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Neutron interferometry furnishes a means of measuring directly the coherent part of the

forward-scattering amplitude. We report here a measurement of the low-lying thermal res-

onance in isotopically pure ' Sm, which enables the determination of the Breit-Wigner

resonant parameters. Statistically significant deviations from the Breit-Wigner resonant

line shape are seen. These deviations are interpreted in terms of phonon contributions to
the Doppler-shift-modified line shape, which in a leading-order asymptotic approximation
involves an effective temperature parameter T,ff for metallic samarium, just as in the case
of Doppler-broadened resonant absorption.

I. INTRODUCTION

Near a resonance, the neutron scattering ampli-
tude exhibits a dependence on the incident energy of
the neutron that is given by the Breit-Wigner for-
mula'; the magnitude of the resonant contribution
to the scattering amplitude is Lorentzian, while the
phase of this contribution goes from zero to tr

through the resonance. Neutron transmission ex-

periments provide a means of measuring the neu-

tron absorption cross section, which by the optical
theorem in quantum mechanics is proportional to
the imaginary part of the forward scattering ampli-
tude. Studies of anomalous neutron diffraction
from samples containing a resonantly scattering iso-
tope enable the phase variation to be seen; since
the static structure factor itself has differing contri-
butions in phase from the different species of atom-
ic constituents in the sample crystal at various

Bragg angles, the phase variation of the resonantly
scattering constituent may be obtained with the use
of standard crystallographic techniques. However,
this method involves averaging over many different

Bragg scattering angles in the crystallographic fit,
which may mask the presence of an angular varia-

tion in the resonant scattering amplitude.
Neutron interferometry furnishes a means of ob-

taining directly the real and imaginary parts of the

scattering amplitude in the single direction of for-

ward scattering; the wave function of the neutron

undergoes a phase shift in consequence of passage
through a sample that is proportional to the real

part of the forward scattering amplitude, while the

magnitude of the wave function is diminished in a
ratio proportional to the imaginary part of the for-
ward coherent scattering amplitude. This method
allows the study of a sample with a single species of
atomic constituent. We report here an inter-
ferometric measurement of the real part of the for-
ward scattering amplitude in isotopically pure

Sm metal at a variety of incident wavelengths
close to a Breit-Wigner resonance. However, our
data indicate deviations from a strict Breit-Wigner
resonant line shape.

Bethe and Placzek first showed that nuclear res-
onances are modified by the motions of the target
nuclei; resonant absorption of neutrons by nuclei
bound in crystals was considered by Lamb, who
showed how the presence of phonon modes in the
target crystal would modify the resonant absorption
curve. Resonant diffraction was investigated by
Trarnmell, who developed the resonant scattering
amplitude in a correlation-function formalism in
order to compute the elastic scattering at resonance
from bound nuclei. It is the long "delay time" trt/I

(where 1 is the width of the resonance) between the
entrance and emergence of the neutron from the nu-
cleus in resonant (n, n) scattering that enables the
nucleus to probe its environment during the scatter-
ing process, thus giving rise to condensed-matter
modifications to the Breit-Wigner resonant line
shape. As we shall show, these modifications are
largest in the direction of forward scattering, which
is observed in neutron interferometry. In the next
section, we shall compute the deviations from the
Breit-VA'gner resonance associated with the phonon
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density of states in metallic samarium, and then we
shall show in the description of the experimental re-
sults that these deviations are of the same magni-
tude as those seen in the interferometric measure-
ment.

II. AN EVALUATION OF THE
RESONANT SCATTERING AMPLITUDE

FOR ' Sl IN DISPERSION THEORY

In the vicinity of a resonance the (n, n ) scattering
amplitude for a free nucleus at rest may be written

f=fo+fR (2.l)

(2.2)

where fo is the potential scattering amplitude and

ftt is the resonant (n, n ) scattering amplitude,
which is expressed by the Breit-Wigner formula
when the motions of the target nuclei may be
neglected:

f (k, kf)= (I „/2ih'k )gp

0

X J dt exp E—Et
0 fi

(
—i f (t) '

o r(0))

where ko and kf are the incident and final-state
wave vectors of the neutron, respectively,
hE =E (Ett +—i I'/2), and r(t) is the position
operator of the target neucleus in the Heisenberg
representation [so that (2.5) is the resonant scatter-
ing amplitude per target nucleus]. Thus in general,
the coherent resonant scattering amplitude exhibits
an angular dependence which is bound up with an
interaction between the scattering and condensed-
matter Hamiltonian.

