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A method for calculating exactly the expected walk length (n ) for random walks on d-

dimensional lattices with traps, reported recently by the authors [Phys. Rev. Lett. 47, 1500
{1981)],is elaborated in some detail in order to exhibit the underlying structure of the
theory and to demonstrate the generality of the approach. Formulated as a problem in ma-

trix transformation theory, the properties of a certain linear operator 3 and its inverse A

are explored in d = 1,2, 3. In d = 1, the analytic result (n ) =N {N+1)/6 derived by Mon-
troll for trapping on a (periodic) chain with a single, deep trap is recovered. In the higher
dimensions d =2,3, extensive new data are reported on the results of exact calculations of
(n ) for two types of reaction-diffusion processes. The first is that of a reactant migrating
toward a target molecule in a volume of d dimensions, and reacting there irreversibly upon
first encounter. Then, it is assumed that the X—1 sites surrounding the target molecule
are not passive (nonabsorbing, neutral) but may react with the diffusing molecule to form
an excited-state complex which may, with nonzero probability s, result in the irreversible
removal of reactant from the system. In both models, the efficiency of reaction is studied
as a function of the spatial extent of the reaction volume and of the boundary conditions
imposed on the underlying lattice.

I. INTRODUCTION

Theories of condensed matter based on lattice
models have played a central role in elucidating the
qualitative and quantitative features of many equili-
brium and nonequilibrium phenomena. Both ana-
lytic and numerical (Monte Carlo, molecular
dynamics) methods have been implemented to study
successfully such phenomena as phase transitions, '

the equilibrium and transport properties of liquids
and polymers, and many problems in solid-state
dynamics. Recently, we have formulated an exact
algorithm for calculating the expected walk length
(n ) (or diffusion time) for a walker (atom, mole-
cule, excitation) undergoing random (or biased) dis-
placements on a finite or infinite (periodic) d-

dimensional lattice with multiple and/or variable-
depth traps (reactive sites). The method, which ex-

pands considerably the class of lattice models acces-
sible to exact analysis, is based on a classification of
the symmetry of the sites surrounding the reactive
site and a coding of the fate of a mobile, reactant
species as it encounters a site of a given symmetry.
As will be illustrated in this paper, the theory is ca-
pable of generalization to many problems in lattice
statistics for which, previously, concrete results

could be obtained only via large-scale numerical
simulation. Not only does the present theory
lead to exact results in any dimension, but the time
scale required for its numerical implementation is
orders of magnitude less costly in central processing
unit (cpu) time than the direct application of Monte
Carlo methods.

The purposes of the present contribution are two-
fold. First, we elaborate in some detail a general
formulation of the theory in order to 'lay stress on
the underlying structural features of the method as
well as to indicate the class of physical problems to
which it may be applied. We exploit the fact that
the theory has a natural expression as a problem in
matrix transformation theory and we point out that
the information contained in the matrix operator A
of the problem, and especially in its inverse A

casts light on the statistical factors involved in cal-
culations of (n ). For example, we show how ma-
nipulations on 3 ' lead directly to the analytic re-
sult (n ) =N(%+1)/6, the classic result ob-

tained " by Montroll and Weiss for trapping on a
d =1 lattice with a single deep trap. Within the
context of the one-dimensional (1D) problem, we
show that the matrix elements of A ' have a simple
geometrical interpretation, one that reflects the
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fraction of probability phase space encountered by
the random walker as it seeks the trap. Then, by
analyzing the (exact) results generated in calcula-
tions of the matrix elements of the inverse operator

in d =2,3, we are able to derive general invari-
ance relations which, when coupled with scaling re-
lations derived from a sequence of decimationlike
transformations, allow the calculation of (n ) for an

n Xn =N site lattice to be replaced by simpler cal-
culations on an n' X n '—:N' site lattice (where
N'&N). It is suggested that this procedure may
open up a new avenue for obtaining analytic results
in the dimensions d =2,3 to complement those al-

ready derived for the dimension d = l.
The second main objective of this paper is to

demonstrate the utility of the theory as a calcula-
tional tool. We do this by presenting the results of
exact calculations of ( n ) for lattices up to
21)(21=441 sites in d =2 and up to
15&15)&15=3375site lattices in d =3. Two sorts
of problems in reaction-diffusion theory are con-
sidered. First, we treat the case of a single deep
trap (trapping probability, T =1) surrounded by
N —1 nontrapping sites in d dimensions, with the
underlying lattices subject to a variety of boundary
conditions. Then, we relax the assumption that the
N —1 background sites are passive (or neutral) and
consider the case that there exists a finite probabili-

ty s (0&s & 1) of reaction at each of the N —1 sites
surrounding a centrosymmetric deep trap. Again
(exact) results are tabulated for a range of lattice
sites and attendant boundary conditions, and a sim-

ple analytic result is derived for the dependence of
(n ) on the background trapping probability s.

Given these two distinct aims, the paper is organ-
ized in the following way. In Sec. II we develop the
theory and show explicitly how the formulation

may be changed to allow situations of increasing

generality to be treated. The ideas are developed us-

ing the example first elaborated in Ref. 5, the 5X 5

periodic lattice with a single centrosymmetric, deep
trap. Then in Sec. III we consider the one-

dimensional chain for this same problem and show
how the classic result of Montroll " can be
recovered. It is particularly easy to introduce the
geometrical interpretation of the elements of the in-

verse matrix A ' within the context of the one-

dimensional problem, and this is included in Sec. III
as well. In Sec. IV we identify relations in d =2, 3

and illustrate how decimationlike transformations
may be performed on the 5 g 5 periodic lattice prob-
lem treated earlier. Also included in this section are
extensive new data on random walks on large lattice

systems in d =2,3 with traps. Then in Sec. V, via
calculation and simple analysis, we show how the
results obtained assuming the N —1 background
sites to be passive are changed (and dramatically so)
when the N —1 sites compete with the central deep
trap for capture of the diffusing reactant. Some
physical and chemical implications of our results
are discussed in Sec. VI, where we indicate as well

problems presently under study using the methods
laid down in this paper.

II. THE THEORY AND ITS GENERALIZATIONS

Let us proceed by assuming initially that the
5)& 5 lattice displayed in Fig. 1 is subject to periodic
boundary conditions. If each of the N —1 sites sur-
rounding the centrosymmetric deep trap (T =1) is
characterized by the same nonvanishing probability
s of trapping (0&s & 1), the point group symmetry
of the lattice unit, by inspection, will be D4s. In
particular, one finds only five distinct types of sites
(labeled 1 —5 in Fig. 1) apart from the central trap.
Let us imagine the walker to be situated at one of
the sites labeled 1 and try to work out the expected
walk length (n ) &

for a walk originating from this
site. The simplest possible case would be the one
for which: (1) the N —1 background sites do not
compete with the centrosymmetric site for trapping
of the walker (i.e., T= 1 and all s =0); (2) the walk-
er on moving away from site 1 has an equal a priori
probability of translating to the trap T, the site 3, or
either of the sites labeled 2. The latter constraint
means that there is one chance in four that the
walker will move one step to the site labeled 3. In a
strictly Markovian situation, the walker, after hav-

ing landed on this new site 3 will have no
"memory" of ever having been on the original site
1. The walker will continue his walk just as if he
had started originally from site 3, except that his
walk length must be incremented by the one previ-
ously taken step. Taking into account all four sites

5 4 5 4 5

4 2 l 2 4
I T l

4 2 I 2 4
5 4 3 4 5

FIG. 1. 5&5 lattice with a centrosymmetric trap T.
The numbers classify the symmetry of the sites of the
lattice.
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surrounding the site labeled 1, together with the
probability p = —, of a neighboring site having been

reached in a (random) displacement from site 1, the
following relation may be written:

&n& = —,'(& & +1)+—,'(& &2+1)

+ —,(&n &2+1)+—,'(&n & +1) .

The above relation for (n ) ~
has several immedi-

ate generalizations and before proceeding with the
further elaboration of the approach, we may indi-

cate some of these. For example, suppose the site
labeled 1 is characterized by a nonvanishing proba-
bility of trapping the walker (i.e., we set 0&s & 1).
In this case, the factor on the right-hand side of the
expression (1) must be weighted by the probability
(1—s) and, to account for the possibility that the
walker is actually trapped at the site 1 at the very
outset, we must include the factor s[1j. The ex-

pression for (n ) &
in this more general situation (one

considered in greater detail in a later section of this

paper) then becomes

(n)~ ——st 1j+(1—s)

sites on the lattice were characterized by a different
setting of s, the above result would generalize to

(n)~ ——s~ j 1 j+(1—s~)

X[—,'(&
& +1)+—,'(&

& +1)

+ —,'(&n &-,+1)+—,'(&n)3+1)],
where we have used the tilde to distinguish the two
sites previously labeled 2. Or suppose, due to the
presence of some external field, that the probability

p of moving from site 1 to neighboring sites is not
characterized by equal a priori probabilities, e.g.,
suppose that the walker is a charged particle and is
influenced by the presence of an electrical field.
Then the bias in motion can be accounted for by as-
signing different probabilities of moving away from
the site labeled 1, depending on the direction taken.
In this case, the above expression (3) generalizes to
read

(n ) ) ——s, I 1 j+(1—s) )

x [pT(&n &T+1)+p2((n )2+1)

+p-, (&n)-, +1)+p3(&n &3+1)] .

