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A method is developed for calculating the scattering of a beam of x rays striking the
plane surface of a crystal at an angle be1ow the critical angle for total external reflection.
The low penetration under this condition offers the possibility of determining the special
structure of the surface layers, as has been pointed out by Marra, Eisenberger, and Cho. A
distorted-wpve approach is developed whereby the crystal is first taken to be a homogene-
ous dielectric slab for the purpose of calculating the distorted wave. The distorted wave is
considered to illuminate the actual crystal, from which a scattering pattern can then be cal-
culated. The effects of absorption can be taken into account; in some cases absorption may
offer the possibility of observing near-surface structures at angles of incidence larger than
the critical angle. Such illumination may also be useful for performing fluorescence
analysis of the near-surface layers to determine their impurity content. Synchrotron
sources offer new opportunities for measurements of these kinds. Thermal neutrons may
also be used in place of x rays and offer unique opportunities for studying surface magneti-
zation and, through inelastic scattering, surface phonons and, conceivably, surface mag-
nons.

I. INTRODUCTION

Marra, Eisenberger, and Cho' have demonstrated
that the surfaces of solids can be studied to advan-

tage by using a highly collimated beam of x rays
striking the surface at a grazing angle near or
within the range for which total external reflection
occurs. In this situation only the near-surface layer
is illuminated and a diffraction pattern is produced
which reveals the structure of the surface region in

preference to that of the interior. Stated in other
terms, the ratio of signal to noise for surface studies
can be considerably improved by this arrangement.
The idea could be extended to interfaces between
different solids, and to other forms of radiation,

particularly thermal neutrons. Although stringent

requirements are placed on collimation of the beam

and flatness of the surface, it appears that these
could be met in many cases. Synchrotron sources
are particularly well suited for providing the highly
collimated radiation with necessary intensity.

To interpret the diffraction pattern produced in
this arrangement the conventional theory of diffrac-
tion by small crystals is inadequate because this
theory is based on the Born approximation (i.e., sin-

gle scattering), while it is the essence of the method

that the illumination of the crystal is severely limit-
ed by total external reflection, a phenomenon in-
herently dependent upon multiple scattering. The
dynamical theory of x-ray scattering overcomes the
deficiency but its complexity weighs against easy
application to the problem at hand. We are
unaware of any dynamical treatment that gives a
simple means of correcting for total reflection
under conditions of grazing incidence while leaving
parameters free to describe the imperfections that
are to be determined by the scattering. Kishino
et al. have applied dynamical theory to Bragg dif-
fraction for glancing angles of incidence and to
Laue diffraction under conditions where a diffract-
ed beam makes a glancing angle with the surface.
They have shown that the usual dynamical results
for these arrangements are modified by effects of
specular reflection and surface asymmetry Four.
pairs of waves had to be considered inside the crys-
tal to reach these results, which were for perfect
crystals only.

It is the thesis of this paper that a distorted-wave
approximation based on a homogeneous scatterer as
a first approximation describes the essentials of the
scattering, is simple to use, and allows the near-
surface structures to be determined. In the follow-
ing pages this approach is worked out.
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II. THE DISTORTED-WAVE
APPROXIMATION

A. General considerations

In the Born approximation a scattering sample is
assumed to be illuminated by a single plane wave,
calculated as if the scatterer were absent. Each ele-
ment of the sample scatters this illuminating wave,
and the resulting fields scattered to a distant point
by all elements of the specimen are added up to find
the total scattering. In the distorted-wave approxi-
mation the scatterer is first replaced by a simpler
distribution of material and the field produced at all
points when a plane wave falls on this distribution
is calculated exactly. This field, the distorted wave,
in turn, is considered to illuminate each element of
the real scatterer, and this interaction produces a
scattered field which is summed over all elements of
the scatterer. This scattered field is expected to
resemble the true scattering better than the Born ap-
proximation. In the simplest distorted-wave ap-
proximation, which is employed here, the calcula-
tion ends at this point. Alternatively it is possible
to construct an expansion of the exact solution, of
which this is only the second term. Higher terms
become very complicated and will normally be
small because the scattering by an individual atom
is exceedingly small, and even the scattering by a
plane of atoms is small. In Apppendix 8 a model
in which the crystal is replaced by regularly spaced
homogeneous planes of scattering material is treated
and it is shown that the distorted wave calculated

by the simple model of this section is an excellent
approximation. Because of the grazing angle of in-

cidence, Bragg reflection from planes parallel to the
crystal surface cannot occur. Bragg reflections
from other sets of planes can occur but the extinc-
tion associated with these reflections must be small
because the wave field is, so to say, continually
renewed from outside the crystal. A formal
development of the distorted-wave approximation
for the electromagnetic field in a dielectric medium
is given in Appendix A.