The expression (2.5) is given asymptotically to
leading order in the parameter b,E by (2.2):

fz(ko, kf)-e ' "'(I „gp /2ko)/b. E,
(2,6)

R =(m/M)E (2.4)

(where m is the mass of the neutron and M is the
mass of the target nucleus), p is the reduced mass of
the neutron and target nucleus, I is the total width
of the resonance, and I „ is the neutron partial
width. In ' Sm a low-lying thermal resonance oc-
curs at Eq ——0.096 eV with a total width of
I =0.06S eV and a neutron partial width of
I „=0.000 56 eV; the resonance occurs in the

j=I+—, channel, where I= —,.' This resonance is
accessible to thermal neutrons from a reactor
source.

The motions of the target nuclei will modify the
Breit-Signer line shape so that in the single col-
lision approximation" the coherent resonant
scattering amplitude may be expressed in terms of
two-time correlation functions ':

In (2.2), I is the wavelength of the incident neutron
over 2n, g is a fa.ctor for the spin multiplicity given

by

1

(2.3)
2I+ 1

where j is the spin of the resonant channel and I is
the spin of the nuclear ground state. E is the energy
of the incident neutron, Ett is the energy of the
center of the resonance, R is the recoil energy

where Ak is the momentum transfer to the neutron

upon scattering and W(b, k) is the usual Debye-

Waller factor. Thus the coherent resonant scatter-

ing amplitude satisfies the sum rule'

J dE fg(bg, bk, h, pk)

=inc ' ' "'(I gp/2ko),

where b,( is the energy transfer to the neutron upon
scattering, b, =E Ett, Pk is the azi—muthal angle of
the kokf plane (i.e., the plane of the scattering
triangle) about the axis hk, and the integral is to be
performed by varying 6 while leaving the remain-

ing arguments constant. In the case of neutron in-
terferometry ko ——kf, so that the Debye-Wailer fac-
tor in (2.6) and (2.7) goes to unity. Hence (2.7)
shows that condensed-matter processes merely
redistribute scattering amplitude without changing
its total area; the total area under the real part of
the scattering amplitude is zero by (2.7). It should
be pointed out that I „exhibits a v E variation, so
that the last factor on the right-hand side of (2.7)
may be given its value at E=Ez.

The correlation function on the right-hand side
of (2.5) may be evaluated in the harmonic approxi-
mation by using Bloch's formula, one obtains
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(e
' " e' " ) =exp( ——,

'
I ((kp'ri) )+((kf r') )+2([kf r'(t)][kp r (0)])I), (2.8)

fi
r-, (t)=

2NMcoi( q )

where i indexes the scattering site. The position operators in terms of the usual Bose operators may be written
1/2

I o (q)exp[iq. i —icoj(q)t]a, (q)

+o'*(q)exp[ —iq. i +ico, (q)t]a, (q) J, (2.9)

where i indexes the lattice site, a indexes an occupied site in the unit cell, j refers to the phonon mode in

question, iti is the total number of unit cells in the sample, coj(q) is the angular frequency of the jth phonon
mode of wave vector q, M is the mass of the samarium nucleus, the cr's refer to the phonon eigenvectors,
which satisfy the orthonormality relation

g crg(q) o', (q.)=5JJ, (2.10)

and the a's are the Bose operators. Using (2.9), one may write the correlation function in terms of the phonon
density of states:

([kf.r;(t)][kp r;(0)])= kpkf f dco[n(co)+1] ((kf o )(kp. o )},„exp( icot) —. (2.11)

The left-hand side of (2.11) is an average over the various symmetry sites occupied by the samarium nucleus in
the unit cell; n(co) is the phonon occupation number of a phonon mode of angular freqency co, which is given

by
—pco

n(co) =
l —e-I

(where P is the inverse temperature in units of time), Z(co) is the normalized density of phonon states

1Z(co)= g [$(co —coi(q))+.$(co+.co.(q))]

(2.12)

(2.13)

+

kf and kp are unit vectors in the direction of kf and kp, respectively. The last factor on the right-hand side
of (2.11) is given by

((kf &')(kp o)),„=g f d Q[ekfo j(q)][kp cri (q)]
j,a

f dQq [co &coj(q}&co+dco],

(2.14)

where the integral is evaluated in q, subject to the indicated restraint. Taking components of the eigenvectors,
the dyadic