&&[ , (&n &—7+1)+,'(&n)—,+1)

+ ,'(&n& —+1)+—,'(.&n&3+ )] (2)

The simpler case, Eq. (1), is recovered upon setting
s =0. Going further, notice that the formulation of
(n) &

is not restricted in any essential way by the
particular choice of constraints, all s;=s or all

p; =p = —,. For example, if it were the case that all

(4)

In fact, in the specification of the p; the only re-
striction is that g,p;=1; there is no requirement

that the p; be constant at all.
Returning now to the elaboration of the method,

if we restrict attention to the case where all p; = —,

and all s;=s, expressions analogous to Eq. (2) can
be written down for (n )2, . . . , (n )s. These are as
follows:

(n )2——s I 1 j+ —,(1—s)[2((n ) ~ +I) +2((n )4+ I)],
(n )3——s I 1 j+—,(1—s)[((n )&+ I)+((n ),+1)+2((n )g+ I)],
(n )4——s [ I j+—,

'
(1—s)[((n )p+1)+((n )3+.1)+((n )4+1)+((n )&+1)],

(n )5——s I 1 j+ 4 (1—s)[2((n )q+1)+2((n )5+1)], (8)

where we have set (n ) T
——0, since the expected walk length from a deep trap (T =1) is zero. The system of

equations, Eq. (2) and Eqs. (5)—(8), comprise five equations in five unknowns which can be solved exactly for
the (n ); and from which information the overall expected walk length (n ) can be computed:

4(n ) ~+4(n )2+4(n )3+8(n )4+4(n ) 5
n (9)

The coefficients prefacing the (n ); count the number of sites of the lattice corresponding to the specification
i; in effect, they reflect the symmetry of the lattice and may be associated with symmetry numbers 0.;. For the
problem at hand, we may write
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o J(n & I+op& n &2+&3&n &3+a4&n &4+as& n &s

N —1
(10)

where o
~
——oq ——o3 ——oz ——4, and o4 ——8 (with N =o &+o2+o3+o4+'crs)

The information displayed in Eqs. (2) and (5)—(8) can be recast into the following matrix representation:

0

0

—q —q 1 —q

0 0 —2q 1 —2q

1 —2q —q 0
—2q 1 0 —2q 0

0 1 —q —2q 0

(n&, 1

(n&, 1

(n&3 —— 1

(n&4 1

(n&, 1

(1—s)
and q:—

4

Once s has been specified, the square matrix on the
left can be dealt with by standard numerical pro-
cedures and the data for the (n &; extracted using
Cramer's rule. In turn, the expected walk length
(n & can be calculated immediately, with the overall
time scale for the calculation essentially negligible
compared with the time required to determine (n &

via a standard Monte Carlo calculation. As not-
ed in Ref. 5, to obtain (n & for the higher-
dimensional, 5)& 5)& 5 periodic lattice with a central
deep trap (T =1) and absorption probability at the
N —1=124 remaining sites set at s=0.01, the
Monte Carlo simulation required 270 minutes of
cpu time on an IBM 370 (9000 walks initiated from
each site were required to produce good histo-
grams), whereas implementation of Cramer's rule
for the same problem required 1.74 seconds on the
same machine. It is this practical consideration,
coupled with the great fiexibility of the approach
(illustrated earlier in this section), that provides the
promise of obtaining exact results on lattice prob-
lems previously inaccessible to analysis. In fact, in
Secs. IV and V we shall report extensive data on lat-
tice problems for which it is fair to say that the
Monte Carlo simulation would never have been at-
tempted, owing to the staggering amounts of cpu
time that would have been required. However, the
ability to calculate (n & economically is only part of
the appeal of the approach described here. One can,
in fact, extract information from the representation
(11) that casts light on the underlying statistical
features of the class of reaction-diffusion problems
considered here, and it is to this objective that we
shall now turn our attention.

We wish to consider the matrix A, where [see Eq.
(11)]

1 —2q —q 0
—2q 1 0 —2q
—q 0 1 —q —2q

0 —q —q 1 —q

0 0 0 —2q

0
0
0

1 —2q

(12)

10 10 10 20 10

10 14 12 26 13

10 12 16 28 14
2

10 13 14 32 16

10 13 14 32 21

from which representation the validity of the junc-
tion and loop theorems can also be verified (again,
accounting for the various o;). Having computed
the inverse, we find that the solution of the problem
follows directly from the matrix equation

together with its inverse A '. First of all, as can
easily be checked by assigning a positive sign to the
matrix element a,j if i &j or a negative sign if i &j
and accounting for the symmetry number cr; of the
lattice sites, both of Kirchhoff's laws (for junctions
and closed loops) are satisfied, which is an immedi-
ate consequence of the conservation of probability
implicit in our approach. Of greater interest is the
structure of the inverse matrix A ' itself. The ele-

ments of the inverse matrix corresponding to (12)
(for arbitrary s) are listed in Appen'dix A. For the
particular case s =0, we have
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4 4 4 8 4 1

(n)2 4 5.6 4.8 10.4 5.2 1

(n)i ——4 4.8 6.4 11.2 5.6 1

(n)g 4 5.2 5.6 12.8 6.4 1

(n)& 4 5.2 5.6 12.8 8.4 1

(14}

1 —2q —q

—2q 1 0
—2q 0 1

0 —2q —q

0 0 0

0 0
—2q 0
—2q 0

1 —q
—4q 1

(15)

In effect, summing the elements of the first row

gives directly the walk (n )i, summing across the
second row gives (n )2, etc. The numbers obtained
are (n ) i

——24, (n )2——30, (n )i——32, (n )4——34, and

(n)5 ——36, which, together with Eq. (9), gives the
exact result (n) =31.67 (see Ref. 5}. Hence, the
sum of the elements of row i gives directly informa-
tion on the expected walk length (n ); frem a par-
ticular site i to a central trap. From such informa-
tion, one can assess directly the influence of spatial
extent (and dimension) on reaction-diffusion pro-
cesses involving strictly irreversible reactions (the
case here with T=1, s =0) or quasireversible reac-
tions (the case T & 1, s =0) or competing chemical
reactions [0&T &1, 0&s & 1 (the case presented in
Sec. V)].

The individual elements a,z of the inverse matrix
A ' are of considerable interest, If one regards the
matrix equation, Eq. (11),as a kind of principal axis
transformation in phase space, then the elements a,z
can be given a geometrical interpretation; this will
be illustrated explicitly in the following section.
More importantly, knowledge of the individual ele-

ments a,j plays a central role in deriving general in-
variance relations and in identifying lattice scaling
transformations; these points will be illustrated in
Sec. V for the planar lattice of Fig. 1. For now we
simply comment on the structural changes in the
original matrix A of our problem when boundary
conditions other than periodic are employed. (The
cases cited below are specified and illustrated in
Ref. 6.) For the case of a centrosymmetric trap T,
periodic and nontransmitting (confining) boundary
conditions lead to exactly the same matrix equation
(11) and hence to the same numerical results; of
course, if the deep trap moves off center, imposition
of these two boundary conditions necessarily leads
to different matrix equations and hence to different
results (a point which was documented numerically

in our earlier study, Ref. 6). Dramatically different
results can be obtained using reflecting boundary
conditions. Here the rows 3 —5 of the matrix equa-
tion (11) are changed slightly, but rows 1 and 2 are
unaffected. Specifically, we have

The remarkable "focusing effect" of this class of
boundary conditions will be illustrated in the data
reported later in this paper. Whatever the boundary
conditions imposed, there will be a certain block of
interior sites of the lattice whose specification in the
associated matrix A will remain unchanged. In par-
ticular, for a two-dimensional lattice of N sites,
there will be a core of —,(N+1)(N —5} distinct
sites whose specification will be invariant to
changes in the boundary conditions, —,(N+ 1) dis-

tinct sites on the boundary of the lattice which re-
fiect changes in the boundary conditions, and a
group of —,(N —1) distinct sites just inside the
boundary layer of the lattice that comprise the inte-
rior sites influenced by the boundary conditions im-
posed. (Similar results can be written down in
d =1,3.) This classification of sites is also useful in
the design of scaling transformations, as will be
shown in Sec. IV.

III. ANALYTIC RESULTS IN DIMENSION
d=1

In the approach taken in this paper, the depen-
dence of the overall walk length (n ) on the param-
eters specifying the lattice (e.g., Np;, o;) is not ex-
posed directly. That is, the (n ) is an implicit func-
tion of these variables. It is therefore of some in-
terest to see if the theory can be inverted analytical-
ly in order to display explicitly the dependence of
(n ) on the variables of the problem. This turns out
to be particularly easy in the dimension d =1 where
we have already at our disposal the classic result of
Montroll '" and Montroll and Weiss. ' In particu-
lar, it is shown by these authors that an exact ana-
lytic result for (n ) in terms of N can be written
down for d =1 in the case where periodic boundary
conditions are assumed, and where the lattice con-
tains a single deep trap (T =1) with all other sites
specified by s; =0. We now show how the result for
this case,
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( )
N(N+1)

6
(16)

141&l&l(ITI(l&l&1 41 l&l&l(lrl(121&141
(0) (b)

CENTROSYMMETRIC TRAP OFF-CENTER TRAP

can be recovered from the matrix A ' defining the
problem.

Two separate cases can be considered and these
are illustrated in Fig. 2. In case (a), we imagine an

odd lattice with a centrosymmetric trap; in case (b),
we consider an even lattice with an off-center trap.

FIG. 2. One-dimensional lattices with a centrosym-

metric trap [case (a)] and an off-center trap [case (b)].