We shall start with the von Laue model which
assumes that the scatterer can be represented as a
dielectric whose permittivity varies from point to
point according to the instantaneous density of elec-
trons at that point, p(r). The permittivity at r is

then (assuming that the frequency is not close to an
absorption edge)

2

E(r) =1— ' —p(r),
7tl N

where the permittivity of free space is taken to be
unity, e and m are the electronic charge and mass,
and co is the frequency of the radiation multiplied
by 2m. Maxwell's equations for the case of spatially
varying per...ittivityyive the following conditions
for the electric field 8' and the magnetic field A:

~ ~

VXVX ~+—+=0, (2a)

-+ ~ p -+
VyA =—8',

C

V eS'=0,
V.P =0

(2b)

(2c)

(2d)

B. Scattering by e~{r)

For generality we start by considering two homo-
geneous dielectric slabs which have a plane interface
at z=O. Let the medium above the interface have
permittivity e and let the medium below have per-
mittivity e'. In most cases e will later be set equal
to 1. Suppose a plane, linearly polarized elec-
tromagnetic wave

g E i'( k ~ r a)t)e

falls upon the interface from above. There will be a
reflected wave

i( k" r —cot)5 =E e

above the interface and a refracted wave

i( k ' r —cot)e =Ee
below the interface. The angle of incidence is u and
the angle of refraction is a' (see Fig. 1).

Maxwell's equations and the boundary conditions

The general problem is to solve these with e given
by (1) and with a plane wave incident on the scatter-
er.

In the usual procedure of the distorted-wave ap-
proximation, the permittivity can be divided into
two parts,

E(r) =e)(r)+e2(r),

where e&(r ) equals the average permittivity e~

within the scatterer and unity outside the scatterer,
while e2(r) represents the atomic-scale structure in
e. The strategy then is to solve the scattering prob-
lem presented by using e&(r) for e in Eqs. (2) with
an incident plane wave, then to use the resulting
wave as the incident wave for the scattering prob-
lem presented by eq(r).
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i II Z pagates parallel to the interface while being ex-
ponentially damped with distance below the inter-
face.

When a &a, the components of k ' become

k„' =k cosa,

ky' ——0,
(10a)

(lob)

FIG. 1. Reflection and refraction of plane wave k in-

cident upon an interface between two uniform dielectric
media. Electric fields are illustrated for one polarization
only.

at z=0 determine the refracted and reflected waves
in terms of the parameters of the incident wave k
and E (see, for example, Ref. 7, Chap. X). We col-
lect the relevant formulas for our purposes, which
are the following:

' 1/2

k'= — k, (5)
E

1/2

k,'= —ik cos a —— (10c)

1

/
Imk,

'
/

k(cos a —e'/e)'

The imaginary value of k,', of course, provides the
damping, which is an essential feature of the graz-
ing incidence arrangement. The near-surface region
is illuminated to a characteristic depth I at which
the field has fallen by a factor e '. Using (10c) one
finds

~@cosa = v e' cosa' . (6)

E'=4 E, (7)

where 4 is a second-rank tensor whose components
can be shown to be the following:

2(GE —6 cos cx )

e'sina+ (ee' —e cos a )'~

2~@ sinu

~e sina + (e ' —e cos a )
'~

2E slna
e'sina + (ee ' —e cos a )

'~

(8a)

(8b)

(8c)

@~@=@@=@ =@~=Ay, ——4~=0. (Sd)

Equations (7) and (8), when expressed in more ele-

mentary terms for the separate cases of parallel and
perpendicular polarization, are sometimes known as
Fresnel's equations.

In the cases of interest here e'&e, and therefore
when a is less than a critical angle a„given by

1/2

a, =cos (9)
E'

total external reflection occurs. In this regime a'
becomes imaginary and the refracted wave pro-

Equation (5) is required by Maxwell's equations and

(6) is Snell's law (since the indices of refraction
equal the square roots of the respective permittivi-
ties). The amplitude of the refracted wave is linear-

ly related to the amplitude of the incident wave, a
relation which is conveniently written

(11)
2~(~,' —~')'" '

where k is the wavelength of the radiation in the
upper medium, and the last form depends upon the
smallness of a and a, . Note that l is the e-folding

depth for the fields; the e-folding depth for power is
half of this. In typical cases, for x-rays of wave-

0

length -1A and for a «a„ l ranges from about 80
A in materials of low density to about 25 A in ma-
terials of high density. For a=

2 a, the values of I
are about 15% larger, and become infinite at a =a, .
Although damped in the z direction the wave pro-
pagates in the x direction with a wavelength near to
the free-space wavelength of the incident radiation.
For this reason it is well suited to produce diffrac-
tion effects characteristic of the atomic structure, as
was pointed out by Mara et al. ' There is also a dif-
fraction effect caused by atomic structure in the z
direction, as will be shown below.