A""( )c=og f dQea '"'*(q)cr' '"'(q)
j,a f dQq [co &coj(q) &co+dco] (2.15)

is a Hermitian matrix, and therefore it must have real eigenvalues. The crystal structure of metallic samarium
is rhombohedral (space group 83m} with three atoms per unit cell' ' (and hence the inclusion of optic pho-
non modes in the above formalism). Figure 1 shows the crystal structure of metallic samarium. By virtue of
the trigonal symmetry (2.15) can have no nonvanishing elements between directions normal and parallel to the
trigonal axis, respectively; since the eigenvectors of (2.15) must be normal, the dyadic A must have a doubly
degenerate eigenvalue with associated eigenvectors spanning the plane normal to the trigonal axis. Therefore,
letting c (p) be the value of (2.14) when kp ——kf and kp is normal to (parallel to) the trigonal axis, the average
(2.14) may be written more generally as follows:

( (kf cr )(kp cr) ),„=pcos(8p }cos(8f}+Lsin(8p )sin(8f ) (2.16)
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where 8o and 8f are the angles of ko and kf with respect to the trigonal axis in metallic samarium. For the
sake of simplicity in the following discussion, we shall set ko to be parallel to the trigonal axis. Then substi-
tuting (2.11) and (2.8) and (2.5), the coherent resonant scattering amplitude with the inclusion of the phonon
modifications can be written

f„(ko,kf )=(1 „/2lriko)gpe
—[W( ko)+W( kf)] fg g" pg(~)

b.E „ l n! —~ (bE/A) co— (2.17)

where the expansion parameter is

kokf cos(8f )
3A

2M
(2.18)

pl(co)=p[n(co)+1]
Z(co)

(2.19)

and

Pn+1(Ol) = I "Ol Pl(~ )Pn(~ Ol ) .—

(2.20)

A LAYER
( NEXT UNIT

CELL) i I

C LAYER

and the p's are a series of successively convoluted
functions defined such that

The formula (2.17) is an exact expansion for the
coherent scattering amplitude in the harmonic ap-
proximation. It should be noted that the leading-
order term in g exhibits an angular variation pro-
portional to cos(8f ), so that the phonon density-of-
states modification to the resonant line shape large-

ly disappears if an angular average is performed.
The advantage of looking for these effects via neu-

tron interferometry is that they are largest in the
direction of forward scattering; there is no danger
of losing these contributions by averaging over
many different Bragg angles, which may occur in
diffraction studies.

Figure 2 is a plot of the real part of (2.17) com-

puted to second order in 7 for a Debye model of
samarium. The Debye temperature of metallic
samarium is about 169 K (Ref. 15); treating the
acoustic modes isotropically, we may set p= —,, and

the phonon density of states becomes

A LAYER

C LAYER

za '

COZ(co)=3»
~

co
~

(coD
COD

Z(N)=0,
~

co
~

)coD

(2.21)
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FIG. 1. Crystal structure of metallic samarium. Me-

tallic samarium satisfies R3m symmetry with three

atoms per rhombohedral unit cell. However, the struc-

ture can be viewed as a nine-layer close-packed hexagonal

layer scheme as depicted above; the nine layers span

about 9 A.

0.03 0.04 0.05 0.06 0.07 O.OS 0.09 0.10

E (ev)

FIG. 2. Computation of the resonant forward scatter-

ing amplitude in the Debye model. Incident neutron en-

ergies in eV are plotted on the horizontal axis; scattering
amplitudes in units of cm are plotted on the vertical axis.
The solid line is the real part of the unmodified resonant
scattering amplitude for ' Sm as given by (2.2); the bro-
ken line is the quantity (2.17) computed to second order
in the forward scattering direction ignoring anisotropies
and with the use of Debye temperature of 169 K.
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where coD is the Debye frequency. Hence, it is
found that the acoustic modes should give rise to
about a 1% modification of the real part of the
resonant scattering amplitude in the region of in-

terest. However, as Lamb showed long ago, the
zero-point motions associated with the optic modes
can give rise to a large contribution even when these
modes are not excited at the temperature of the ex-

periment. Therefore, we compute the scattering
amplitude in the weak-binding approximation,
which is valid when I /2»kSD, which is true of
metallic samarium, which includes the effects of the
optical modes in an effective temperature.

