
0.48
1.84

1.87
1.38
9.47
1.36
2. 25

3.91 1.56
2. 35
1.54

12.62
1.63
2. 96

2. 3128
-9. 1206
-7.8625
-2.8771
-0. 1396
-0.0308

-1.3128
-O. Q844
—1.0969
0.2491

-0.0013
-0.0156

-0.3Q42
-0.7517
-0.0034
0.0081

-0.0035

0. 1489
0.2497

-0. 1818
0.0059

-0.0018

Q. 0246
-0.0418
-0. 1768
0.0018
0.0008

-0.0192
0.0235

-0.0596
0.0014

-0.0022

In 49 3

So
SO

core 1.79
1.09
0.99
0.64
0. 31
0. 20

0.71
1.66
1.24
0.72
0.49
0.29

2.96
1.53
0.91
0.61
0.39

6.7251
-6.3577
-5. 115Q
-5.2975
-0. 1208

-5.7251
-0.3902
-Q. 0727
-1.1521
-0.0381

-0.0203 -0, 0060

0.2686
-0.0221
-0.3480
0.0107

-0.0001

0.3024
0. 1552
0.0497

-0.0080
0.0005

0.0096
0.0791

-0.0493
0.0054

-0.0011

-0.0218
0.0139
0.0448

-0.0041
-0.0006

Sn 50 4

So
So

1.48 1.93
1.59
1.32
0.77

1.28
1.06
0.41
0. 24 0.29

core 1.97 0.78
2. 82
1.94
1.49
0.94
0.38

5.0086
-6.7306
-5.5160
-5.6362
—0. 1525
-0.0203

-4. 0086
0.4760
0.5027
0. 0969

-0.0372
-0.0047

0. 1040
-0.0915
-0.2082
0.0173
0.0005

0.2141
0. 1143

-0.0945
-0.0036
0.0004

0.0298
0.0767

-0.0746
0.0036

-0.0014

-0.0166
0.0122

-0.0179
-0.0036

O. 0011

Sb 51 5

SO

So

1.81
1.51

2. 19
1.90

2.81
2.29

1.27
0.57
0.28

1.42 1.57
0.93
0.34

0.97
0.45

core 2. 12 0.85 4. 0534
-7.0275
-5.7588
-5.7899
-0. 1759
-0.0233

-3.0534
1.0069
0.8375
0.4770

-0.0179
-0.0060

-0.0067
-0. 1826
-0.2460
0.0166
0.0004

0. 1620
0.0699

-0.0974
-0.0029
0.0001

0.0202
0.0757

-0.0660
0.0038

-0.0010

-0.0189
0.0149

-0.0104
-0.0035
0.0007

Te 52 6

SO

So

core 2. 37
2. 07

0.95
2.46 3.08

3.5696
-7.4702

1.48
0.48

1.85
0.63

2. 15
0.84

0. 37 0.48 0.62

-6. 1700
-0. 1852
-0.0194

1.61 1.84 2.40 -6.5344

-2. 5696
1.3178
0.7242
0.5686

-0.0511
0.0016

-0.0530
-0.0138
-0.2999
0.0105
0.0040

0. 1393
0. 1103

-0. 1996
-0.0064
0.0010

0.0120
Q. 0171

-0. 1109
0.0008

-0.0027

-0.0217
-0.0121
-0.0218
0.0043
0.0021

53 7

So
SO

2. 08
1.80
1.70
0.40
0.42

2.47
2. 11
2. 12
0.70
0.58

core 2. 52 1.01
3. 13
2. 63
2.47
2. 64
0.77

3.0856
-7.7267
-6.8333
-6.3176
-Q. 1789
-0.0206

-2. 0856
1.0339
0.9051
0.8200

-0.0723
0.0026

0.0336
-0.0462
-Q. 3541
0.0216
0.0051

0. 1559
0.0953

-0.2309
-0.0041
0.0012

-0.0105
0.0055

-0. 1198
-0.0162
-0.0029

-0.0262
-0.0101
-0.0235
0.0105
0.0021

Xe 54 8 core
0
1

SO

SO

2. 63
2. 47
1.81
1.83
0.42
0.44

1.Q5

2.85
2. 13
2. 13
0.46
0.64

3.29
2. 70
2. 31
0.63
0.85

2. 6837
-7.7726
-6.8951
-6.4148
-0.2015
-0.0302

—1.6837
.1 .6588
0.7362
0.9902

-0.0957
-0.0059

-0.0902
0.0358

-0.3344

0. 1167
0. 1124

-0. 1465
-0.0233 -0.0063
0.0031 -0.0001

-0.0116 -0.0293
-0.0019 -0.0182
-0.0759 -0.0148
0.0113 -0.0062

-0.0010 0.0007
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TABLE IV. (Continued. )
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atom Z Za v c
1 c2 c4 c5 c6