Considering case (a) first, and with the use of the
notation of the preceding section, the matrix equa-

tion to be solved is

1 —q 0 . . 0 0
—q 1 —q

~ ~

~ ~ ~

~ ~ ~

0 0 0

(17)

0 0 0 ' —q 1 —q (ri )()v

0 0 0 0 —q 1 —q (n)( )v()n

where q=(1 —s)/2. Specifically, A is an [(N —1)/2]X[(N —1)/2] matrix, where N is the total number of
sites on the chain. If q =(1—s)/2~ —, (that is, if we set the absorption probability s of all background sites to
zero), then Eq. (17) has the very simple inverse A

222 . 22
244 44
246 66 6 1
~ ~

~ ~

~ ~ ~

~ ~ ~

2 4 6 . . . . . 2[(N —1)/2] 1

(n))
(n),
&rt)s

& n ) [()v-i)n]

Thus,

N —1

2
2=N —1,

(,N —1)/2
2 g (iN i )—

1V —3

2
4+2=2' —4,

N —5

2
6+4+2=31' —9,

2

X —1

N (N —1)(N + 1)
8

N (N —1)(N + 1)
24

and in general,

(n);=iN i— (19)
( )

N(N+1)
6

The expression for overall (n ) may be determined
at once from the weighted average:

To consider the case of an off-center trap [Fig.
2(b)], the matrix A ' is of rank N/2, and has the
structure
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1

2

3

246 N —2—1V

2

2 2 2 . . . 2 2

2 4 4 4 4
2 4 6 6 6 (20)

We remarked in the preceding section that it was
possible to give a geometrical interpretation to the
individual elements in the inverse matrix A '. This
interpretation can be made particularly transparent
in the case d =1 and we illustrate the idea for an
odd lattice with X =7, a centrosymmetric trap, and
s;+0. Here, the matrix A is

The relation (n ); =iN i —can be derived just as
easily in this case, and the construction of

(N/2) —1

X (n &;+(n &iv/2

1 —q 0 (n),
—q 1 —q (n), =1
0 —q 1 —q (n)3 1

(21)

N —1

gives the same (Montroll) result. Although, to the
best of our knowledge, an explicit analytic result for
the case s;+0 in dimension d =1 has not been re-

ported, it turns out that the use of the matrix inver-

sion technique in conjunction with the methods of
function theory leads to an analytic expression for
one-dimensional periodic lattices with s;+0. This
calculation is sufficiently detailed that it will be
presented elsewhere. '

v] ——e]—qe2, (22a)

v2= —qe)+ e2 —qe3 (22b)

v3 ——qe2+( 1 —q)e3 ~

In this notation, the expression for A ' reads:

(22c)

Let us define unit vectors e—:Iei, e2, e3I and the
phase space vectors defined by the row elements of
Eq. (21):

( V2+ V3}'Ci ( V3)( V
i}'Ci (V i)( V2)'Cl

(v2)(, v3). e2 (v3Xvi}.e2 (viXV2)'c2

(v2Xv3} e3 (v3Xvi) e3 (ViXv2)'c3

(23)

As noted in Sec. II, the sum of the elements of row i
gives, in effect, the expression for (n );. Thus here,

(n), = [(v2X v3)+( v3X vi)+( vi X v2)]'ei

(V2X V3)

1 —q
2

1 —q —2q +q2 3
(24)

(n), = [(V2X V3)+( V3X V i)+( V i X V2)]'C2

(V2X V3)

1+q —q

1 —q —2q +q2 3
(25)

(n)3 ——
[(v2)( v3)+(v3X vi)+( vi X v2)] e3

(V2X 73) Vi

1+q
1 —q —2q +q

(26)

The geometrical interpretation of (n ) i follows once
we have identified the significance of the term in

brackets in the numerators of Eqs. (24) —(26), viz. ,

[(v2X V3)+( V3X vi)+( vi X V2)] (27)

Recall that the vectors v i, v2, and v3 ire defined in
terms of a coordinate system with unit vectors

e~, e2, e3. Then v2 =—L, v3—=M, and v] =—N are sim-

ply vectors to noncolinear points L,M,N lying in a
plane p. Since, by construction, the origin of the
coordinate system is chosen not to lie in the plane p,
it can be shown that the vector (27) appearing in
Eqs. (24) —(26) must be perpendicular to p. The
quantity (n ) i is then just the projection of this
resultant vector along the axis e&, divided by the
volume of the parallelepiped (v2)& v3) v &. The indi-
vidual elements of the first row, (v2X v3) ei,
(v3X vi) ei, and (vi X v2) ei, are the three possible
parallelepiped volumes one can construct choosing
one length to be the unit vector e~. Thus, it would
appear .that the principal axis transformation de-
fined by the inverse matrix A ' amounts to project-
ing out and normalizing the volume of probability
phase space traversed by a random walker as it
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moves away from some initial site of the lattice
(here site 1) and confronts N —1 sites where the

trapping probability is s+0 and one site where the
trapping probability is unity. The farther the initial
site is from the centrosymmetric deep trap, the
longer the expected walk length, which is to say the
larger the volume of probability phase space sam-

pled by the diffusing particle before it is irreversibly

trapped. Notice that as s increases from zero, this
probability volume decreases and in Sec. V we will

give evidence as to just how dramatic the decrease
in volume is when background absorption (the case
of competing reactions) is possible. Finally, we note
that the sum of the elements of any given column

can also be given a geometrical interpretation; in the
example studied above, the sum of the elements of
column 1 of Eq. (23) is just (vi X v&) e, the volume

of a parallelepiped constructed by considering the
vectors vz, v~, and the resultant unit vector
e = e i+ eq+ e& of magnitude V 3.

IV. THE CASE OF A SINGLE, IRREVERSIBLE
REACTION IN d =2,3

In this section we consider a single, irreversible
reaction:

where A is the migrating species [a single atom,
molecule, or excitation undergoing random dis-
placements on a square (cubic) lattice], and 8 is the
fixed trap (a target molecule or reactive site, posi-
tioned at a centrosymmetric position on the host
lattice). This was the case considered in our earlier

study, Ref. 6, where Monte Carlo results were re-

ported for (n), the average number of steps re-

quired for trapping. In that work, a variety of con-
straints on the migrating molecule as it encountered
the boundaries of the system were imposed (period-
ic, reflecting, confining boundary conditions) and
the consequences explored. In the bank of Monte
Carlo data reported in Refs. 6—8, the largest lattice
considered was a 5&5X5=xV=125 site lattice.
Inasmuch as the investment of computer time was
already excessive in this case (see the remark in Sec.
II), it was our belief that this particular avenue for
obtaining results on the role of boundaries and sys-
tem size in influencing the dynamics of chemically
reacting systems was essentially closed down. It is
in this sense that one can appreciate the power of
the method introduced in Ref. 5 since, by use of the
algorithm, exact results can be obtained for signifi-
cantly larger lattices on time scales which are on the
order of seconds. Indeed, from a numerical point of

2ls ~ ~

I 9..~ ~

I ?e ~ ~ ~

I5 ~ o ~ ~

I 3soo ~

I Ioo ~ ~

91~ ~ ~

?t ~ 0 ~

5oooo

55 56 57 58 59 60 6l 62 63 64 65

45 46 4? 48 49 50 5I 52 53 54 64

36 37 38 39 40 4I 42 43 44 53 63

28 29 30 3I 32 33 34 35 43 52 62

2l 22 23 24 25 26 27 34 42 5I 6l

l5 I6 17 I8 I9 20 26 33 4I 50 60

IO II I2 l3 14 l9 25 32 40 49 59
6 7 8 9 I3 I8 24 3I 39 48 58

3 4 5 8 l2 I7 2330 3847 57

2 I 2 4 7 II l6 22 29 37 4656
T I 3 6 IO I5 2l 28 36 4555

2 I 2

FIG. 3. Symmetry specification of sites for a d=2
odd lattice with a centrosymmetric trap.

view, the limitation of the method is not the time
factor at all, but rather the (small) round-off error
that one accumulates in inverting the matrix A for
the problem under study. Moreover, as already
stressed in this paper, solving the algorithm for a
given problem allows the tabulation of a more de-
tailed set of data than just (n ) alone; we can also
determine the (n ); and the individual elements of
the inverse matrix A and, in interpreting their
significance, try to obtain perhaps deeper insights
into the physical and chemical nature of the prob-
lem. Reported in this section, then, is an extensive
bank of data for odd lattices with a centrosym-
metric deep trap in dimensions d =2,3. In particu-
lar, we tabulate (n ); and (n ) for two-dimensional

square lattices (up to a lattice of 21X21=441 sites)
and for three-dimensional cubic lattices (up to a lat-
tice of 15X 15X 15=3375 sites). Estimates for ( n )
for higher-dimensional periodic lattices can, of
course, be obtained using the asymptotic theory
developed "

by Montroll and Weiss; however, to
compute the higher-order terms in the Montroll

theory (as is necessary for larger lattices), a summa-

tion of the structure function must be carried out
for every site on the lattice (-3400 sites for the
15X15X15case cited above) and such calculations
are very tedious. (When one considers boundary
conditions other than periodic ones, the Montroll
theory is extremely difficult to generalize and one
must rely almost entirely on Monte Carlo results for
reliable estimates. )

We now move to a presentation of the data and

its interpretation. The coding for the two-
dimensional lattices studied here is given in Fig. 3
and the data for [ (n );) for periodic and reflecting
lattices with a centrosymmetric deep trap (T =1)
and all s;=0 are given in Tables I and II. (Note
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TABLE I. 2D odd periodic-confining lattices with a single deep centrosymmetric trap. Footnotes indicate Montroll es-
timates for two dimensions (Refs. 9—11).