The series (2.17) does not satisfy the sum rule
(2.7) term by term because of the variation of the
Debye-Wailer factor with incident wave vector (a

r(t) = r(O)+t + .
M

(2.22)

where p is the momentum operator for the target
nucleus at t=0 Sub. stituting (2.22) into (2.5), and

using once again the Bloch formula which is valid

in the harmonic approximation, one obtains

condition that is associated with its nonuniform

convergence); thus in some instances its leading-

order terms may give rise to an erroneous impres-

sion of the nature of the redistribution of scattering
amplitude arising from the presence of the phonon

modes. On the other hand, the leading-order terms
in the weak-binding approximation satisfy the re-

quisite sum rule automatically. In order to obtain

the latter approximation, we write

fR(ko, ko) =(I „/2ifiko)gp I dt e'~"' 'exp — t

AE'=(f'„ /2i fiko)g p exp
. hE'

erfn i (2.23)

The derivation of (2.23) involves a commutator be-
tween position and momentum, which has required
the redefinition of the resonant parameter to

(P /M) =«T,rr
= g fuo, (q)In[coj(q)]+ —, I /N,

fi k
AE'=DE+

2M
(2.24)

A A i
exp — erfn i

4B 2v8
——X

B (2n )!
n!

which is essentially the effect of recoil. The func-
tion on the right-hand side of (2.23) has an asymp-
totic development that may be written

'n

(2.26)

where T,~~ is an effective temperature parameter;
the term —, on the right-hand side of (2.26)

expresses the contribution that arises from zero-

point motion. Since samarium metal has three

atoms per unit cell, its lattice dynamics will contain

so that the right-hand side of (2.23) to leading order
in 1/AE' is given by

fg ( ko ko) ( I'» /2A'ko )

Eo

O

T~p =300K

1
Xgp

2(k,'/2M)((q'/m) )

AE' /A

(2.25)

The second term in (2.25) is the correct form of the
asymptotic coefficient bearing an exact relation to
the resonant line shape, which has been obtained
elsewhere' with the neglect of the force density
contribution (hence the "weak-binding approxima-
tion"). The momentum-squared correlation func-
tion is given in terms of the Bose occupation by

-2, I I I I I I I I

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
E (ev)

FIG. 3. Plot of the leading-order modification to the
resonant line shape in the model of (2.27). Incident neu-

tron energies are plotted on the horizontal axis, while

the real part of the leading-order modification to the
resonant line shape is plotted on the vertical axis. For
this computation T,qq is set equal to room temperature.
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six optic-phonon modes in addition to the three
acoustic modes; optic modes typically can cause
T,ff to be much larger than room temperature
through the mechanism of zero-point motion. Fig-
ure 3 is a plot of the real part of the second term in
(2.25) when T,tt is room temperature; it is seen to
give rise to an enhancement of the resonance
minimum in the energy region of interest.

By substituting (2.26) into (2.25), the (n, n )

scattering amplitude (2.1) can be written to leading
orders

~n gP Pyg EKTeff

2A'k, hE' M gg'

(2.27)

Since the modifications to the resonant line shape
are expected to be no more than a few percent, the
leading-order asymptotic expansion (2.27) should
suffice for its description. Although in principle
the resonant line shape contains the more detailed
density-of-states information (2.19), in using (2.27)
to fit the interferometric measurement described in
the next section, we shall obtain the parameter T,ff,
which involves an integral over the density of states
(2.26). The coefficients of an asymptotic expansion
for a given function do not contain the complete in-

formation about a function; in this case the deter-
mination of more detailed information about the
phonon density of states in metallic samarium by
interferometric means would require measurements
over a more extensive region of energy than has
proved possible on a reactor source.

III. DESCRIPTION OF THE
EXPERIMENTAL PROCEDURE

AND RESULTS

S 1 (220) —-~==
planes

detector

phase rotator

FIG. 4. Geometry of the interferometer. The sample
is driven in and out of one of the two coherent paths
taken by the neutron while the phase rotator varies in

angle of orientation in discrete steps. The detector is
centered on the Bragg reflection.

Neutron interferometry furnishes a means of ob-

taining directly the real and imaginary parts of the
coherent scattering amplitude; the phase shift b, (t

experienced by the neutron wave function in conse-

Sample

quence of passage through a sample of atomic den-

sity n and uniform thickness t is given by

kg=Re(nftk, ), (3.1)

while the magnitude of the amplitude of the neu-

tron wave is diminished through the ratio

r =exp[ —Im( nft A, )], (3.2)

sin(5) sin(8s )
P„,= 2A,vb„„T—

cos (8&)—sin (5)
(3.3)

where 0& is the Bragg angle of the interferometer
crystal, b„, is the real part of the coherent forward
scattering amplitude of the rotator, and v is the
atomic density of the latter. Thus the intensity
measured by the He detector exhibits oscillations
as a function of the angular expression in 5 in (3.3),

where A, is the wavelength of the neutron. We re-

port here an interferometric measurement of the
real part of the coherent scattering length in isotopi-
cally pure ' Sm at a variety of incident wave-

lengths over which the scattering amplitude is rap-
idly changing due to the presence of a low-lying
thermal resonance.