The electric field of the refracted wave has a
magnitude given by Eqs. (7) and (8). It should also
be noted that if the incident wave is polarized with
its electric vector normal to the plane of incidence,
(i.e., parallel to y) the refracted field E ' is normal to
this plane; if the incident wave is polarized in the
plane of incidence the refracted wave is also polar-
ized in the plane of incidence, and for small angles
of incidence lies almost entirely in the z direction.
In fact, the ratio of its x to its z component is tana'.
Also for a & a, there are phase shifts relative to the
incident wave because a' becomes imaginary and
because of the radicals in the denominators of Eqs.
(8). The expressions can be simplified for the situa-
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tions of interest here, where a «1 and e and e' are
very close to l. It is useful to define the small
quantities 5 and 5', where

5=1 —e

and

~

E'
~

=2xE, «a,
where x =a/a, and a, =&5'—5. These relations
are plotted in Fig. 2.

and III. SCATTERING OF THE DISTORTED WAVE

The critical angle, a„ is then

a, -=v'5' —5 . (12)

2[a —(5' —5)]'~
a+ [a —(5' —5 )]'~

2a
a+ [a —(5' —5)]'~

2a
a+ [a —(5' —5)]'~

(13a)

(13b}

(13c)

We apply Eq. (7) to these relations for the case
where the incident polarization is perpendicular to
the plane of incidence and find

One obtains 5' from Eq. (1) with p of the lower
medium substituted for p(r ) on the right-hand side,
and obtains 5 by a similar relation for the upper
medium. For x rays of about 1-A wavelength, 5' is

typically in the range 10 to 10 . Taking 5=0,
a, =1 to 10 mrad at 1 A. Since 5 and 5' are pro-
portional to A, , a, is proportional to A,. The
penetration depth I on the other hand is more weak-

ly dependent on A, and becomes independent of A,

when a &&a,.
Simplifying the components of 4 by expanding

to first order in the small quantities 5, 5', and a,
one finds

Having developed the solution of Maxwell's
equations for a plane wave falling upon a half-space
filled with a homogeneous dielectric medium, we
now consider this solution to be the distorted wave
that is scattered by the distribution of dielectric ma-
terial e2(r). A formal development of scattering
theory for this purpose is given in Appendix A and
the precise definition of the distorted-wave approxi-
mation being employed is given there. The result

may also be reached intuitively by considering the
distorted wave 8' '(r ) to excite the electrons at r
which then radiate without further interactions
with the medium according to the classical formula
(Ref. 2, Chap. I). We proceed in the following
manner: In the volume element dv at r there will be

p2(r )du electrons. Denote by d 5', the electric field
these electrons scatter to an arbitrary distant point
R s, where s is a unit vector. One then has

edS' = (r)du(I —s s) 5''(r)e
mc R (15)

where I is the unit tensor and s s is the dyadic
product. Writing

g i(P) Ei i(k ' r rut)—
and setting

E„' =E,' =0,
(14}2a

a+ [a' —(5' —5)]'~'

If, instead, the incident polarization is parallel to
the plane of incidence, then

EE =0,

we have
2

e '"'(I—s s) 4 E
mc R

)( J pp(r)ei( k
' —2ws/k) rdv,

IF'I
E

(16)

E 2a[a —(5' —5)]'~

a+ [a —(5' —5)]'~

Za

a+ [a —(5' —5)]'~E,' —=E

E /:E 2x
x+(x' —1)' '

Thus in both polarizations,

0
0

ac

FIG. 2. Magnitude of the electric field inside the
scatterer, compared with the incident field, as a function
of the angle of incidence.
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where the integration extends over all of the scatter-
er illuminated by the incident radiation. Note that
the order of the two tensors in this formula must be
preserved. This result is rederived more formally in
Appendix A.

A further simplification may now be made:
pz(r ) =p(r) —pi(r), where the electron density pi(r)
is associated with the previously derived mean per-
mittivity in the specimen ei( r ) through a relation of
the type of Eq. (1). This is a constant, p,
throughout the region of integration in Eq. (16).
Thus, the integral in (16) can be written

fp(r)e (" ' —(2sr/A, ) s J rd

i[k '—(2m/k) s] r

~„=k„'—S„=k—S

scy ———Sy,

~,= —ik —S, ,

(23a)

(23b)

(23c)

where

single electron. Equation (22) is the basic equation
of our distorted-wave approximation.

For an incident angle below the critical angle for
total external reflection, k ', and thus a, have ima-
ginary z components [see Eq. (10c)],and the magni-
tude of the imaginary component is given by Eq.
(10).