(n)

(n&,
&n&,

(n),
(n &4

(n),
(n),
&n&,

&n&,

(n)~o

(n)i~
(n)„
(n ),4

(n &is

(n)„
&n&is

(n)„
(n &&0

(n)„
(n)„

(n ),4
(n)2s
&n)26

&n &&9

(n &3O

(n)„
(n)„
(n)„
(n ),4

3X3
9 08

8.0
10.0

5X5
31 7

24.0
30.0
32.0
34.0
36.0

7X7
71.6'

48.0
60.5
67.1

70.9
76.0
74.5
76.2
79.1

81.1

9X9
130.6"

80.0
101.2
113.7
120.3
130.0
129.9
132.6
137.6
142.3
136.9
138.4
141.7
145.0
147.0

11X11
209.9'

120.0
152.1
171.8
182.2
197.7
198.9
203.1

211.3
219.7
213.8
215.9
220.6
226. 1

230.6
220.5
221.9
225.4
229.5
233.0
235.0

13X13
310.6'

168.0
213.2
241.6
256.4
279.1

281.6
287.6
299.8
313.0
305.7
308.6
315.7
324. 1

331.8
319.8
321.6
326.1

331.9
337.5
341.9
326.5
327.8
331.3
335.9
340.6
344.2
346.2

15X 15
433.5~

224.0
284.5
323.0
342.9
374.1
378.0
386.3
403.2
422.0
412.7
416.8
426.6
438.8
450.5
435.2
437.5
443.7
451.9
460.3
467.6
448.9
450.5
454.8
460.8
467.2
472.9
477.1

455.5
456.7
460.3
465.2
470.7
475.7
479.4

17X 17
579 4"

288.0
365.9
416.0
441.9
482.7
488.2
499.0
521.5
546.7
534.9
540.3
553.5
570.0
586.5
566.7
569.9
578.1

589.3
601.1
612.0
588.3
590.4
595.9
603.8
612.5
620.9
627.9
601.8
603.3
607.5
613.5
620.4
627.1

632.9

19X 19
748.9'

359.9
457.5
520.6
553.2
604.8
612.1
625.7
654.4
687.1

672.3
679.2
696.2
717.7
739.7
714.6
718.6
729.3
743.9
759.7
774.9
744.8
747.4
754.6
764.8
776.5
788.0
798.3
765.8
767.7
772.8
780.4
789.3
798.3
806.6

21X21
942.4

439.8
559.3
636.8
676.8
740.5
749.7
766.5
802.2
843.0
824.8
833.5
854.7
881.9
910.1
878.7
883.8
897.3
915.8
936.2
956.1

918.5
921.8
930.8
943.8
958.8
974.0
988.2
947.7
950.0
956.4
965.9
977.2
989.0

1000.3

that the results obtained for periodic and confining
boundary conditions will be the same in this case. )

In these tables, comparison is also made with exist-
ing Monte Carlo results and Montroll-gneiss esti-
mates, where available. A coding of the sites for
three-dimensional lattices is presented in Fig. 4 and
the corresponding data are reported in Tables III
and IV.

It can be seen at once from the data that (n ) i in
all dimensions is (n ) i N —1. Th——at this should be
true follows at once from the studies " of Mon-
troll and Weiss wherein they find that the expected
walk length required to return to the origin &for a

walk starting from the origin) is N. If the trap is
considered to be the origin, then (n ) i gives the first
passage time from site 1 to the origin &since here the
walker can only be trapped at the origin). But, of
course, the expected walk length from site 1 to the
origin should be exactly the same as the expected
walk length from the origin to site 1. That is, for a
walker to return to the origin in N steps, it is neces-

sary that its (N —1&th step be on a site 1, since that
is the only site of access to the trap; hence,
(n && N —1. This result ——holds for chains, square
lattices, or cubic lattices on which periodic boun-
dary conditions have been imposed. In his deri-
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TABLE I. (Continued. )

(n&

(n)„

(n)„
&n&„
&n&„
(n &40

(n &4,

(n &4,

(n)4,
(n )44
(n &4s

(n)4,
(n &4,

(n &4s

(n)4,
(n )so
(n&„
(n)„
(n &ss

&n)s&

&n&„
&n&s6

&n &ss

&n&„
&n &„
(n )60
(n)„
(n &62

(n )64

&n&„

'8.92.
31.6.

'71.6.

3x3
9.0'

5x5
317

7X
71.6c

9X9
130.6

11x11
209.9'

130.6.
'209.9.
'310.6.

13x13
310.6'

15X15
433.5N'

481.4

17x17
579 4"

637.1

608.3
609.6
613.1
618.3
624.3
630.3
635.5
639.3
641.3

19x19
748.9'

813.4
779.2
780.6
784.6
790.7
797.9
805.4
812.4
818.2
822.4
785.6
786.9
790.4
795.8
802.2
809.0
815.4
820.7
824.6
826.6

21x21
942.4

1010.2
968.3
970.0
974.9
982.2
991.1

1000.6
1009.9
1018.1
1024.8
981.5
982.9
986.8
992.9

1000.3
1008.4
1016.4
1023.6
1029.4
1033.6
988.0
989.2
992.8
998.2

1005.0
1012.4
1019.7
1026.4
1031.8
1035.7
1037.7

&433.6.
"579 5
'749.1.

vation of the result {n &&
——N —1, Montroll notes

that the result is independent of the structure of the
lattice but that all other first passage times do de-

pend on the structure of the lattice. These insights
of Montroll are absolutely confirmed in our calcula-
tions. The result {n &~ N —1 also appea——rs in cal-
culations presently being carried out on hexagonal
lattices. '3 Even for square (cubic) lattices, when
finite boundary conditions (other than nontransmit-
ting ones) are imposed, the relation ( n & ~ N —1 no-—
longer holds.

There is another simple relation involving {n &;

that becomes evident upon inspection of the data in
Tables I and II. Consider the corner site of a
periodic lattice together with its immediately adja-
cent sites. Specifically, let i be a corner site and

i —1 a next-to-the-corner site (see Fig. 5). As is
seen, it is always the case that

The reason for this two-step difference (for the case
of periodic boundary conditions) is that in a ran-
dom walk the next step from site i will either be to
another site i (located symmetrically on the "other
side" of the lattice) or to a site i —1. Thus, we must
have

I/2
(1——,)
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If, on the other hand, reflecting boundary condi-
tions are assumed, since the walker on site i must
land on a site i —1 on taking the next step, the rela-
tion

(n )', =12 .
A second stage in this procedure might involve the
replacing of sites 2 and 3 by traps; the resulting in-
verse matrix (A ") ' for the problem then becomes

(n); —(n); i ——1

inust hold, and it does (see Tables II and IV). These

relations constitute completely general invariance
relations for the lattice and boundary conditions
considered.

As mentioned in Sec. II, the information laid
down in the inverse matrix A ' for the class of
trapping problems considered here may also be use-
ful in identifying new procedures for obtaining ana-

lytic results in dimensions d =2,3. We wish to il-
lustrate how this might be done by designing a kind
of decimation transformation for a certain two-
dimensional problem. Qualitatively, in a decima-
tion transformation, one proceeds by thinning out a
number of degrees of freedom of the system while,
at the same time, rescaling the effective interactions
between the sites remaining on the lattice. For de-
finiteness, let us focus on the 5X5 periodic lattice
displayed in Fig. 1, for which the inverse matrix
A ' is given by Eq. (13). Suppose we replace the
sites labeled 1 in Fig. 1 by traps and then construct
new matrices A' and (A') ' corresponding to the
new lattice generated. The new inverse matrix for
the problem is

2 1
(A ")

where now,

(n )4' —3,
(n) =5.

LAYER I

3
2 I 2 5 II 21 36 57 85

I T I 4 IO 203556 84

2 I 2

15 ~ ~ ~ ~

13"''

I I ~ 4 ~ ~

9o ~ ~ ~

7 ~ ~ ~ ~

5 ~ ~ ~ ~

LAYER 5

86 93 99 100 101 102 103 104

58 64 69 70 71 72 73 103

37 42 46 47 48 49 72 102

22 26 29 30 31 48 71 IOI

12 15 17 18 30 47 70 100

6 8 9 17 294669 99
7 5 7 8 15 26 42 6493

15 ~ ~ ~ ~

84 85 86 87 88 89 90 91
~ ~ ~ ~

56 57 58 59 60 61 62 90
~ ~ ~ ~

35 36 37 38 39 40 61 89
9 ~ ~ ~ ~

20 21 22 23 24 39 60 88
7 ~ ~ ~ ~

10 II 12 13 23 38 59 87
5 ~ ~ ~ ~

4 5 6 12 22 37 5886

(29)

LAYER 2
15 ~ ~ ~ ~

85
13 ~ o ~ ~

57
I I ~ 0 ~ ~

36
9o ~ ~ ~

21
7t ~ ~ ~

II
So ~ ~ ~

5

92 93 94 95 96 97 $8
63 64 65 66 67 68 97

41 42 43 44 45 67 96
25 26 27 28 44 66 95

14 15 16 27 43 65 94
7 8 IS 2642 6493

3
3 2 3 7 14 2541 63 92

2 I 2 5 II 21 36 57 85
3 2 3

LAYER 4
ISED ~

87 94 100 105 106 107 108 109
130~ ~ ~

59 65 70 74 75 76 77 108
10 ~ ~ ~

38 43 47 50 51 52 76 107
9o ~ ~ ~

23 27 30 32 33 51 ?5 106
7 ~ ~ ~

13 16 18 19 32 50 74 05
12 15 17 18 30 47 70 100

14 II 14 15 16 27 43 65 94
1.6 0.8 2.4 1.2
0.8 2.4 3.2 1.6

'A' '=
1.2 1.6 4.S 2.4 (28)