The experiment described here was carried out at
the 10-MW University of Missouri Research Reac-
tor on Beam Port 8; a pyrolitic graphite double-
crystal monochromator prepared the incident beam
with a wavelength resolution of about 1%. A high-

ly perfect silicon crystal, which was cut in the form
of a Bonse-Hart interferometer of the symmetric

type,
' ' provided the means of splitting the in-

cident beam coherently along two different paths
separated by a distance of the order of a few cen-
timeters. Figure 4 illustrates the geometry of the
interferometer. A stepping motor enabled a mount-
ed sample to be driven in and out of the path of the
incident neutron, corresponding to one of the two
widely separated paths taken simultaneously by the
neutron. A slab of silicon or aluminum of thickness
T that could be rotated freely was put in the second
leg of the interferometer and it served as a "phase
flag" by which the relative phase, or optical p'ath

length, of the two widely separated paths could be
determined. A He detector mounted at an adjust-
able position centered on the relevant exiting beam
as shown in Fig. 4 served to measure the intensity
arising from the interference of the two coherent
waves.

If 5 is the angle made by the vertical rotator strip
relative to the blades of the interferometer, then by
(3.1) the phase difference introduced by the rotator
between the two coherent paths may be shown to be
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FIG. 5. Sample raw-data sets from the interferometric
measurement. (a) Data taken at a wavelength of 1.204 A
with the use of the silicon phase rotator. The upper
curve is for sample in, which was obtained by counting
for 186 s; the lower curve is for sample out, with a count-
ing time of 71.6 s. (b) Data taken at a wavelength of
1.140 A; the sample in counting time was 203 s per point,
while the sample out counting time was 163 s. (c) Data
taken at 1.001 A; the upper curve for sample in was
counted for 506 s per point, while the lower curve was
counted for 208 s. The diminution in the amplitude of
the sample in curve is due to absorption in the sample.

the period of which varies inversely as A, . Thus the
period of the sinusoidal wave determines A, (since
the Bragg angle of the interferometer also depends
on A, , it is necessary to use an iterative procedure in
the data analysis). Repeating a given run a number
of times in order to reduce the statistical error, our
experiment yielded values for A, typically good to
about one part in 10 . The thickness of the silicon
phase rotator was 0.2931 cm, while the aluminum
phase rotator was of thickness 1.012 cm.

The ' Sm sample used in the experiment was a
thin foil of thickness t =10.27 IMm obtained from
the Isotope Division, of the Oak Ridge National
Laboratory. This thickness was chosen as a
compromise between excessive absorption attenua-
tion and a measurable phase shift. The sample was
driven in and out of the first path taken by the neu-
tron in the interferometer as 5 was varied in a
discrete and regular fashion point by point. Thus
two sinusoidal curves were obtained for each run,
one giving the number of neutrons counted by the
He detector when the sample was out of the path

for a range of rotator angles, and a second giving
the neutron counts (for some second time interval at
each point) for the same range. The difference in

phase of the two sinusoids constituted a measure-
ment of the quantity b,P in (3.1), the phase shift in-
troduced by the presence of the sample. The data
were analyzed by fitting it to a cosine function of
the angular argument in (3.3) utilizing a linear
least-squares multivariate regression program. The
error bars were obtained by repeating the measure-
ment at a given wavelength several times.

The data reported here were taken with the use of
the (220) reflection on the silicon interferometer,
and the (004) and (006) reflections of the graphite
double-crystal monochromator at, respectively,
longer and shorter wavelengths. Figure 5 shows
some typical data taken at three different incident
wavelengths, respectively. Figures 5(a) and 5(b) de-
pict data taken utilizing the (004) graphite reflec-
tion for which the silicon rotator was employed.
Figure 5(c) shows data taken utilizing the (006) gra-
phite reflection for which a thick aluminum rotator
was employed in order to obtain more sinusoidal
periods within the angular range of 5, which was re-
quired at the shorter wavelengths. The latter figure
shows a marked decline in the contrast for the sam-
ple in data, which arises from the loss of intensity
in the sample path associated with absorption, as
given by (3.2).