Writing (2n/A, ) s =S, so is =k ' —S, we have the
components of a given by

The second integral is small except when
2n. s/A, =—k ', which is not in the region accessible to
observations. Therefore this term may be dropped.
Recognizing that p(r ) is the superposition of charge
clouds centered on the instantaneous position of
each atom in the specimen, we can set

cos2iz et )
1/2 k (P &2)1/2 (24)

Later it will be convenient to allow the incident ra-
diation to have arbitrary orientation around the z
axis—that is to let k=(k, k„,k, ), in which case
(23a) and 23(b) are generalized to

p(r)= go„(r —r„), ~„=—k„—S„,
ay -—ky —Sy,

(25a)

(25b)
where cr„(g) is the charge density associated with
the nth atom at distance g from its center and r„ is
the instantaneous position of this atom. Equation
(18) is inserted into (17), the second term of which
has now been dropped, and in the usual way the for-
mula becomes

g f„(Pc)e
n

where a has been written for the effective scattering
vector,

with (23c) unchanged. Note that the components of
4 will also be altered.

The atomic structure factor for a complex
scattering vector is a generalization of the usual
structure factor of x-ray diffraction, where the
scattering vector is considered to be real. Rewriting
(21) with the use of Eqs. (22), one has

i t(k —s„)g'-s g —s,g]j(s)= o(g)e ' ' e du~,

(26)

(20)

and

f„(a.)= f 0„(g)e' " ~du . (21)

8's =A g f„(a.)e
n

where

(22)

and if
~

A
~

is set equal to 1, Eq. (22) expresses the
scattering amplitude relative to the scattering by a

f„ is the structure factor of the nth atom for the
scattering vector Pc. The basic equation [(15)] thus
becomes

when g, rl, g are the components of g. The last fac-
tor in the integrand of (26) can be approximated by
1+kg. In the region of integration this factor
differs from unity at most by ka, where a is the
atom's radius. Because k is smaller than 0.04 A
in all realistic cases and a is not larger than about 1

A (in fact, the bulk of the charge density in atoms
lies at smaller distances yet) neglect of this term
will produce errors of the order of 1% or less. In
all that follows, we will make this approximation,
thus assuming that f„(a.) can be replaced by the or-
dinary atomic structure factor with

ir =(k„—S„,ky —Sy,—S, ) .

Since the atoms will have thermal motions, rn is
an instantaneous position of an atom and fluctuates
many times during a scattering measurement. This
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may be taken into account in the usual way by
averaging over the temperature motions. Let

n Rn+ n (27)

where R„ is the mean position of the nth atom and

un is its instantaneous displacement. The usual ar-
guments can be applied by substituting (27) into Eq.
(22) and averaging the u „ terms over time,
remembering that ~ is complex. Assuming a har-
monic approximation for the atomic vibrations, the
elastic component of the scattered intensity becomes
the square of the absolute value of the right-hand
side of (22) with r„replaced by R„and with a
Debye-Wailer factor multiplying the whole expres-
sion. This factor depends on the scattering vector ~
and is customarily written in a form which incor-
porates the structure factors in a sum over a unit

cell of the crystal lattice (see Warren, Sec. 3.4). In
our case the thermal motions will, in general, be dif-
ferent for atoms near the surface and in the bulk.
To proceed it will usually be necessary to assume a
uniform temperature factor appropriate to the
atoms in the illuminated region of the sample. For
the case of one atom per unit cell a single tempera-
ture factor will then suffice. The factor multiplying
the scattered intensity will be

e —(M+M+) (28)

instead of the familiar e, where, on the harmon-
1

ic approximation, M= —,((x"u) ). M appears in

(28) because a is complex. The general expression
for an arbitrary number of atoms per unit cell is
readily written down in analogy with (28). Hereaf-
ter we will assume that an appropriate temperature
factor will be employed to correct the observed in-

tensities before comparing them with calculations
based on Eq. (22).

IV. SCATTERING BY A PERFECT CRYSTAL
IN THE DISTORTED-WAVE

APPROXIMATION

As an illustration of the distorted-wave method
we calculate the scattering from a monatomic per-
fect crystal bounded by a planar surface. The in-
cident beam will strike this surface at a grazing an-
gle a which is below the critical angle for total
external reflection. Let the basis vectors of the
lattice be a ~, a2, and a3, so that
R„=n&a&+ n2a2+ n3a3, with n&, n2, and n3 in-
tegers, gives the mean position of an arbitrary atom.
We further simplify by assuming that a&, a2, and a3
are mutually perpendicular and take a3 parallel to
the z axis. Let the illuminated face of the crystal be
at n3 ——0, so n3 &0, and let the face contain E&N2
atoms, so that the lateral boundaries are given by
0&n~ &N1 —1, and 0&n2 &X2 —1. Then employ-
ing Eq. (22) with r„replaced by R„,we have