Cs 55 1

so
so

0. 10
0.21

0.29
0.32

core 1.29 0. 17
0.38 0.70
0.27 0.46
0.47 0.52
0. 36 0.41

0.89
0.58
0.67
0.48
0.35
0. 39

-4.8922 -0.7649
-2.3938 -0.9885
—1.2582 -2.6006
-0. 1297 -0.0030
-0.0156 -0.0058

-0.4366
-0. 1755
-0.7020
0.0090
0.0045

7.8924 -6.8924
-5.7556 -0.0946 -0.2594 0.0450

0.0622
0.0125

-0.7802
Q. 0061

—0.0028

0.0541
0.0028
0.0751
0.3752
0.0007
0.0005

0.0198
0.0469
0.0712
0.5278
0.0007
0.0018

aa 56 2

so
so
so

core 1.34
0.57
0.46
0.72
4.48
0. 11
0.33

13.56

0.25
0.72
0.72
0.79

11.55
0. 17
0.57

19.09

0.87
5.3338

-6.5072

1.18
17.54
0.21
0.69

20. 63

-2.9066
10.4771
-0. 1239
-0.0234
-0. 1393

0.90 -6. 1261

-4.3338
0.8849
0.2875

-0.6623
1.7858
0.0107

-0.0073
0.0474

-0.0283
—0. 1905
0.0291
0.0057
0. 1806

-0.0097 0.0316
Q. 8932 -0.2398
0.0021

-0.0023
-0.0608

-0.0074
0.0000

-0.0421

-0.4698 -0.0209 0.0373
-0.6345 -0.2950 -0.0459

0.0135
0.0019
0.0372
0. 3013
0.0043
0.0013
0.0630

La 57 11

so
so
so

core 5.00
2. 56
2. 55
1.50
4.64

2. 00
2. 79
3.03
2. 79
9.39

0.55 1.59
0.41 0.56

11.37 15.03

3.40
3.81
3.32

30.90
1.65
0.66

19.99

3.2494
-10.6839
-10.0938
-8.3844
5.0661

-0.2335

-2.2494
0.0617
0.4797

—1.8837
3. 1425

-0.0690
—0.0249 -0.0048
-0.0272 -0.0065

0. 0545
-0. 1510
-Q. 3217
-0.7802
0.0741
0.0056
0.0089

0.2446
0. 1225
0.0580
Q. 4424

-0.0095
-0.0018
—0.0016

-0.0025
0.0262
0.0317

-0.5445
-0.0049
-0.0001
-0.0019

-0.0350
-0.0149
0.0179
0. 1727
0.0028
0.0025
0.0022

Ce 58 12

so
so
so

core 5. 32
2.95

2. 13
3.31

1.59
5.44
0.70
0.35

13.01

2.92
11.16
0.80
0.59

17.35

2.66 3. 16
3.97
3.95
3.40

38.88
0.90
0.73

23. 09

3.0538
-11.2263

-2.0538
0.5418

—8.5475
5.5065

-1.9114
3. 1187

-0.2686 —0.0795
—0.0247 -0.0084
-0.0301 -0.0073

—10.2554 0.4195
0.0074

-0. 1454
—0.3301
-0.9227
0.0154
0.0059
0.0086

Q. 2271
0. 1292
0.0719
0.3404

-0.0245
-0.0020
-0.0015

0.0132
0.0305
0.0353

-0.4913
0.0205
0.0005

-0.0018

-0.0307
-0.0182
0.0202
0.0987

-0.0062
0.0030
0.0020

Pr 59 13

so
so
so

core 5.53
2.95

2. 21
3.45

0.36
15.00

0.57
20. 26

2. 79 3.28
0.83 1.27
5.48 12.47
0.86 1.23

4. 30
4. 05
3.92

36.99
1.60
0.71

26. 28

2.8422 —1.8422
—11.2831 Q. 2599
-10.2961 0.4690
-7.3276 -4.5230
5.7790 3.5755

—0.2966 -0.0571
-0.0251 -0.0087
-0.0382 -0.0082

0.0406
-0. 1388
-1.9614
-0.8505
0.0381
0.0060
0.0126

0.2377
Q. 1338

-0.0697
0.3427

—0.0160
-0.0026
-0.0020

0.0103 -0.0342
0.0338 -0.0204

-0.0213 -0.0179
-0.6118 0.2323
-0.0014 —0.0022
0.0016 0.0033

-0.0026 0.0027

NQ 60 14 core

so
so
so

5.69
3.07
2.85
0.96
5.67
0.92
0.37

15.35

2. 28
3.62
3.39
1.20

13.03
1.38
0.59

20. 51

4. 52
4. 25
3.92

39.55
1.77
0.73

27. 37

2.6639 —1.6639
-11.2815 0.2837 0.0442 0.2418

—7.6071 -4.0643
5.9335 3.6380

-0.3183 -0.0626
-0.0258 -0.0091
-0.0329 —0.0085

—2. 0017 -0.0662
—0.8933 0.3147
0.0371 -0.0132
0.0062 -0.0027
0.0071 -0.0014

-10.3011 0.3799 -0. 1090 0. 1422
0.0171 -0.0362
0.0351 -0.0236

-0.0387 -0.0086
-0.6081 0.2074
-0.0033 -0.0050
0.0016 0.0036

-0.0014 0.0016
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TABLE IV. (Continued. )

atom Z c2 c3 c6

Pm 61 15

so
so
so

core
0

5.91
3. 19
2. 86
0.85
6.47
0.96
0.39

17.63

2. 36
3.78
3.49
1.45

15.12
1.45
0.65

23. 78

4. 74
4.44
3.63

45. 49
1.85
0.79

31.49

2. 5202 —1.5202
-11.3168 0.2798
—10.3472 0. 1553
-7.2561 -4.8386
6.4562 3.6610

-0. 3384 —0.0732
-0.0270 -0.0092
-0.0386 —0.0096

0. 0443
-0.0743
—1.8650
-0.9714
0.0340
Q. 0067
0.0082

0.2472.
0. 1570
0.0453
0.2472

—0.0132
-0.0023
—O. 0016

0. 0227
0.0311

—O. 1202
-0.6095
-0.0033
0. 0004

—G. 0015

-0.0376
-0.0269

O. 0318
0. 1915

-0.0070
0.0037
0.0017

Sm 62 16

so
so
so

core 6. 07 2. 43
2.98
2. 92
0.88
7. 25

3.72 5.53 —11
3.58
1.48

15.09

—104. 60
3.69

66. 56 6
0.98 1.48 1.91
0. 39 0. 65 0.81

-0
-0

18.09 24. 34 32.44 -0

. 3958

. 2993

. 3462

.2714

. 7894

.3568

. 0275

. 0376

—1.3958
—0.4408
0.0665

-4.8568
3.4372

—0.0880
—0.0101
-0.0100

0. 1275
-0.0513
—1.8893
-1.0144
0.0299
0.0068
0.0066

0.2692
0. 1662
0. 0443
0.2271

-0.0008 —0.0461
0.0287 -0.0292

—0. 1299 0.0379
-0.5059 -0.0087

-0.0027 0.0011
-O. 0015 -0.0012

0. 0040
0.0014

-0.0145 —0.0033 —0.0087

Eu 63 17 core 6. 24 2. 50 2. 2886 —1.2886

so
so
so

0. 0230 -0.04480. 1098 0. 2707
-0.025 1 G. 1764
—1.8075 O. 0301

3.21 4. 09 5.57 —11.2950 —0. 1543
2. 95 3.63 4. 86 —10.3464 -0.0883
0.91 1.58 3.92 -7.2842 —4. 9156