Table I shows the measured phase shifts and as-
sociated real coherent scattering lengths for the
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TABLE I. Tabulation of incident neutron wavelength

versus the measured real part of the forward scattering
amplitude in ' Sm.

A, (A) E (eV) Re(f) (10 " em)

1.6725
1.6725
1.605
1.557
1.556
1.555
1.502
1.451
1.451
1.403
1.398
1.296
1.284
1.269
1.266
1.257
1.257
1.210
1.204
1.178
1.167
1.153
1.140
1.090
1.036
1.023
1.001
0.9676
0.9424.

0.029 45
0.029 45
0.031 98
0.033 96
0.03401
0.03408
0.036 50
0.039 13
0.039 13
0.041 85
0.0421
0.049 04
0.049 93
0.051 15
0.051 39
0.052 11
0.052 11
0.056 25
0.056 85
0.059 36
0.06048
0.061 96
0.063 39
0.069 37
0.076 69
0.078 65
0.081 32
0.087 98
0.092 74

1.87+0.028
1.85+0.13
2.03+0.12

2.117+0.018
2.123+0.034
2.16+0.021
2.09+0.049
2.00+0.038
1.97+0.041

2.194+0.02
2.35+0.07
2.38+0.05
2.44+0.043
2.48+0.04
2.4 +0.05
2.63+0.029
2.62+0.03
2.81+0.07
2.82+0.Q27

2.77+0.023
2.92+0.057
3.00+0.057
2.84+Q.Q54

2.63+0.032
2.35+0.067
2.44+0.054

1.637+0.10
1.295+0.038
1.00+0.22

Sm sample at a variety of incident energies rang-

ing from 0.029 to 0.093 eV; Fig. 6 is a graphical
representation of these numbers. The resonant
parameters may be obtained by fitting five points
on the steep slope near the center of the resonance
to (2.2), for which b,P varies greatly while F. varies
slightly. Then one obtains Eq -0.096 eV and
I =0.064 eV, which is in good agreement with the
accepted values.

Near the center of the minimum of the real part
of the scattering length, the interferometric data re-
veals systematically a discrepancy of the order 4%
from the Breit-Wigner variation; hence we fit the
data against (2.27) in order to account for disper-
sion in the sample. The solid line in Fig. 6 is the
best fit to the data from which one finds the follow-
ing values of the potential scattering amplitude (in
cm) for '49Sm and the effective temperature (at
room temperature in K) for metallic samarium:

I 1 I a I I I

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

E (ev)
FIG. 6. Plot of the real part of the forward scatter-

ing amplitude for ' Sm as measured in the inter-
ferometry experiment. The points develop a systematic
enhancement of several percent between 0.05 and 0.06
eV beyond that given by the Breit-Wigner variation.
The solid curve is the best fit of the model (2.27) to the
data, which requires an effective temperature of 735 K,
and a potential scattering amplitude of 0.88)& 10 ' cm.

fo ——(0.84+0.027) X 10

T,ff —735+241) .

However, the interpretation of the data in terms of
the model (2.27) is somewhat ambiguous for the fol-

lowing reasons: (a) The uncertainty in the solid-

state parameter T,ff given by the multivariate re-

gression of the data in terms of the requisite model
is large; (b) The minimum in the experimental data
is displaced in energy somewhat from that which
would be given by the model (2.27). Hence the in-

terpretation of the observed deviations from the
Breit-Wigner variation (which are statistically signi-

ficant) as a solid-state effect in the model (2.27) is
tentative.

IV. CONCLUSION

We have performed an interferometric rneasure-

ment of the real part of the coherent (n, n) forward
scattering amplitude in ' Sm for a variety of in-

cident wavelengths over which a low-lying thermal
resonance is developed. The measurement indicates
a deviation at the 4% level from the strict Breit-
Wigner resonance line shape, which can be account-
ed for by the coupling in dispersion theory to the
phonon density of states of the resonant scattering.
We have determined the potential scattering arnpli-
tude for ' Sm and the value of the effective tem-
perature parameter T,~~ at room temperature for
metallic samarium.



4198 R. E. WORD AND S. A. WERNER 26

Anomalous dispersion is a means that has been
used to solve the phase problem in neutron crystal-
lography. Since this previous work typically has
not accounted for dispersion in the sample, our re-
sult suggests that it may contain systematic errors.
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