4 5 6 12 22 37 5886
7 5 7

II 10 II 12 13 23 38 59 87
l4 I I 14

1.2 1.6 4.8 4.4

Estimates for the (n ); can be obtained by summing
across the rows. Whereas for the original matrix

(n), =24,

(n )~=30,

(n )3=32,

(n )4—34,

(n &5——36,

the new (n ); values are

(n)2=6,
(n &'i ——g,

(n),'= 10,

LAYER 5
'15e ~ ~ ~

88 95 IOI 106 IIO III 112 113
13e ~ ~ ~

60 66 71 75 78 79 80 112
I I ~ ~ ~ ~

39 44 48 SI 53 54 79 III
94~ ~ ~

24 28 31 33 34 53 78 IIO

23 27 30 32 33 Sl 75 106

22 26 29 30 31 48 71 101

25 21 25 26 27 28 44 66 95

21 20 21 22 23 24 39 60 88

25 21 25

LAYER 6
150~ ~ ~

89 96 102 107 III 114 115 116
13o~ ~ ~

61 67 72 76 79 81
11~ ~ ~ ~

40 45 49 52 54 55 81 114

39 44 48 51 53 54 79 III

38 43 47 50 Sl 52 76 07
37 42 46 47 48 49 72 102

41 36 41 42 43 44 45 67 96

36 35 36 37 38 39 40 61 89
41 36 41

LAYER 7
150~ ~ ~

90 95 103 108112 115 117 I8
130~ ~ ~

62 68 73 77 80 82 83 117

61 67 72 76 79 81 82 IIS

60 66 71 75 78 79 80 112

59 65 70 74 75 76 77 108

58 64 69 70 71 72 73 103

63 57 63 64 65 66 67 68 97

57 56 57 58 59 60 61 62 90
63 57 63

LAYER 8
150~ ~ ~

91 98 104 109 113 116 118 119

90 97 103 108 112 IIS 117 118

89 96 102 107 III 114 115 116

88 95 IOI 106110 III 112 113

87 94 100 105106 107 108 109

86 93 99 100 101 102 103 104

92 85 92 93 94 95 96 97 98

85 84 85 86 87 88 89 90 91

92 85 92

FIG. 4. Symmetry specification of sites for a d =3
odd lattice with a centrosymmetric trap.
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TABLE II. 2D odd reflecting lattices with a single deep centrosymmetric trap.
suits (Refs. 9—11).

Footnotes indicate Monte Carlo re-

(n)

(n),

&n)s
(n)4
(n&,
&n &6

(n&,
(n &s

&n&,

&n&io

&n&„

&n })s
(n ),4

(n &is

&nhs
(n &is

(n ),9

(n )2o

&n &p&

&n &&2

&n)2s
&n &&4

&n»s

(n &2s

&n &zs

&n &&9

&n &so

&n)s4
&n &ss

&n&ss

(n &„
&n &4o

&n)4,
&n }4p

&n &4s

&n)~
(n )4s
&n)46
&n &47

3X3
3 5'

3.0
4.0

SXS
191

15.0
18.7
18.7
20.3
21.3

7X7
50 7c

35.0
43.9
48.1

50.9
54.2
51.7
53.3
55.6
56.6

9X9
100 7

63.0
79.5
88.9
94.1

101.3
100.5
102.6
106.5
109.7
103.9
105.4
108.3
110.9
111.9

11X11
170.4'

99.0
125.4
141.3
149.7
162.1
162.7
166.1
172.6
179.0
173.5
175.2
179.1
183.4
186.6
176.8
178.1
181.3
185.0
187.7
188.7

13X13
260.9'

143.0
181.4
205.3
217.7
236.7
238.6
243.6
253.7
264.3
257.9
260.3
266.2
273.0
279.0
268.2
269.7
273.6
278.5
283.0
286.1

271.5
272.7
276.1

280.4
284.4
287.2
288.2

15X15
373.3~

195.0
247.5
280.8
298.1

324.9
328.1

335.2
349.7
36S.5
357.3
360.8
369.2
379.3
389.0
37S.S
377.5
382.8
389.7
396.6
402.4
385.6
387.0
390.8
396.1
401.5
406.1

409.2
388.8
390.1
393.5
398.2
403.1

407.4
410.3
411.3

17X 17
508.3"

255.0
323.9
368.0
390.9
426.7
431.4
440.8
460.5
482.4
471.9
476.6
488.1

502.3
516.4
498.9
501.7
508.8
518.4
528.4
537.5
516.5
518.3
523.2
530.0
537.5
544.5
550.0
526.4
527.8
531.6
537.0
543.1
548.9
SS3.6
556.7
529.7
530.9
534.4
539.3
545.0
550.4
554.8
557.7
558.7

19X 19
666.6'

323.0
410.4
466.8
496.0
542.0
548.4
560.6
586, 1

614.9
601.7
607.8
622.8
641.8
661.0
638.6
642.2
651.6
664.4
678.2
691.1
664.4
666.7
673.1

682.1

692.2
702.0
710.6
681.6
683.2
687.9
694.6
702.4
710.3
717.2
722.7
691.5
692.8
696.5
702. 1

708.6
.715.3
721.4
726.1

729.2
694.7
695.9
699.4

21X21
848.7

398.9
507.1

577.2
613.4
670.9
679.1

694.3
726.5
763.1
746.6
754.4
773.4
797.7
822.7
794.6
799.2
811.2
827.7
845.7
863.2
829.5
832.4
840.5
852.1

865.3
878.6
890.8
854.5
856.5
862.3
870.8
880.8
891.2
901.0
909.3
871.4
873.0
877.4
884.0
892.0
900.5
908.6
915.5
920.9
881.2
882.5
886.2

The question now is whether this procedure of re-
placing neutral sites by traps can be given any sys-
tematic basis and whether one can recover (n ) for

the original 5 X 5 lattice using the (scaling) informa-
tion implicit in the transformation and information
derived from invariance relations proved for the de-
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TABLE II. (Continued. )

&n &4s

&n)4,
&n &so

&n &si

&n &„
&n &„
&n &s4

&n &„
&n &ss

&n)„
&n &ss

&n&„

&n &4,

&n &„
&n &4,

&n &44

&n &ss

3X3
3 5'

5X5
19.1b

7X7
50.7'

9X9
100 7"

11X11
170 4'

13X13
260.9'

15X15
373.3g

17X17
508.3"

19X19
666.6'

704.6
710.7
717.0
722.8
727.3
730.2
731.2

21X21
848.7

891.9
898.8
906.1

913.2
919.5
924.3
927.3
884.4
885.7
889.1

894.5
901.0
908.0
914.8
920.8
925.4
928.4
929.4

'35
19.1.

'50.8.

100 7
'170.3.
260.9.

g373.1.
"507 8
'665.7.

cimated lattice.
A systematic procedure for constructing the in-

verse (A") ' starting from the original inverse ma-
trix A ' can, in fact, be identified:

gives directly the (n ),' and the (n );" starting from
the original (n);. The formal set of equations
describing the transformation are

(1} Average the information contained in the
rows of the inverse matrix corresponding to the
sites being replaced by traps.

(2) Subtract the resultant average from the
remaining rows corresponding to sites not affected

by the decimation to generate an inverse matrix of
rank n —a, where a corresponds to the number of
lattice sites deleted and replaced at that stage of the
transformation by traps.

&n &2 &n &2 2 [(n )i+(n )i]

=(n)2 —(n), ,

(n)3 ——(n), —(n), ,

(n)4 ——(n)4 —(n)i,
&n)s=(n)s —&n)),

(30)

(31)

(32)

(33)

Thus, in the example being considered, (A') ' is
generated from A ' by averaging row 1 (with itself
in this case) and subtracting the result, elementwise,
from the other rows of the matrix A '. Then,
(A") ' may be generated from (A') '

by averaging
(elementwise) the rows of (A') ' corresponding to
sites 2 and 3 [viz., the first two rows of (A') '] and
subtracting the result (elementwise) from the
remaining rows of LA'} ' to generate (A") '. This
procedure, used to generate (A') ' and (A") ', also

and secondly,

(n )4 —(n )4 [(n )2+(n )3]

(n &s'= &n &s
—

2 [&n &2+ (n &3]

(34)

(35)

This set of equations inter-relates variables which
must satisfy, as well, the invariance relationships
derived earlier. The first of these is the Montroll
result: (n ) i N —1. This re——sult taken in conjunc-
tion with the self-consistency condition, Eq. (1), for
periodic lattices (with T=1) provides the con-
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TABLE III. 3D odd periodic-confining lattices with a single deep centrosymmetric trap.