0. 0249
-0. 1176

7. 15 16.06 65. 19 6.8341 3.6642 —1.0629 G. 1867 —0.5247
0.0222 —0. 0170
0.0071 -0.0027
G. 0037 -0.0013

—O. 10351.00 1.46 1.84 -0. 3752 -0.0037
0. 0008

-0.0004
-0.0285 -0.0102
-0.0351 —0.0100

0.84
32. 39

0.41 0. 67
18.63 24, 42

-0.0323
0.0220
0.0133

—0.0103
0. 0042
0.0008

Gd 64 18
3.23
3.09
0.94

4. 13
3.78
1.44

core 6.47 2. 59
6. 14
4. 94
3.72

—10.3903 —0.0394 -O. 0334
-7.3243 -4.8653 -2. 1397

G. 1793
0. 0450

O. 0281
-0. 1612

-0.0326
0.0740

2. 2076 -1.2076
—11.3219 —O. 3734 O. 1301 0. 2828 0.0210 -0.0494

so
so
so

6. 09 20. 42 52. 53 6.6458 4. 7028
1.09 1.63 2. 03 -0. 395 1 —0. 0976
0. 50 0. 73 0. 77 -0.0305 —0.0069

—1.2897
0. 0279
0.0078

—G. 0164 -0.6041
-0. 0153 -0.0022
-0.0025 -0.0003

21.53 28. 93 38.31 -0. 0443 —Q. 0115 0. 0068 —O. 0015 —0. 0011

0.2209
-0.0122
0.0041
0.0014

Tb 65 19 core 7. 15 2. 86 2. 2267 —1.2267
4. 01 4. 85 6.06 —12. 1597 0.5455 —G. 0178
3.78 4. 86 5.79 —11.0516 0.7319 -G. 2260
0.89 1.13 4. 80 -7.3381 -5. 1014 —3. 1648

0. 2425
0. 1016

—G. 2815

0.0331 -0.0375
0. 0552 —0.0174

-0.0193 -0.0042

so

so

8.09 19.92 63.65 6.9653 3.8278
1.41 1.81 1.93 -0.3912 —O. 0063
0.41 0. 61 0. 72 -0.0281 -0.0099

22. 20 29. 71 38.86 -0.0484 -0. 0 120

- 1 . 1642
0.0578
0.0075
0.0095

—G. 0148
-0.0033
-0.0020

—0.0044 —0.0012
0. 0019 0.0057

-0.0016 O. 0019

Q. 1398 -0.5686 0.0998

Dy 66 20 core 7. 34 2. 94 2. 1510 —1.1510

so
so
so

3.60
0.98

4. 46 6.43 —11.0914 0. 1925
1.07 4.95 -7.5499 -4.8079

8.61 19.67 77. 81 7. 1684 3.7722
—0.4123 —O. 0485
-0.0302 -0.0074

1.29
0.49

1.99
0. 64

2. 49
0.69

22. 54 30. 35 40. 40 —0.0418 -0.0123

-0.0897
-3.2512
—1.1300
0.0612
0.0079
0.0028

0. 1503
-0.3080

O. 1562
—O. 0107
-0.0028
-O. 0011

3.94 4. 90 6.48 —12. 1853 G. 1544 0.0476 0.2623 G. 0186 —0.0420
0.0384 -0.0288

-0.0226 -0.0046
-0.5380 0.0147
-0.0066 -0.0044
0.0009 0.0063

-0.0003 0.0005
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TABLE IV. (Continued. )

atom Z Za c
1 c2 c3 c4 c5

Ho 67 21 core 7.61 3.04 2. 0909 —1.0909
4. 30 5. 13 6.43 —'l2. 2311 0.5302 —0.0108 0. 2540 0. 0334 —0.0391

So
So
So

9.47 22. 29 67.95 7.6062 3.8647 —1.0828 0. 1853 -0.6586
1.39 1.97 2. 37 -0.4390 —0. 0516
0.46 0.63 0.73 -0.0302 -0.0094

26. 02 34. 97 46. 35 -0.0529 —0. 0141

0.0543
0.0081
0.0064

-0.0134 -0.0056
—0. 0039 0.0021
—0.0017 —0.0009

3.74 4. 54 6. 51 -11,1537 0. 1971 -0.0920 0. 1570 0. 0362
1.00 1.12 4. 98 -7. 5630 -4.9238 —3.2952 —0.2738 —0.0489

-0.0296
0.0187
0. 1766

-0.0054
0.0061
0.0012

Er 68 22 core 7 ~ 81 3. 12 2. 0304 —1.0304
4. 43 5. 33 6.72 —12.2358 0.5076 —0.0062 0.2585 0. 0377 -G. Q40'l

4. 07 4. 86 6. 27 —11
1.03 1.13 4. 91

. 1562

. 5853
0. 5467 —0. 1428 0. '1454 0.0442

-4. 9303 —3.3638 —0.2337 —0. 0844
—0. 0260
0.0554

3 10.49 22. 24 96.01 7.9047 3.6124 -1.1072 0. 1830 -0.5547 —0.0141
So
SO

SO

1.30 1.95
0.47 0.65

2. 51
0.75

-0.4587 —0. 0952
—0.0311 —0 ' 0098

0. 0492
0. 0084

—0.0166 —0. 0052
—0. 0041 0. 0022

26. 84 36.06 47. 83 -0.0523 -0.0144 0. 0047 -0.0014 -0.0006

-0.0060
0. 0064
0.0008

Tm 69 23 core 8. 00 3.20 1.9772 -0.9772
4. 33 5. 37 7. 25 —12.2384 0. 0973 0.0615 0.2781 Q. 0234 —0.0452
4. 16 5. 01 6. 32 -11.1663 0.48'l 3 -0. 1266 0. 1557 0. 0407 -0.0272
0.99 1.09 4. 76 -7.4010 -5.0757 -3.6580 -0.2274 -0 ~ 1009 0. 1168