Al —1 N2 1

n n) ——0 n2
——0 n3 ——0

(29)

Summing the three geometrical series, one finds

iK a)Nl
1 —e

lK ai

iK a2N2
1 —e ~

—iKZa 3

eiP

v„a )N)
sm

2

v„a1
sin

2

~ya2N2
sin

Kya2
sin

1

(iS —k )a 3)
1 —e

(30)

where g = —,[a„a& (N& —1) + z~a2(Nz —I)], which is simply a phase angle and of no physical consequence.
The square of the absolute value of this can be written

x„ad%1
sin

2

2 K~a)
sin

2

sin
2

v&a2
sin

2

—2ka3 —ka31+e —2e cosS,a3
(31)



4152 GEORGE H. VINEYARD

In the last factor of (31) the term ka3 is the reciprocal of the effective number of lattice planes penetrated by
the x-rays. Calling this N3 [where also N3a3 ——l with l defined in Eq. (11)]we have

1
N3 ——

ka3
(32)

N3(N3 —1)

1+4N sin

From the arguments given earlier, N3 will be of the order of 10 to about 40. It is thus convenient to expand
the denominator of the last factor in (31) in powers of N3, carrying this through to second order. Then, re-
calling Eqs. (23) and generalizing by removing the restriction that the y axis be perpendicular to the incident
beam [see Eqs. (25a) and (25b)], we have

»n —,(k„—S )&.)N) sin —,(ky —Sy)azN2
I

@',
I

'=
I
A I'f' (33)

sin —,(k» —S» )a
~

sin —,(kz —S» )a&

Equation (33) shows that the scattered intensity is
peaked when (k„—S„),(k„—S~), and S, are at any
reciprocal-lattice point. The profiles in k„—S„and
k„—S„are each of the familiar form, peaked at
reciprocal-lattice points with altitudes proportional
to N ~

and N2 and widths inversely proportional to
N~ and Nq, respectively. The profile in S, is a little
different but also is peaked at reciprocal-lattice
points, has altitude proportional to N3, and width
inversely proportional to N3. Since N3 is much
smaller than N~ and N2 this profile is lower and

broader, but nevertheless is significantly structured.
It is interesting to compare areas under the two

kinds of peaks. Letting y stand for —,(k„—S»)a, or
for —,S,a3, as appropriate, and approximating

N3(N3 —1) '
by 1, we deal with two typical func-

tions,

1

sin(
2 a&N&)

sin( —,~&)

1

sin( —,azNz)

sin( —,a.2) 1 —e

(34)

where

p- m 1 2&(&&q. +K2q +a3q. &)
eJj=1

and

(35)

I

subject only to the condition that the surface of the
crystal be a plane of the lattice.

Let the lattice be defined by the basis vectors a~,
a2, and a3, where a~ and a2 lie in the surface of the
crystal. Let the jth atom of the unit cell have struc-
ture factor f~ and location qj'a & + q~ a2 + qj a3 with
respect to the origin of the cell. The one finds

and

sin Nq&

sin cp
K) = 1 )'a)K~+

2
——1

~ a2zx+

1 2'a)Ky,

1 2'a2Ky,

N
83(q ) =

1+4N sin y
These have peaks of identical height, N . 0& has a
halfwidth at half-maximum of p~= 1 39/N an. d 83
has a halfwidth at half-maximum of p3 -—1/2N
One can also show that

n/2
0~ q dq=mN

and

f 83(p)dp= —N .

Thus, for a given N, the 03 distribution is a little
narrower than the 0& distribution.

Finally, we record the generalization of Eq. (30)
for a triclinic lattice with m atoms per unit cell,

K3 —1 ] a3K + 1 2 a3Ky+ 1 3 a3Kz

Here i &, i 2, and i 3 are the cartesian unit vectors,
and i 3 is normal to the surface of the crystal. Note
that ~~ and ~2 are purely real, while ~3 has an ima-

ginary component because of the term in a', .

V. THE DETERMINATION OF SURFACE
STRUCTURES

The foregoing formulas can be used to calculate
the scattering pattern produced by surface layers
whose structure or composition differs from that of
the bulk material. Because of experimental errors
and lack of symmetry it may not be feasible to per-
form Fourier inversions of the observed scattering
to determine atomic positions directly, although the
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formalism for this could be worked out. More
practical is the comparison with experiment of
predicted scattering based on various plausible
models of surface structure. We present here some

simple examples of how such calculations can be
made.