(n&
3X3X3

30.5
SXSXS

157 3'
7X7X7

455.3
9X9X9

997.4
11X11X11

1856.1
13X13X13

3104.2
15X15X15

4814.7

(n)i
(n),
&n &3

(n)4
(n),
(n &6

(n&,
(n &9

&n)~0
(n)„

(n &)4

&n &is

(n)i6
&n)„
&n&i8

&n&,0

(n)~z
(n)„
&n &z4

(n&„
(n &p6

&n)„
(n)„
(n &z9

(n)30
(n&„
(n )3p

(n)„
(n &,4

&n &3,

(n &3,

(n &37

&n &„
(n ),„-

&n &40

&n&4,

&n &4&

(n)4,
&n )44

&n)4,
& n,'4,
(n)4,
(n)4,

26.0
31.0
33.0

124.0
146.5
154.6
152.2
157.7
162.4
160.8
164.0
166.0

341.9
404.6
427.7
427.3
441.1
455.2
448.8
458.8
464.6
451.4
455.9
462.7
467.1

459.2
464.7
468.4
468.5
471.1
473.1

728.0
862.1

912.0
913.6
943.3
975.3
959.9
983.0
996.4
974.4
982.9
996.5

1007.8
989.1

1000.2
1010.0
1007.8
1015.0
1020.0
995.3
999.0

1006.6
1013.9
1018.1
1002.2
1008.9
1015.5
1019.3
1014.0
1019.1
1022.3
1023.0
1025.4
1027.4

1330.0
1575.6
1667.4
1671.6
1726.4
1786.6
1757.2
1801.0
1826.8
1788.4
1803.9
1829.4
1852.3
1815.2
1836.2
1856.2
1850.5
1865.4
1875.6
1837.0
1842.8
1855.2
1868.3
1878.4
1847.8
1858.8
1870.7
1880.1
1867.2
1876.7
1884.5
1883.8
1889.8
1894.5
1856.1
1859.4
1867.2
1876.3
1883.8
1887.9
1862.3
1869.6
1878.1
1885.1
1889.1
1875.5
1882.7
1888.7

2196.0
2602.0
2762.0
2852.9
2953.9
2754. 1

2904.3
2978.1

3021.9
2958.7
2984.6
3027.8
3067.8
3003.6
3039.2
3074.4
3063.6
3090.0
3108.2
3045.8
3055.4
3075.8
3098.2
3117.3
3063.5
3081.6
3102.2
3120.0
3095.6
3112.1
3127.0
3124.4
3136.0
3144.7
3088.4
3093.0
3104.3
3118.0
3130.8
3140.3
3097.2
3107.7
3120.6
3132.7
3141.8
3116.3
3127.3
3137.8

3374.0
3998.2
4232.4
4245.2
4385.2
4541.9
4464.6
4579.4
4647.8

4550,5

4590.7
4658.0
4721.6
4620.0
4675.8
4731.9
4714.3
4756.5
4785.9
4689.3
4704.2
4736.1

4771.8
4803.6
4716.7
4745.2
4777.9
4807.7
4767.0
4793.5
4818.5
4813.3
4832.8
4847.5
4762.5
4769.4
4786.4
4807.6
4828.3
4845.4
4775.7
4791.5
4811.5
4831.1
4847.5
4804.6
4821.6
4838.7
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TABLE III. (Continued. )

&n&

3X3X3
30.5

5X5X5
157 3'

7X7X7
455.3

9X9X9
997.4

11X11X11
1856.1

13X13X13
3104.2

15X15X15
4814.7

(n )49

(n )so
&n&si

(n)„
&n &ss

&n &s4

&n)„
&n)sg
(n )s7
(n )sg

(n )sg

&n &go

(n)„
(n &os

(n )gg

&n &gs

(n &gg

(n)„
&n &gg

(n)„
(n )7o
&n &el

(n )7z
(n )7s
(n )v4

(n)„
&n &7g

&n &77

&n)„
&n &ps

&n &go

&n&g|

&n &gg

&n &gs

&n &g4

&n &gs

&n &gg

(n)g~
&n &gg

&n &gg

&n &go

(n)„
(n)gg
(n)„
(n ),4
(n)„
&n )gg

(n)„
(n)„
(n)„

1892.1
1888.3
1893.2
1896.0
1897.2
1899.4
1901.4

3145.8
3136.1
3144.6
3151.3
3151.5
3156.9
3161.3
3106.6
3109.6
3117.5
3127.7
3137.7
3145.3
3149.5
3112.5
3120.0
3129.7
3139.2
3146.6
3150.6
3126.5
3135.0
3143.5
3150.1
3153.7
3142.1

3149.2
3154.9
3158.0
3155.1
3159.8
3162.4
3163.8
3166.0
3168.0

4853.3
4835.1

4849.1

4861.3
4860.2
4S70.1

4878.1

4802.0
4806.0
4816.4
4830.4
4844.8
4857.4
4866.6
4809.7
4819.7
4833.0
4846.9
4859.1

4867.9
4828.3
4840.2
4852.6
4863.7
4871.8
4850.1

4860.7
4870.2
4877.2
4869.4
4877.4
4883.3
4884.0
4889.0
4893.4
4819.6
4822.6
4830.5
4841.4
4853.1

4863.6
4871.4
4875.5
4825.4
4833.0
4843.5
4854.9
4865.0
4872.6
4876.6
4839.8
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TABLE III. {Continued. )

&n&m
&n &io&

&n &io~

&n &ios

&n &ios

&n &+6

&n &&o7

&n &&os

&n ) &o9

&n &»o

&n &l13

&n &114

&n &&]s

&n &»s
&n &119

3X3X3
30.5

5X5X5
157.3'

7X7X7
455.3

9X9X9
997.4

»X»x»
1856.1

13X13X13
3104.2

15X15X15
4814.7

4849.4
4859.7
4869.0
4876.0
4879.7
4857.6
4866.6
4874.8
4881.0
4884.3
4874.2
4881.2
4886.5
4889.4
4887.2
4891.7
4894.2
4895.7
4897.9
4899.9

Monte Carlo result is 157.5. Montroll refined estimate is 157.3 [computed by M. D. Hatlee (private communication)].

straint:

(n)i N —1——

=1+—,
'

&n&p+ —,'(n&s, (36)

where N =25 for the 5X5 lattice. For periodic lat-

tices, we have proved that all corner (i) and next-
to-the-corner (i —1) sites must satisfy the relation

(n );—(n ); i ——2, which requires here that

tion of the system one must be able to say some-

thing about the variables of the final decimated lat-
tice, i.e., the one which results upon replacing sites

1,2,3 by traps. Here, however, the great advantage
is that the analysis of and calculations on the
simpler lattice are easier to carry out. For example,
a self-consistency condition on possible tioo step-
paths from site 5" to site 4" on this truncated lat-
tice gives irnrnediately the constraint

(n) =(n) +2,
&n )', =(n ),'+2,
&n &s' ——&n &g'+2 .

It can also be shown that

((n )4—(n )i)+2= (n )q —(n ) ~,

(37)

(3g)

(39)

(40)

&n&s'= —', &n&g'+ —"
, . (41}

Or going further by counting the total number of
.ways one can pass from site 4 to the trap and con-
sidering all possible walk lengths, the following ex
act expression can be written down:

a relation which is satisfied for any group of five
sites (three distinct) on an n Xn lattice which bears
the same spatial relation to each other as do sites 1,
2, and 4 in Fig. 1; Eqs. (37)—(39) represent special
cases of this constraint. Equations (30)—(35), sub-

ject to the constraints (36)—(40), comprise a nearly

complete system for calculating the (n); (from
which one may calculate (n )) for the 5 X 5 periodic
lattice considered here. To complete the specifica-

&
"= —,

' (1)+(—,
'

)( —,
'

)(2)

+(—,)( —,) g ( —,+ —,)" 'n
5=3

L

(42)

Summing the series, one finds (n )&' ——3, a result ob-
tained earlier by direct calculation. By combining
the information contained in the transformation
equations (30}—(35), by utilizing general invariance
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TABLE IV. 3D odd reflecting lattices with a single deep centrosymmetric trap.

(n&,
(n),
(n),
&n &4

(n&,
(n),
&n),
&n&s

(n),
&n &io

(n)„
&n)„
(n&„
(n)i4
(n)„
(n)i6
&n&„
(n &&8

(n)„
&n )20
(n &„
(n&„
(n &„
&n )z4

&n &~5

(n)„
(n &p7

(n)„

&n)„
&n)33
(n ),4
(n)„

(n)„
(n)„
(n)„
&n &40

(n &4,

&n &4i

(n)4,

(n)4,
&n &46

(n)4,
(n &48

3X3X3
8.8

7.0
9.0

10.0

5X5X5
78.9'

63.0
74.4
78.6
74.4
78.6
80.8
80.8
82.2
83.2

7X7X7
283.6

215.0
254.2
268.5
267.2
276.0
284.4
280.9
286.8
290.3
278.3
282.3
287.5
289.7
285.1

289.2
290.9
291.9
293.1

294.1

9X9X9
696.1

511.0
604.9
639.8
640.3
661.0
682.9
672.6
688.3
697.3
680.7
686.8
696.4
703.7
691.2
699.1
705.4
704.4
709.0
712.3
690.7
694.2
700.8
706.3
708.4
697.1

702.8
707.7
709.6
707.0
710.7
712.2
713.6
714.7
715.7

11X11X11
1386.9

998.0
1181.7
1250.3
1253.1
1294.0
1338.6
1317.6
1349.3
1368.2
1339.1
1350.7
1369.5
1386.0
1359.1
1374.6
1388.9
1385.1
1395.7
1403.0
1372.6
1377.2
1386.7
1396.4
1403.3
1381.0
1389.5
1398.4
1404.7
1396.0
1403.0
1408.2
1408.3
1412.3
1415.5
1381.9
1385.0
1392.2
1400.0
1405.7
1407.7
1387.8
1394.4
1401.6
1406.9
1408.9
1399.6
1405.6
1410.1

13X13X13
2434.6

1727.0
2046. 1

2165.6
2171.5
2242.8
2321.7
2283.1

2340.6
2374.6
2324.9
2345.2
2378.7
2409.5
2360.0
2387.7
2414.6
2406.6
2426.7
2440.5
2391.2
2398.8
2414.8
2432.0
2446.2
2405. 1