3 10.70 23. 01 97.41 8.0188 3.7007 —1.1219 0. 1746 —0. 5675 —G. 0096
So
SO

So

. 63 2. 12 2. 44 -0.4907 -0.0433
0.46 0.82 1.03 -0.0329 -0. 0119

0. 0484
0. 0088

—0.0127 -0.0049
-0.0014 -0.0036

27. 19 36.08 47. 95 —0. 0507 -0. 0151 0.0022 -0.0013 0. 0000

-0.0093
0. 0052
0.0004

vb 70 24
4. 75
4. 28
0. 92

5.66
5. 16
1.01

core 8. 21 3.28
7.29
6. 51
5. 25

1.9271 —0.9271
—'12. 2213 0. 5562 -0.0038 0. 2658 0.0464 -0.0411
-11.1769 0.4612 -0. 119'l 0. 1603 0.0419 -0.0283
-7. 1961 —5. 2544 —4. 0282 -0.4326 —0.0233 0.0352

3 10.84 23. 34104.93 8. 1067 3.8237 —1.1214 0. 1763 —0.5767 —0.0296
So
So

1.80
0. 39

28. 40

2. 35
0. 59

38.60

2. 52
0.75

53.04

-Q. 5165 -0.0274
-0.0296 -0. 0137
—0. 0513 —0. 0151

0. 0481
0.0082
0.0015

—0.0043
-0.0009

0. 0049
0. 0000

-0.0093 -0.0027 -0.0100
0.0083
0.0002

Lu 71 25 core 8. 50 3.40 1.8919 -0.8919
4. 14 5.46 8.81 -12.2748 -0.7498 0. 1571 0. 3173 0.0005 —0.0580
4. 37 5. 26 6.65 -11.2713 0. 3629 —0. 0966 0. 1760 0.0399 —G. 0307
1.43 2. 07 5. 11 -8. 1746 -4. 8216 -2. 0022 0.0534 -0. 1323 0.0657

3 10.00 27. 95 77, 78 8. 1099 4. 6874 —1.1615 0. 0700 -0.7321 0.2595
SO 1.43 2. 17 2. 78 -0. 5342 —0. 1358

0. 73 1.03 1.14 —0. 0448 —0. 0103
0.0406
0. 0103

—0. 0209 —0. 0045 -0.0146
—0. 0043 0. 00 16 0. 0049

32. 21 44. 08 58. 94 -0. 0613 -0. 0177 0. 0028 -0.0013 —0. 0001 0.0004

Hf 72 4 core 2. 02 0.80 5.892 l -4. 8921
0. 96 1.28 1.5 1 —7. 5055 0. 1785 -0.2739 0.0967 0. 0822 0.0337
0.47 0.87 1.30 -6. 3572 —2. 0326 —0. 5975 0. 1046 0.0384 0.0356
1.48 1.66 2. 10 —3. 1747 —0. 7669 0.0457 —0.0085 0.0513 0. 0490

SO

SO

1.04 1.17 1.33 —4. 8138 —1.0321
0. 17 0. 26 0, 32 -0.2748 —0. 0769
0. 76 1.09 1.17 -0.0462 -0.0101

0. 2355
0.0173
0. 0113

—0.0104
—0.0049

0. 0076
0. 0004

—0.0054
0.0047

0. 0761 —0. 0860 —0. 0208
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TABLE IV. (Continued. )

atOm Z c1 c2 c3 c4 c5

Ta 73 5 core
0
1

2

3

SO 1

SO 2

0.68
0.63
1.65
1.02
0. 18
0.76

0.75
0.94
1.82
1.19
0.30
1.24

2. 16 0.86
1.35
1.21
2. 53
1.47
0.39
1.49

4. 7264 -3.7264
-7.7044 —1.6658
-6.8198 -1.2014
-3.2040 -0.6699
-4.8229 —1.2430
-0.2984 -0.0938
-0.0512 -0.0161

-0.3376
-0.6058
0.0252
0. 1775
0.0193
0.0115

0. 1727
0.0729

-0.0195
0.0635

-0.0086
-0.0045

-0.0935
0.0285
0.0403

—0.0915
0.0068
0.0016

0.0128
0.0385
0.0407

-0.0207
-0.0057
0.0051

74 6 core 2. 26
0.70
0.64

0.90
0.77
0.95

1.38
1.22

3.9028 -2.9028
-7.7271 —1.7108 —0.3426
-6.8405 —1.2895 -0.6084

0. 1751
0. 1061

-0.0995 0.0111
0.0304 0.0404

So
So

1.90
1.07
0. 19
0.56

2. 32
1.21
0.29
0.63

2. 60
1.45
0. 36
0.75

—3. 1992 -0.4925
-4.8452 —1.2223
-0.3033 -0.0960
-0.0503 -0.0304

0. 0550
0. 1783
0.0159

-0.0130

-0.0235
0.0535

—0.0132

0.0222 0.0360
-0.0999 -0.0256
0.0103 —0.0074

-0.0144 —0.0142 —0.0248

Re 75 7
0.80
0.84

0.88
1.03

core 2.44 0.98
1.26
1.17

3.5075 -2. 5075
-8.2984 —1.5845 —0.2659 0. 1969 —0. 1164 0.0271
-7.3294 -0.5431 -0.6469 0.0843 0.0255 0.0401

3.49 4. 52 5.24 -3.3902 0.6188 -0. 1286 -0.0317 -0.0240 —0.0112

So
So

1.14
0.22
0.63

1.25
0.33
0.70

0. 1765 0. 0644
—0.0116

-0.0289
-0.0086

—1.2739 —0. 1049
0.0087

1.46 -5.0854
0.40 -0.3363 0.0171-0.0973
0.91 -0.0573 -0.0336 -0.0163 -0.0188 -0.0200 -0.0266

OS 76 8 core 2.47 0.99 2. 9996 —1.9996

So
SO

0.82
0.73 0.0300

-0.0116
0. 0402

—0.0415
-7. 1957 —1.2059 -0.5669 0. 1161
-3.2781 0. 3440 —0. 0168 -0.0203

1.05 1.37
4. 943.20 4. 02

0. 1234
0. 0206

1.02 1.19 1.41 -5.0871 —1.6048 0. 0652 —0. 1268 —0.0371
-0.01400.43 —0.3415 —0. 09940.23

0.61
-0.0067
-0.0267

0.0115
-0.0181

0. 35
0.69 0.91 -0.0576 —0.0369 -0.0180 —0. 0148

0.91 1.24 -8.2345 —1.5905 —0.2208 0. 1894 —0. 1200 0.0269

77 9 core 2. 67
1.06
0.84

1.07
1.16

2. 8089 —1.8089
1.39 -8.9278 -0.7827 -0.0945 0.2077 -0.0766 0.0004

1.12 1.23 -7.4725 -0.9830 -0.6357 0. 1348 0.0252 0.0400
3.26
1.07

4. 26
1.22

5. 63
1.41

-3.5581 0.2703 —0.0036 —0.0238 -0.0415 -0.0083
-5.3733 —1.7325 0.0969 0. 0796 —0. 1406 —0.0410