Equation (33), which was calculated on the as-

sumption of a perfect crystal, can be modified
readily to allow for imperfections. Suppose we

choose the unit cell so that the basis vector a~ and

a2 correspond to the horizontal periodicities in the
surface layer (this period may be larger than in the
bulk —see, e.g., Eisenberger and Marra'). Distor-
tions near the surface do not repeat in the direction
normal to the surface and therefore the unit cell
will be chosen to be indefinitely elongated in this
direction (the basis vector a1 will be suitably in-

creased) Its .actual dimension will be immaterial as
long as it is somewhat greater than the penetration
depth l, given by Eq. (11). With these conventions,
there is only one term in the summation over n3
leading to Eq. (33), and the cellular structure factor,
F, contains all the effects of the surface distortions
through the intracellular coordinates qj. If the
penetration depth is small and there are not many
atoms in the unit cell, trial values of qj may be in-

serted into (35) directly and comparison made with

experiment. An alternative is to write

qj =%+'j
where Qj is the position of the jth atom in the
elongated unit cell for the perfect crystal and vj is
the displacement from perfection caused by the sur-
face. Normally the v j will approach zero rapidly as
one goes away from the surface, usually in a dis-
tance short compared with l. In this situation it is
convenient to rewrite F as

00

j=1 j=1
(36)

The second term in (36) can be calculated by sum-
ming over one original unit cell and then over a
column of unit cells in the direction of a3, to be-

come I'(1 —e '). ' This multiplied by the rest of
the expression for I' gives Eq. (34) again. The first
term in (36) gives the alteration in scattering caused
by the atomic displacements. It may be calculated
by summing over one or only a small number of
layers near the surface, or, in the case where all dis-

~ W1K'V
placements are small, by expanding e ' to first
order in a"vj. To recapitulate, with this procedure,
one finds

1 1

sin(
&

K]N, ) sin( —,K2N2)
8', =Ae'~F

sin(
&

K]) sin(
&

K2)

1

sin( —,K]N] )
+Ae'&

sin( —,K])

1

s]n( 1 K2N1 ) I;g q,gf e '(e ' —1).
S111( 1 K2) j=]

(37)

In the last term the summation over j has been cut
off at a limit j at which the summand becomes
negligible. As has been shown, the first term in (37)
is large only in the vicinity of points of the perfect
reciprocal lattice. The second term is broader and
may be determined by measurements of scattered
intensity away from the reciprocal-lattice points. If
the surface layer has a larger period the term will

include contributions from the superlattice points.
Another possibility is a surface layer that is crys-

talline but not in registry with the underlying lat-
tice, or a surface layer that is amorphous. All of
these are embraced by the general formula (22)
where it is to be remembered that, because of the
imaginary component of ~„ the summation need
extend only over the surface layer to a depth some-
what greater than I. Because of the variety of possi-
ble arrangements a variety of formulas can be
developed in a straightforward manner; they will

not be elaborated upon here.

VI. INTRODUCTION OF ABSORPTION

So far the specimen has been assumed to be
nonabsorbing. In practice some absorption is al-
ways present, and at a low angle of incidence the
penetration will be limited on this account, even if
the incidence angle is larger than the critical angle
for total external reflection. The distorted-wave ap-
proach can be generalized to allow for this. One
only needs to assume that the permittivity of the
distorting medium is complex. It is not necessary
to allow for absorption in the second stage of the
calculation because the scattered waves travel
through only small distances in the medium. Previ-
ously the distorting medium was characterized by a
uniform permittivity e'=1 —5', where 5' was real
and was given by the second term on the right-hand
side of Eq. (1). If the medium has a linear absorp-
tion coefficient for x-ray power p this is equivalent
to adding an imaginary part 5,' to 5' which is given
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b 8

5,'= —p —A,p
k 2~

(38)

can easily be taken into account by the formulas
given.

Then

e'= 1 —5' —i5,', (39)

VII. FURTHER CONSIDERATIONS
AND CONCLUSIONS

and both 5' and 5,' are much smaller than 1. The
solution to Maxwell's equations exhibited in Sec. II
remain valid with this modification. In Eqs. (13)
and elsewhere 5' is replaced by 5'+ i5,'. External
reflection below a, is no longer total, but for 5,'

small compared with 5', which is usually the case, it
is nearly total.

However, the characteristic depth of propagation
into the specimen now is limited at all angles of in-

cidence. The relevant wave vector k,
'

is given by

k,' = —k(sin a —5' —l5,')'~

= —k(a —5' —i5,' )' (40)

Note that k' and k~ remain real and are not
changed by the introduction of 5,'.