2419.4
2435.1

2448.4
2430.2
2442.9
2453.9
2452.4
2460.9
2467.4
2421.3
2425.2
2434.4
2445.5

2455.3
2461.9
2428.6
2437.2
2447.6
2456.9
2463.2
2444.3
2453.1

2461.1

15X15X15
3906.3

2743.0
3250.3
3440.6
3450.7
3564.4
3691.3
3628.8
3721.7
3776.9
3697.9
3730.4
3784.7
3835.7
3754.2
3799.1
3844.0
3830.1

3863.8
3887.1

3809.0
3821.0
3846.8
3875.3
3900.3
3831.2
3854.1

3880.2
3903.6
3871.7
3892.7
3912.3
3908.5
3923.7
3935.2
3865.9
3871.6
3885.4
3902.6
3918.9
3931.9
3876.7
3889.6
3905.7
3921.2
3933.7
3900.3
3914.0
3927.5

relations [exemplified here by the constraints
&36}—(40}],and by deriving an exact result (42) for
the eventual, simplified lattice (two distinct, neutral

sites 4 and 5, with the rest traps), (n ) for the origi-
nal 5)&5 periodic lattice can be recovered exactly.
%e now point out that if the analytic relationship
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TABLE IV. (Continued. )

4183

(n&
3X3X3

8.8
5XSXS

78.9'
7X7X7

283.6
9X9X9

696.1
11X11X11

1386.9
13X13X13

2434.6
15X 15X15

3906.3

&n)4,
(n)so
(n)„
(n &sr

(n)ss
&n &,4

(n)„
(n&„
&n)g7
&n &ss

(n)„
(n)~
(n)„
(n &ss

(n )ss
&n &ss

(n)ss

&n)ss
&n &„
(n )70

(n ),g

&n&„
(n ),4
&n &,g

(n )7s
&n &,7

(n &7s

(n)„
&n &so

(n )sl
(n)„
(n)sg
&n)s4
(n )s5
(n)s,
(n)„
(n ),s
&n&„
(n )so
(n)„
&n&„
(n ),3
(n ),g
(n )9s
(n ),s
(n), ;
&n &ps

(n)„

1411.7
1410.2
1413.8
1415.1
1416.7
1417.8
1418.8

2466.6
2460. 1

2466.6
2471.2
2471.9
2475.5
2478.7
2430.2
2433.2
2440.6
2449.9
2458.4
2464.2
2466.2
2435.9
2442.9
2451.7
2459.8
2465.4
2467.3
2448.9
2456.5
2463.6
2468.5
2470.3
2462.8
2468.6
2472.8
2474.2
2473.5
2476.9
2478. 1

2479.8
2480.9
2481.9

3938.5
3924.9
3935.9
3945.1

3944.7
3952.1

3958.2
3894.2
3897.6
3906.6
3918.4
3930.3
3940.2
3946.6
3900.8
3909.3
3920.6
3932.1

3941.6
3947.8
3916.7
3926.7
3936.9
3945.6
3951.2
3935.0
3943.7
3951.1
39S6.0

. 3950.9
3957.0
3961.2
3962.2
3965.7
3968.8
3902.9
3905.7
3913.3
3923.5
3934.1

3943.0
3948.9
3950.9
3908.4
3915.7
3925.5
3935.7
3944.3
3950.0
3952.0
3922.1
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TABLE IV. (Continued. )

(n)

(n)m
(n &&o&

&n &&oi

&n &ioi

&n &&os

(n &)o6

(n &&o7

&n &&os

&n &&&o

&n &»4

(n&iu
&n &ii6

(n )»7
& n )118.
&n &i&9

3X3X3
8.8

5X5X5
78.9'

7X7X7
283.6

9X9X9
696.1

11X11X11
1386.9

13X13X13
2434.6

15X15X15
3906.3

3930.9
3940.1

3948.0
3953.2
3955.0
3938.4
3946.4
3953.2
3957.7
3959.3
3953.0
3958.8
3962.6
3964.0
3963.7
3967.0
3968.1
3969.9
3971.0
3972.0

'Monte Carlo result is 78.8.

[Eqs. (39) and (42)] between sites 4 and 5 of the sim-
plified lattice could be reconstructed in terms of the
variables (N, d) of the problem, this could be used to
derive an analytic expression for (n ) for the origi-
nal problem. It is in this sense that we believe that
the procedure sketched out above may provide a
new avenue for deriving analytic results for random
walks on periodic (or finite) lattices with traps.

V. THE CASE OF COMPETING
CHEMICAL REACTIONS

Consider a lattice in which there is a central deep
trap (T=l) surrounded by N —1 sites at which
there exists a finite probability (0&s & I) of the
walker being trapped in its d-dimensional, random
motion on the lattice. This lattice problem is of
considerable chemical interest in that it allows one
to treat reaction-diffusion problems in which the
diffusing reactant molecule can undergo reaction at
the N —1 auxiliary sites prior to reacting (irreversi-
bly) at the centrosymmetric reaction center. The
energy transfer process in photosystem I can be
studied using this model, since energy may be lost
(via such competing processes as fluorescence and
internal conversion) during the migration of an ex-
citation through a chlorophyll network before the

excitation actually reaches the reaction center.
In Tables V and VI we present the (exact) results

for the average walk length (n & for a diffusing
species moving on a periodic lattice in dimensions
d =2,3, when the probability s; of background ab-

sorption is assumed to be the same for all sites of
the lattice. Comparison of the results presented in
Tables V and VI with the corresponding results of
Tables I—IV (where all the s; were set to zero) re-
veals that the effect of incorporating background
absorption (i.e., including competing reaction
centers) is quite dramatic. For example, in the case
of a 15X15X15 periodic lattice, (n ) drops from
-5000 when s =0 to -20 when the trapping prob-
ability of the N —1 sites surrounding the trap is set
at s =0.05. In fact, examination of the data on sys-
tems of different dimensionality, spatial extent and
boundary conditions shows that the influence of
these variables on the outcome of the calculations is
of far less significance than the effect derived from
switching on competing reaction centers. This may
be seen in a more graphic way by displaying the re-
sults of representative calculations of (n) versus
the parameter s (see Figs. 6 and 7). The structure of
the curves laid down in these figures strongly sug-
gests that (n) is asymptotically dependent on s
(more precisely, 1/s). That this is the case can be
seen in a simple calculation. In our setup of the al-
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TABLE V. 2D periodic-confining lattices with a centrosymmetric trap and background trapping (s@0). Footnotes
indicate Monte Carlo results.

0.0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90

'7.71.
"3.08.
'1.93.

3X3
(n)
9.00
6.40
4.97
4.06
3.44
2.98
2.63
2.35
2.13
1.94
1.79
1.54
1.36
1.21
1.10

5XS

31.67
12.39
7 71'
S.60
4.40
3.62
3.08"
2.68
2.37
2.13
1 93c

1.63
1.41
1.24
1 ~ 11

7X7
(n)

71.61
15.64
8.79
6.12
4.69
3.81
3.21
2.77
2.44
2.17
1.96
1.65
1.42
1.24
1.11

9X9
(n)

130.60
17.27
9.27
6.34
4.82
3.89
3.26
2.80
2.46
2.19
1.98
1.65
1.42
1.25
1.11

11X11

(n)

209.93
18.16
9.51
6.45
4.88
3.92
3.28
2.82
2.47
2.20
1.99
1.66
1.42
1.25
1.11

13X13

&n)

310.63
18.68
9.65
6.51
4.91
3.95
3.30
2.83
2.48
2.21
1.99
1.66
1.43
1.25
1.11

15X15

(n)
433.54

19.01
9.74
6.55
4.93
3.96
3.31
2.84
2.49
2.21
1.99
1.66
1.43
1.25
1.11

17X17

(n)

579.42
19.23
9.80
6.57
4.95
3.97
3.31
2.84
2.49
2.21
1.99
1.66
1.43
1.25
1.11

19X19

&n)

748.87
19.38
9.84
6.59
4.96
3.97
3.32
2.85
2.49
2.22
2.00
1.66
1.43
1.25
1.11

21X21

(n)

942.43
19.49
9.87
6.61
4.97
3.98
3.32
2.85
2.49
2.22
2.00
1.66
1.43
1.25
1.11

gorithm (Sec. II), we defined a walk in which the
walker is trapped at the site of the walk's origin as
having a length of one step. In this convention, the
probability p(n) that the walker is trapped on the
nth site is given by

p(n)=(1 —s)" 's,
with

(n) = g np(n) .
n=1

We find:

or,

g n(1 —s)"
[1—(1—s)] s

1(n)= —.
S

Thus, in a system in which the background sites
have been switched on, the expected duration of the
walk throughout the system is bounded by I/s. For

Since (1—s) & 1 for s+0 (the series is obviously not
convergent for s =0), then

(n ) = g ns(1 —s)"
n=1

=s g n(l —s)"
n=1

60-

50-
I

I

I40'
t

I

c 50)
I

I

20

IO

00 0.2 0.4 0,6 0,8 I.O

FIG. 5. Coding of corner and next-to-corner sites on
an n Xn square lattice.

FIG. 6. Expected walk length (n) on a 5X5 square
planar lattice vs the background absorption probability s
for T =1 and s ranging from 0 to 1 (solid line) and for
T =0.5 and s ranging from 0 to 0.5 {dotted line).
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TABLE VI. 3D periodic-confining lattices with a centrosymmetric trap and background trapping (s+0).