SO

So
0.55
0.73

1.27 1.36 -0.3470 0.0921 —0.0279 —0 ~ 0111 —0.0032 -0.0019
0.82 1.21 -0.0669 -0.0401 -0.0160 —0. 0117 —0. 0082 -0.0200

Pt 78 10 core 2. 71
1.14
0.96

1.08
1.25
1.08

1.44
1.34

2. 5166 -1.5166
-8.8888 -0.5626 —0. 0692 0.2058 -0.0575 -0.0091
-7.7003 -0.5239 -0.5936 0. 1341 0.0364 0. 0254

SO

SO

3.23
0.97
0.26
0.75

4. 09
1.14
0.40
0.84

5.46 -3.4567 0. 1513 0. 0239 —0.0393 —0 ~ 0516 —0.0071
1.37 -5.4558 -2.0590 -0.0027 0. 0952 -0. 1650 -0.0438
0.49 -0.3813 -0. 1176 0. 0202 -0.0154 0.0116 -0.0094
1.13 -0.0680 -0.0405 -0.0179 -0.0165 -0.0161 -0.0259

Au 79 11 core 2.85
1.09

1.14 2. 3778 —1.3778
1.24 1.62 —8.9867 -1.0964 —0. 1164 0.2108 -0.0732 -0.0077

1.02
3.34

1.12 1.34 -7.8473 -0.5246
3.78 4. 97 -3.6440 0. 0850

-0.6230
0. 0286

0. 1483 0.0363 0.0278
-0.0597 -0.0456 0.0047

1.03 1.17 1.39 -5.6797 -2. 0821 —0.0032 0. 1156 —0. 1733 —0.0507
So
SO

0.26
0.89

0.39
1.04

0.49 -0.3833 -0. 1289
1.39 -0.0791 -0.0452

0.0164
—0.0148

—0.0189
—0.0113

0. 0144
-0.0058

-0.0110
-0.0191
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TABLE IV. (Continued. )

4223

atom Z Za v c2 c4 c5 c6

Hg 80 12 core 2.99
1.24
1.02
3.33

1.20
1.41
1.12
3.79

1.40 -7.9485 -0.7733
5. 37 -3.7392 -0.0139

-0.6648
0.0408

2. 2533 —1.2533
1.84 -9.5486 —0.8291 —0.0650 0.2058

0. 1799
-0.0636

-0.0641
0.0346

-0.0453

-0.0092
0.0315
0.0064

so
so

0.94
0.66
0.89

1.07
1.52 1.63 -0.3943 -0.0023

-0.0257
0. 1059

—0.0457
—0.0317 —0.0117 -0.0036
-0.0193 -0.0181 —0.01571.00 1.39 -0.0796

1.18 -5.893 1 -2. 5065 -0.2075 0. 1636 -0.2383 -0.0339

T1 81 3

so
so

core 1.77
1.24
0.71
0.70
0.91
0.31
0.20

0. 59
1.89
0.96
0.81
1.09
0.52
0. 24

6.7158 -5.7158
5.07 -7.6582 -0.0300
1.30 -5.8681 -1.0109

0. 3351 0.0637 -0.00590. 1161
0.0245 0. 2286 0.0178 -0.0129

0. 1048-0. 1761 0.0331
0. 1868 -0.0910

-6.0798 -0.8199 -0.54861.04
1.21 -4. 1125 -1.3267 -0.0456

-0.0109
0.4578
0.04510.62 -0.3984 —0. 1040 —0.0222 0.0174

0.32 0. 0288 0.0753 0.0435 0.0094 —0.0219 0.0369

Pb 82 4 0.76
1.98
1.21

core 1.92 6.5444 -5.5444
3.57 -8.3628 0. 1094 0. 11911.40
1.77 —6.9590 -0.51270.95 0.0637