If cz is appreciably larger than o.„but still small,
we have

5I
k,':——kcz 1 — +ik2' 2O'

(41)

The characteristic depth l for fields now becomes

1 2Q
(42)

The factor 2 on the right-hand side of (42) must be
removed if we want the characteristic depth for en-

ergy.
For light elements and for x rays in the vicinity

0
of 1 or 2 A, p ranges from about 1 to 1000 cm
depending sensitively on wavelength. For heavy
elements it ranges up to 10 cm ' (e.g., Pb at 2.74
A). Thus for a=0.01 rad, l can be as small as 1000
A for light elements and 100 A for heavy elements.
Thus in some cases absorption may provide attenua-
tion in the specimen at angles somewhat above the
critical angle qualitatively similar to that provided
by total external reflection below the critical angle,
and which may allow diffraction measurements of
surface structure to be made in the manner dis-
cussed above. A technical modification of the for-
mulas arises because k,

'
now has a real component,

but this merely changes the real component of ~,
[Eq. (23c)] by a small amount. Below the critical
angle, absorption will not ordinarily produce a large
effect compared with the real part of 1 —e but it

Slow neutrons could be used for surface studies
instead of x rays, since most substances have an in-

dex of refraction for thermal neutrons which is less
than unity and therefore cause total external reflec-

tion of neutrons at low angles of incidence. Typi-
cal critical angles for neutrons are comparable with
those for x rays. However, a further degree of con-
trol arises in the case of magnetic materials because
the magnetization of a substance produces an addi-
tional birefringent component of the index of re-

fraction for neutrons. This suggests the interesting
possibility of observing in a new way the near-
surface part of the magnetization. There is experi-
mental evidence of a "dead layer" on the surfaces of
several magnetic substances, ' and suggestions have
also been made that the surface layer of some non-

magnetic materials could possess a net magnetic
moment. There would also be inelastic scattering
processes in which the neutron energy is altered by
a relatively large factor and which conceivably
could be observed. Although the low intensities
available will cause problems, the observations
would have special interest because they could re-
veal preferentially the frequencies and momenta of
surface phonons. A theory for this effect can be
written down using the distorted-wave approach of
this paper, but will not be given here. A final possi-
bility of such inelastic experiments would be the ob-
servation of surface magnons. Mazur and Mills"
have recently calculated the cross section for such a
scattering process, employing a distorted-wave ap-
proach similar to that used here.

One further opportunity for useful experiments
suggests itself: X-ray fluorescence analysis of the
surface layers alone could be carried out by il-
luminating the specimen at grazing incidence so
that only atoms in or very near the surface would be
excited. Equations (7) and (13) allow the calcula-
tion of the pattern of exciting electric field which
would be present. Since the affected atoms would
be very near the surface, x-ray photoemission might
also be measured. '

The accuracy of the distorted-wave method em-

ployed here deserves to be investigated further. Re-
latively little is known on this general subject (a re-
cent study for a compact scatterer, as opposed to
the distributed scatterer dealt with in this paper, has
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been reported by MacMillan and Redish' }. If the
scattering specimen has a surface layer of substan-

tially different properties than the bulk, the dielec-
tric slab could be allowed to have a smooth z depen-
dence of its permittivity. The illuminating wave
would then have a profile in z different from ex-
ponential damping and interesting variations on the
basic problem treated here might be found. More
work is indicated.
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APPENDIX A: FORMAL DEVELOPMENT
OF THE DISTORTED-WAVE APPROXIMATION

FOR THE ELECTROMAGNETIC FIELD

We start with Maxwell's equations (2), allowing e
to be an arbitrary function of position and setting
@=1—5. We separate out the time dependence

through the factor e '"' and set k =co/c. Then the
equations satisfied by g' become

(Al)

(A2)

X 8'(r ')du', (A3)

where W'0(r ) satisfies the homogeneous equation

—V X V X eo+k'e, =o

and

V'+o=o

If g'(r') on the right-hand side of (A3) is re-
placed by 8'o(r') this gives just the Born approxi-
mation.

To arrive at the distorted-wave approximation as
used in this paper, write, as before

5(r) =5i(r)+52(r),

where 5i(r) is the distorting component of the per-
mittivity, and insert into (A3), giving

Note that, because of (A2) the right-hand side of
(Al) is not divergence free. However, if 8' satisfies
(Al), it also satisfies (A2), which follows from the
identity V V X V X 8' =0.