3X3X3
(n)

5X5X5 7X7X7
(n)

9X9X9
(n)

11X11X11
(n&

13X13X13 15X15X15
(n) (n)

0.0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90

30.46
12.27
7.68
5.59
4.40
3.63
3.08
2.68
2.37
2.13
1.93
1.63
1.41
1.24
1.11

157.32
17.80
9 44'
6.42
4.87
3.92
3.28
2.82
2.47
2.20
1.99
1.66
1.42
1.25
1.11

455.27
19.17
9.79
6.58
4.95
3.97
3.31
2.84
2.49
2.22
1.99
1.66
1.43
1.25
1.11

997.37
19.61
9.90
6.62
4.98
3.99
3.32
2.85
2.50
2.22
2.00
1.67
1.43
1.25
1.11

1856.06
19.78
9.95
6.64
4.99
3.99
3.33
2.85
2.50
2.22
2.00
1.67
1.43
1.25
1.11

3104.24
19.87
9.97
6.65

. 4.99
4.00
3.33
2.86
2.50
2.22
2.00
1.67
1.43
1.25
1.11

4814.69
19.91
9.98
6.66
5.00
4.00
3.33
2.86
2.50
2.22
2.00
1.67
1.43
1.25
1.11

'Monte Carlo result is 9.44.

large systems with s =0 (i.e., background sites neu-

tral or passive), the data in Tables I—IV show that

(n ) tends rapidly to larger and larger values. How-

ever, introducing even a small absorption probabili-

ty (reactivity) on the background of N —1 sites
causes a precipitous change in the efficiency of re-

action with respect to the centrosymmetric reactant
(T ). The presence of competing reaction centers ef-
fectively negates differences in the geometry of the
cluster considered and causes an asymptotic
enhancement in the destruction of the diffusing
reactant.
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FIG. 7. Normalized absorption probability Az (frac-
tion of walks terminated at the trap on a 5X5 square
planar lattice) vs the background absorption probability
s for T =1 and s ranging from 0 to 1 (the solid line) and
for T=0.5 and s ranging from 0 to 0.5 (the dotted line).

VI. DISCUSSION

In this paper we have elaborated a theory for cal-
culating exactly certain characteristic numbers
which calibrate the efficiency of reaction-diffusion
processes in d-dimensional spaces of finite or of in-

finite extent. These numbers are as follows: (n),
the overall expected walk length of the diffusing
molecule to a specific reaction site, (,n);, the ex-
pected walk length of that molecule from a particu-
lar location in the system to the target molecule,
and, finally, the matrix elements a,j of the transfor-
mation matrix A, and a;J, the matrix elements of
the inverse matrix A '. The information contained
in these numbers and their inter-relationship pro-
vide a means of assessing the role of spatial extent
and of the dimensionality of the reaction space in
influencing the outcome of diffusion-controlled
chemical reactions. The reactions studied in this
paper are of two types: strictly irreversible reactions
or quasireversible reactions. In particular, suppos-
ing that A is the diffusing molecule and 8 is the tar-
get molecule, then the class of reactions studied in
Sec. IV was of the type A+B~C, where it was as-
sumed that the N —1 background sites visited by
the diffusing molecule were inert (or neutral or un-

reactive) uis a uis the molec-ul-e A. A broader class
of reactions was considered in Sec. V where the
background sites were assumed to have a certain
probability, 0&s & 1, of reacting with the diffusing
molecule. That is, one envisioned the X—1 sites
surrounding the reaction center to be populated



EXACT ALGORITHM FOR d-DIMENSIONAL WALKS ON FINITE. . . 4187

with reactive species. For simplicity, suppose the
N —1 reactive species are also B molecules, so that
assigning a nonvanishing probability of reaction at
these N —1 sites means that we are, in effect, con-
sidering the reaction

2+8~(AB)' —+C .

A remarkable feature found in this series of calcula-
tions was the astonishing change in the qualitative
behavior of the system once one assumed that the
activated complex could, even with probabilities
s &0.05, lead to irreversible removal of the diffus-
ing molecule from the reaction space of the system.
The number (n ), a measure of the efficiency of re-
action, dropped precipitously once s was allowed to
assume nonzero values [in fact, (n ) —1/s for suffi-
ciently large lattices (or reaction volumes)]. Given
the important role the idea of an activated complex
plays in theories of chemical dynamics, it would be
interesting to incorporate an Arrhenius-type tem-
perature dependence into the parameters of the
model and explore systematically the consequences
of assuming the existence of a transition state in
problems for which experimental data are available.

The results displayed in Tables I—VI have im-
mediate relevance to two physical problems. As
noted in the preceding section, the possibility of
processes such as fluorescence or internal conver-
sion at sites of the chlorophyll network other than
at the target molecule may compromise seriously
the efficiency of energy migration and trapping in
this system. The data suggest that even trivial
chemical modifications of the basic chlorophyll unit
or antenna system may lead to a dramatic reduction
in light-energy conversion; the extent to which a
chemically modified unit (or a different model sys-
tem) enhances the possibility of fluorescence or
internal conversion at sites other than the target
molecule is in direct relationship to the breakdown
in efficiency of the process. The (n) =1/s func-
tionality here is dramatic and decisive. There is,
however, a case where the functionality is a saving
grace. Consider the problem of catalytic conver-
sion. Suppose one were to start with a catalyst sup-
port which is prepared initially so that all X sites of
the support are catalytically active. The poisoning
of the catalyst would then correspond to a systemat-
ic deterioration in the efficiency of reaction at the E
sites of the support. What the calculations show is
that the poisoning of the surface can proceed quite
far before the catalytic activity of the surface be-
comes seriously impaired. Following the curves
displayed in Figs. 6 and 7 from right to left allows a

calibration of the efficiency of a catalyst support
with respect to covering the surface sites with inert
matter. It is quite likely that the calculations in
Sec. V can be parametrized using experimental
and/or quantum chemical data to provide a more
detailed picture in particular systems of interest,
and calculations along these lines are underway at
the present time.

Given the flexibility of the approach described in
Sec. II, a wide variety of other chemical dynamic
models can be invented, with again the point to be
emphasized that calculations of (n ), (n );, etc. can
be carried through exactly and with a minimal ex-
penditure of computer time. Among the problems
currently under study are a lattice theory of bi-
molecular reactions, ' one in which the full
geometry of the reactant molecule is considered ex-
plicitly, the problem of electron transport in low-

dimensional materials (e.g., linear chain conduc-
tors), and triplet energy migration and scission in
polymers. These studies will be reported elsewhere.
The theoretical points raised in Secs. III and IV are
also of interest and worth exploring, particularly
those which deal with the geometrical interpretation
of the elements of the inverse transformation matrix
and with the use of exact transformations and in-
variance relations to construct analytic expressions
for the timing and efficiency of chemical reactions
in systems of finite and infinite extent. Already,
however, the approach presented in this paper has
led to many new and exact results, ones that extend
considerably (we believe) our understanding of the
underlying reaction-diffusion processes. Hence, in
conclusion, it may be worth offering some general
remarks on why these lattice problems have yielded
to exact solution here whereas they seem to be so
much more intractable when approached using
standard methods available in the literature. Gen-
erally speaking, theories were formulated previously
and expressions for (n ) were sought which incor-
porated almost from the very outset the functional
dependence on the gLobal geometrical parameters of
the system (the connectivity, size, and dimensionali-
ty of the lattice). We suppress this desideratum in
our initial formulation of the problem and seek in-
stead a correct local description. We assume, in ef-
fect, that the systems being studied are strictly er-
godic and then rely on (a weak form of) the implicit
function theorem to recover numerical and analytic
results. The exact correspondence found between
our numerical results and those obtained in full
scale Monte Carlo calculations argues strongly that
the replacing of a strictly probabilistic mode of cal-
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culation by a much simpler, deterministic one
"works. " The recovery of Montroll's exact analytic
result in the one-dimensional problem shows that
the explicit global dependence on the variables of
the problem can be reconstructed from the local
theory via standard methods of analysis. Indeed, it
is the latter aspect of the problem which seems (to
us) to be a most intriguing avenue to pursue,
inasmuch as it opens up the possibility of obtaining
analytic results on a variety of problems previously
resistant to exact solution.
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APPENDIX

Listed below are the matrix elements a,j of the
inverse transformation matrix 3 ' for the 5&5
periodic lattice with a centrosymmetric deep trap
(T =1) and a uniform background absorption pro-
bability s [q=(1—s)/4]. For simplicity we do not
include explicitly the common divisor of the 25 ele-
ments. This divisor is as follows:

detA =(1—2q)[(1 —q) —3q (1—q)

—2q —4q (1—q) +2q ]
—2qIq(1 q) q 4q (—1 —q—) I .—

Then,

a t &

——(1—q) (1—2q) —2q (1—q)

—2q2(1 —2q) —2q (1—q)(1 —2q),

a34 ——2q (1—2q)(1 —q)+2q (1—2q)

=2CX42

a2s=2q (1—q)+2q =as2 ~

2 4

a33 —(1—q)(1 —2q) —2q —2q (1—2q)

—4q (1—q)(1 —2q)+8q

a34 —Zq( 1 —2q) —4q ( 1 —2q) =2a43
2 4

+35 ——2q —4q =a»,
a~ ——(1—q)(1 —2q) —q (1—2q)

—4q (1 —q)(1 —2q),

a54 ——2q (1—q) —2q' —8q (1—q) ='2a43,

a» ——(1—q) —3q (1—q) —2q

—4q (1—q) +2q
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