-0.60330.79 0.91 1.20 -6.8182 -0.8903

0. 3305
0.2131

-0. 1888

0.0557
0.0485
0.0154

0.0032
-0.0143
0.0916

so
so

1.35
0.45
0.24

1.62
0.71
0. 30

1.82
0.82
0.40

-4. 0362 -1.0178
-0.5058 —0.0654
0. 0257 0.0759

0.5641
0.0487
0.0376

0. 1487 -0. 1291 -0.0624
—0.0128 0.0136 -0.0117
0.0130 —0.0275 0.0245

Bi 83

So
so

core 2. 03
1.62
1.23
0.92

0.81
2. 16
1.48
1.04

3.24
1.75
1.34

5.2104 -4. 2104
—8.6521 0.5682
—7. 2503
-7.0492

0. 3928
-0.4597

0.47
0.28

0.77
0.34

0.89
0.45

-0.5574
0. 0246

—0.0931
0.0777

1.70 1.92 2. 19 -3.6420 —. 0.7705

0.0727
-0.0127
-0.5518
0.53.27

0.2679
0. 1712

-0.2095
0.0841

0.0221
0.0669
0.0055

-0. 1722
0.0509 —0.0114 0.0107
0.0401 0.0112 -0.0261

-0.0041
-0.0059
0.0813

-0.0752
-0.0147
0.0260

Po 84 6

3

so 1

so '2

1.03
2. 28
0.46
0.31

core 2. 17
1.90
1.46

0.87
2. 72
1.82
1.17
2. 58
0.77
0.40

4. 4190
3.20 -8.8296

-3.4190
1.2562 -0.0868

-7.3062 -0.2355 -0.55271.51
2.99 0.4418

0.0494
0.0441

-3. . 0770 -0.5522
-0. 1455
0.0854

0.96 —0.6012
0.02630.52

2. 27 -7.6222 0.9054 -0. 1548
0. 1922
0. 1081

-0.2228
0.0114

-0.0101
0.0076

0.0340
0.0857
0.0158 0.0829

-0. 1948 -0.0717
-0.0116 0.0019 -0.0156
0.0114 -0.0277 0.0277

At 85 7

so
80
so

core
0

1

2. 29
1.94
1.70
1.20
3.37
0.40
0.35
0.96

0.92
2. 25
2. 13
1.42
3.81
0.51
0.46
1.47

2.85
2. 67

3.8179
-9. 1942
-7.9335

-2.8179
0.9723
1.3792

1.78 -7.4567 0. 1638

0.0808 0.2203 -0.0377
-0.3076 0.0369 0.0789
-0.5722 -0.3036 -0.0089

-0.0100
0.0139
0.0768

4. 33
0.72
0.60
1.85

—0.6197 —0.2427
0.0338

-0.0207
0.0977

—0.0058

0.0068—0.0158 -0.0265
0.0488 0.0138 -0.0318
0.0114 -0.0050 -0.0015

-0.0022
0.0304
0.0046

-2. 2899 -0.3680 0.2809 —0. 1026 —0.2173 -0.0672

Rn 86 8 core 2.45 0.98 3.4235 -2.4235

so
so
so

2. 28
2. 11
1.39
4. 35
0.40
0.40
2. 13

2. 66
2. 58
1.61
6. 1.1

0.44
0. 52
2. 85

3.34
2.80

1.8254
2. 1388

-0.0335 0. 1692 -0.0066-9.2586
-8.2305 0.0514

-0.0121
-0.6641 -0.0823
—0.6703 -0.3719-7.6190 0.52161.99

11.37
0.48 0. 1677-0.6370 -0.2736

0. 0462 0. 1135
-0.0112 0.0834
0.0536 0.0175
0.0296 -0.0124

-0.0383
-0.0069

0.67
3.04 -0.0620 —0.0072

—1.8307 -0.7487 0. 1902 -0.2562 -0.3020

-0.0247
0.0221
0.0857

-0.0472
0.0721
0.0353
0.0071
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TABLE IV. (Continued. )

atom z Z c2 c5

Fr 87 1 core 1.23 0. 16 8.4416 —7.4416
0.36 0.53 0.69 -5.8904 -0. 1647 -0. 3018 0. 1280 0.0584 0. 0342
0. 16 0.31 0.96 -4.8581 -1.9964 —0. 6630 0.0699 0. 0869 0. 0008
0.36 0.40 0.63 -3.0529 —1.2715 —0. 2513 0. 0931 0.0451 0.0666
0.38 0.43 0. 52 —3.0166 —1.8140 0. 5796 0.4211 —0. 1318 —0. 0554

So
So

0.06
0. 17

0.09 0. 11 —0. 3418 -0. 1079
0. 27 0.33 —0.0454 -0. 0141

0.0164
0. 0121

—0. 0148
-0.0057

0.0090
0.0001

—0.0102
0. 0035

Ra 88 2 core 0.99
0.49
0.29

0.24 6. 1114 —5. 1114
0.63 0.74 —6.6907 0. 5888 —0. 2960 0. 0687 0. 064 1 0.0304
0.44 0.56 -6.0767 -0.6269 —0.4742 0. 0163 0.0270 0. 0352

4. 09 4. 68 5. 19 2. 2350 —2. 4528 0.9112
0. 50 0. 55 1.36 -3.4169 -0.8443 —0. 0162 0. 0274

0. 1423
0. 0222

—0.0204
0.0217
0.0303

So 0. 13 0.28 0. 32 —0.4357 0. 0239 0. 0183 0. 0086 0.0045 0.0032
So
So . 45 2. 17 2. 74 -0.0441 -0. 0127

0. 19 0.24 0.31 -0.0583 -0. 0278 0. 0011
0. 0412

—0.0084 0. 0076 0.0001
-0.0203 -0.0025 0.0205

Ac 89 3 core 1.49
0. 54

0. 31
0.77

4. 7270 -3.7270
1.02 -8.2168 0. 0920 -0.3962 0. 0779 0. 0604 0. 0275

0.25 0.43 1.28 —6.95 13 -2 0 -0.8600 —O. Q054 0. 127'1 0., 0022
0.56
5.40

0. 62
6. 13 6.91 1.3312 -2. 5472 0.8208 0. 0024

1.23 —4.4657 -1.3359 —0. 1864 0. 0158 0.0018
0.0587

0.0184
0. 1169

So
So
So

0. 15 0. 31 0. 33 -0.4745 0. 0254 0. 0224 0. 0063 0. 0042 0.0039
0. 17 0. 19 0. 25 -0.0590 -0. 0361 -0.0133 —0. 0101 —0.0071 —Q. 0220
1.84 2. 26 2. 98 —0.0409 —0. 0195 —0. 0022 —0. 0031 0. 0029 —0.0010

T21 90 4 core 1.59 0.40 4. 3902 -3.3902
0.62 0. 77 1.35 -9.0342 0. 2160 -0.4277 0. 0541 0.0790 0.0243
0.44 0.48 0.55 —8.4035 —0. 5210 —0. 8289 0.2778 —0. 0169 Q. 0888
0.71 0. 78 1.39 —5. 1907 —1. 1444 -0. 0440 0. 0631 0. 0061 0.0126
6. 1Q 6.99 7.92 0.9203 -2.4893 0. 8255 -Q. 0430 0.0225 0. 1112

So
So
So

0. 13 0.25 0. 33 —0.4753 0. 0100 0. 0973 0. 0201 -0.0170 0.0018
0.23 0. 27 0. 36 —0.0754 —0. 0409 —0. 0109 —0. 0118 —0.0029 —0.0174
2. 08 2. 55 3.36 —0. 0449 -0. 0206 -0.0025 -0. 0029 0. 0026 -0.0010

Pa 91 5 core 2. 06 0.45 3.8349 -2. 8349
0. 56 0.80 1.07 -9.5369 —1. 1466 -0.5565 0. 2043 0. 0460 0 ' 0300
0. 56 0.66 0.75 -9.4357 —0. 2689 -1.1084 0.0661 —0. 0646 0. 0446
0.65
7.31

0.73
8.53 11.54 0.2527 —2. 0863 0. 8840 0. 0351 —0. 1739 0. 1578

0.94 —5.8109 -2. 0532 -0. 3147 0. 1394 —0. 0207 0. 0288

So
So
So

0. 15 0. 29 0. 38 —0.4599 0. 0881 0. 1202 0. 0314 —0. 0267 Q. 0042
0.20 0.23 0.29 —0. 0656 -0.0390 -0.0133 -0.0131 -Q. 0080 —0. 0240
1.80 4. 20 11.43 -0.0460 -0. 0306 -0.0002 -0.0012 -0.0008 0.0012

92 6 core 2. 08
0.60

0. 50
0. 76

3.5183 —2. 5183
1.06 -9.6565 -1.0562 -0.6184 0.2244 0. 0435 0. 0270

So
So
So

. 2

3

0.66
7.27

0.75
8.62

0. 16 0. 30
0. 20
1.84

0.22
2. 15

0.52 0.62 0. 70
0.86

12.50
0. 39
0.29
2. 34

—9.5702 -0.9102 -1.1087
—5.8926 -2. 2312 -0. 3447
0.3088 -2. 0827 0. 8200

0. 2426
0. 1552
0. 0050

—0.0947 0.0639
—0. 0291 0.0317
—0. 1939 0. 1305

-0.5079 0.0599 0. 1053 0. 0283 —0. 0202 0.0011
-0.0656 -0.0414 -0.0128 -0.0018 0.0019 -0.0199
-0.0490 —0. 0311 -0.0134 0. 0041 —0.0002 —0.0007

I
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TABLE IV. (Continued. )

atom Z Za cx 2 c2 c4 c5

Np 93 7

So 1

So 2

So 3

0.62
0.50
0.83

10.07
0. 14
0.30
2. 07

0.91
0.82
0.92

13.17
0.21
0.35
3.81

core 2. 72 0.60
1.17
1.03
1.06

17.30
0.26
0.43

15.69

—10.1156
-7.3516

-2.4063
-2.4042

-1.1744 -1.4501
-0.5832 -0.0985
-0.0880 -0.0427
-0.0504 -0.0319

3.5099 -2.5099
—10.4153 -2. 0222 -0.9596 0. 3000

—1.4851 0. 1011
-0.3586 0.2802
0.9518 0.2863
0. 0640 —0.0126

-0.0064 -0.0079
-0.0044 -0.0027

-0.0075
-0. 1430
-0.0396
-0.2900
0.0003
0.0083

-0.0004

0.0778
0. 1141
0.0466

-0. 1468
-0.0065
-0.0076
0.0014

PL1 94 8

1

2

3
So 1

So 2

So 3

0.59
0.59
0.93

10.23
0. 15
0.33
2. 12

core 2. 76 0.62
0.94 1.25
0.83 0.92
1.02 3.49

13.36 17.64
0.23 0.27
0.41 0.54
4. 64 13.73

3. 1671 -2. 1671
—10.2963 -2.4940
—10.2746 —1.6981
-7.5476 -2. 1067
—1.0461 —1.4985
-0.6093 -0.0944
-0.0987 -0.0487
-0.0520 -0.0335

-0.9263
—1.5450
-0.3096
0.9908
0.0628

-0.0066
-0.0004

0.3236 -0.0057
0. 1102 -0. 1780
0.0732 0. 1190
0.3096 -0.2679

-0.0075 0.0029
-0.0083 0.0087
-0.0019 -0.0005

0.0676
0. 1118

-0.0164
-0. 1382
-0.0069
-0.0075
0.0010

TABLE V. Silicon 1 =0, 1,2 pseudopotentials on a real space mesh as derived from the
coefficients in Table IV. All units in a.u.

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
12
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5

1=0

2.2360
2.1929
2.0610
1.8327
1.5002
1.0598
0.5170

—0.1078
—0.7729
—1.4175

1.9743
—2.3894
—2.6395
—2.7354
—2.7133
—2.6181
—2.4893
—2.3534
—2.2245
—2.1071
—2.0016
—1.9062
—1.8196
—1.7403
—1.6676
—1.6007

—2.4805
—2.4857
—2.5009
—2.5258
—2.5588
—2.5971
—2.6366
—2.6724
—2.7000
—2.7158
—2.7175
—2.7037
—2.6737
—2.6275
—2.5655
—2.4895
—2.4018
—2.3058
—2.2054
—2.1043
—2.0057
—1.9119
—1.8244
—1.7436
—1.6695
—1.6016

1=2
—4.6679
—4.7191
—4.8554
—5.0375
—5.2249
—5.3899
—5.5125
—5.5657
—5.5108
—5.3107
—4.9543
—4.4725
—3.9321
—3.4117
—2.9730
—2.6438
—2.4182
—2.2690
—2.1641
—2.0782
—1.9966
—1.9143
—1.8319
—1.7518
—1.6762
—1.6063
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IV. PERIODIC TABLE OF PSEUDOPOTENTIALS
AND A GUIDE TO USE IT

In Table IV we compile the parameters neces-
sary to synthesize ion-core pseudopotentials for the
elements hydrogen through plutonium. Each ele-
ment is identified by its symbol, its atomic num-
ber, and its valence charge (i.e., the number of elec-
trons chosen to be treated as valence electrons in
the ground state) in columns 1 —3. Column 4,
denoted L, indicates the particular potential, i.e.,
V""'(r) [Eq. (2.21)] or l=0, 1,2,3 for b VI""(r) [Eq.
(2.22)] or the spin-orbit potential b, V&" for /=1,2,3.
The nonlinear-fit parameters n,' ",i =1,2, or a;,
i =1,2,3 are given in columns S, 6, 7, respectively,
in atomic units, i.e., aB,h, . The linear coefficients
c "', i = 1,2 or C;, i = 1,6 defined through Eqs.
(2.21), (2.22), and (2.25) are given in columns
8 —13 in atomic units, i.e., 27.2116 eV. This table
is computer generated to eliminate transcription er-
rors.

For the potentials b VI""(r) and b, VI"(r), but not
for V""(r), the coefficients C; have to be
transformed by an inverse orthogonality transfor-
mation [Eq. (2.28)] to obtain the linear coefficients
A; and A;+3 to be used in Eq. (2.22). This
transformation either necessitates the inversion of a
6&&6 matrix Q;I defined recursively in Eq. (2 26)

based on the analytical overlap matrix S;I and the
subsequent use of Eq. (2.28) or a direct solution of
the linear equation system Eq. (2.25). Due to the
inherent nonorthogonality of the fitting functions

4;(r) [Eq. (2.27)] high numerical accuracy, i.e.,
double precision on a 32-bit computer or single
precision on a 64-bit computer, is required for the
computation. We found that computer routines
performing least-squares approximations to the
solutions of the linear equation system (2.25) gave
the most stable answers. To provide the user with
an independent check on the accuracy of his own
inverse orthogonalization procedure we list in

Table V the l=0, 1,2 ion-core pseudopotentials of
Si. The results are obtained with single-precision
routines on a cRAY-1 computer.

V. AMBIGUOUS CASES

The separation into a well-isolated core and into
a valence shell is not always unambiguously possi-
ble. It may, therefore, be convenient in certain
cases to have a choice of pseudopotentials available
with more or less expanded valence shells. In the
following we briefly discuss four typical cases of
ambiguous behavior.

(i) The heavy IA alkali atoms show relatively
shallow (n —1)p core shells. The eigenvalues of
3p, 4p, Sp, and 6p for K, Rb, Cs, and Fr are,
respectively, —18.8, —16.3, —13.6, and —10.9

'

eV. Accordingly, as discussed in the case of Cs in
Sec. III, the spatial extent of these p functions can
be large. However, the overlap with excited ns, p,
or d states in the valence shell is small due to
strong orthogonality effects. Test calculations on
Cs atoms and also for the semiconducting com-
pound CsAu show that errors due to Sp core po-
larization and exchange nonlinearities amount to
less than 0.2 eV. We therefore present only pseu-
dopotentials for IA atoms with the (n —1)p shell
included in the core (Table IV). Note that the l=0
potentials are derived from the neutral ground-
state configurations to minimize transferability er-
rors due to the nonlinear charge dependence of the
exchange-correlation potential.

(ii) The group IIB atoms Zn, Cd, and Hg im-

mediately following the transition and noble ele-

ments, show 3d, 4d, or Sd electrons with eigen-
values of —10.3, 11.6, and 9.S eV, respectively,
which put them into an ambiguous situation.
While they are corelike in the elemental metals,
they may fall within the valence-band region in
compounds and play a role in bonding. In Table
IV we present potentials for these atoms which in-
clude the (n —1)d electrons into the valence shell,
just as the preceding noble elements. The resulting
d potentials are very strong and may lead to diffi-
culties for certain applications, e.g., where plane-
wave expansions are used. We therefore present in
Table VI alternative potentials which assume the
(n —1)d shell to be included in the core. These po-
tentials are smooth and only weakly l dependent,
similar to those for the neighboring group-III
atoms.

(iii) As mentioned in the Sec. II the rare-earth
elements La through Lu show extremely localized
4f wave functions (r,„=0.5 a.u.). This wave-
function "collapse" which occurs between Ba and
Ce is well documented in the literature and leads
to a number of curious effects. From the point
of view of pseudopotentials the collapse places the
4f charge not only well inside the Sd,6s valence
electrons, but also inside the Ss and Sp core elec-
trons (r,„=1.5 a.u. ) with eigenvalues at about
—SO and —30 eV, respectively. The result is that
excitations involving changes in the 4f occupation
will alter the screening for the Ss and Sp electrons
dramatically, such that a frozen core is no longer a
good approximation. We therefore included the Ss
and Sp electrons into the valence shell for a11 rare-



PSEUDOPOTENTIALS THAT WORK: FROM H TO Pu

TABLE VI. Pseudopotential parameters for the atoms Zn, Cd, and Hg which were constructed without 31, 4d, and

Sd electrons, respectively, in the valence shell. Table is to be used as Table IV.

Atom Z, Z„ l. a3 C) C6

ZIl 30 2 core
0

1

2

so 1

2. 51
1.52
1.02
0.52
0.46

0.75
2. 06
1.13
0.72
0.70

7.62
1.28
1.30
0.86

6. 1450
-4.8062
-3.6742
-2.9756
-0.0443

-5. 1450
0.0120 0. 1552 0.2804 0.0430 -0 ~ 0133

—0.6484 0.0752 0. 1188 -0.0161 0.0266
-1.8692 -0.5538 -0.0237 -0.0331 0.0837
-0.0129 0.0030 -0.0017 0.0011 -0.0007

CQ 48 2 core
0

1

2

so 1

2. 19
1.20
0.81
0.52
0.38

0.60
1.32
0.90
0.59
0.64

1.44
1.01
1.22

8.5331
—7.0001
-5.8819
-5. 1735

0.79 -0. 1366

-7.5331
—0. 1006 0.2713
—1.0097 0.0258
-2.0936 -0.7797
-0.0241 0.0114

0. 1929 -0.0352 0.0675
0.2006 -0.0416 0.0287
0.0217 -0.0286 0.0880
0.0014 -0.0009 -0.0022

HQ 80 2 core
0

1

2

3
so 1

so 2

2. 09
1.10
0.79
0.44
0.41
0.36
0. 15

0.51
1.21
0.87
0.48
0.51
0.66
0. 18

0.99
1.32
0.97
0.81
0.23

-6.7759 -0.9047
-5.9821
-3.7143
-0.4562
-0.0218

-2.3858
-3.3954
-0.0772
0.0191

8.9048 -7.9048
1.33 -7.7678 -0.5451 0.2376

0.0686
-1.0888
-0.9322
0.0455
0.0150

0.2223
0.2543

-0.0186
0.0991
0.0065
0.0076

-0.0396
-0.0154
-0.0040
-0. 1363
-0.0017
-0.0078

0.0890
0.0443
0.0730
0. 1480

-0.0066
0.0174

earth atom potentials given in Table IV. This de-
creases the error for a 4f-Sd excitation associated
with the frozen-core approximation from 1.7 to 0.2
eV.

VI. CONCLUSIONS

We have developed a comprehensive and con-
sistent set of pseudopotentials using guidelines

which have been found through extensive testing to
maximize transferability. Our chief goal has been

the publication of these potentials in a convenient

form for application. A second aim was to discuss
the physics of the pseudopotentials thoroughly, and

explain the reasons underlying the many choices
made in the development process. We anticipate

that the potentials will continue to be useful in

many contexts. When at some future time im-

proved exchange-correlation density functionals or
further improvements in pseudopotential formal-
ism are developed, the results reported here on
reference configurations, radii, and fitting strategy
should greatly simplify the task of producing new

potentials.
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