Tensor Green's functions for the vector
Helmholtz Eq. (Al) are known and are discussed in

some detail in Ref. 14 (pp. 1777—1783.) The neces-

sary function, S,(r
~

r '
~
k), allows (Al) to be

transformed into an integral equation,

k8'(r)= g'o(r) — f 9,(r
~

r '
~

k) 5(r ')

k k8'(r)= I'o(r) — f 9,(r
i
r '

i
k) 5&(r ')8'(r ')du' — f 9', (r

i
r ' it) 5z(r ')g (r ')du'. (A4)

The approximation now consists in replacing 8' in both integrals on the right-hand side of (A4) by 5'i, where
8'~ is the distorted wave, which satisfies

(A5)

As a result,

k8'(r)=-8'i(r) — f 8,(r
~

r '
~

k) 52(r ') g'i(r ')du'. (A6)

The Green's function 9', (r
~

r '
~
k) differs from the

purely transverse Green's function by subtraction of
a longitudinal 5 function of (r —r ') (see Ref. 14).
For application to our problem it is necessary to
know 9', (r

(
r ') k} only when

(
r —r '( =R is

large. The limiting form is

(A7)

Inserting (A7) in (A6), employing (1) to determine
52(r ), setting R/R = s, and kR =k s (r —r ') in the
exponent of (A7), one arrives at Eq. (16).
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APPENDIX B: THE STRATIFIED LATTICE:
A MODEL THAT CAN BE SOLVED EXACTLY

We consider here a model in which the three-
dimensional lattice is replaced by a layered lattice
with the dielectric material distributed uniformly in
the lattice planes parallel to the surface of the speci-
men. The planes are also assumed to be very thin
compared with the lattice spacing. Maxwell's equa-
tions in this stratified structure can be reduced to a
one-dimensional scalar-wave equation with a
periodic distribution of scattering matter. ' For
technical reasons the transverse magnetic polariza-
tion is somewhat intricate and we first limit the dis-
cussion to the case of transverse electric polariza-
tion. For the latter case the distribution of dielec-
tric material can be considered to be a sum of equal-

ly spaced 5 functions, and this problem is
mathemetically equivalent to the well-known

Kronig-Penney model of electrons in a crystal lat-
tice. ' The virtue of this model is that it is solvable
in simple analytic form (see particularly Saxon and
Hutner' ).

We let M be the number of atoms per unit area in
each atomic plane, with fo electrons per atom. Let
the interplanar spacing be d, and take the z axis per-
pendicular to the planes, pointing into the specimen,
with the plane z=p bounding the specimen (note
the reversal of z from Fig. 1). Then the permittivity
can be written as

e(r)=1, z&0

where 5D is the Dirac 5 function and r, is the clas-
sical electron radius, e lmc . Maxwell's equations,
as given in Appendix A, are to be solved using this
permittivity as a coefficient.

In the case of transverse electric polarization the
electric field has only a y component, 8'r, and g'„
depends only on x and z. Maxwell's equations re-
quire

8'g, a'W„' +k2ea'„=0.i' 2 Bz2

Setting 8'~ =X(x) U(z) this becomes

d U +k (e—P )U=O+

(B2)

(B3)

and

dX +k'P'X=0 .
2 (B4)

P is a separation constant which will later be set
equal to cosa, where u is the (glancing) angle of in-
cidence. Equation (B4) gives X=e' "". For z &0
the solution of (B3) is

U(z) eik(1 —P )'~ z+g ik(1 —P~)'~2—z (B5)

where R is a constant, the reflection coefficient.
For z&0 (B3) with (Bl) becomes the Schrodinger
equation of the Kronig-Penney model. Its solutions
have the form e'"'P(z) where P(z) has the period of
the lattice and p, the Bloch parameter, is deter-
mined by the relation

and

r, A, Mfae(r)=1— g 5D(z nd), z&—0

(Bl)
I

cospd =cosKd+ sinKd .C
2K

Here K=k(1 —P )'~ and C=4nr, Mfa. As shown
by Saxon and Hutner, ' the solution of (B3) can be
written

nd &z (nd +d, n =0, 1,2, . . . .
C

U (p )
ized e '""sinK (z —d ) —sinK (z nd —d)—

2K cospd —cosKd
(B7)

Despite the singularities in e at the lattice points
U(z) is continuous everywhere. However, the
derivative U'(z) has a discontinuity at each lattice
point such that

lim [U'(nd+ir) U'(nd ir)]=—CU—(nd) .
a~O

Between each pair of lattice points U(z) is a simple
harmonic wave with wave number K, as seen from
(87). The boundary conditions at z =0 and ao, the

U(p) 1 g 2 SlnKd+
sinKd l cosKd+le- pd

(89)

I

discontinuities of U at each lattice point, and the
harmonic behavior between, serve to determine
U (z) completely.

We take the surface of the crystal at z = —o.,
where o. is an arbitrarily small positive number, and
match the fields on this surface. The tangential
components of electric and magnetic fields must be
continuous, which requires continuity of 8'~ and
BS'~/(3z. From these conditions one finds
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and
sinKd+i cosKd —ie
sinKd —i cosKd +ie

(810)

K, =
C

4rrr, MIp

C d d
6d

Equation (86) shows that for C & 0, p is purely ima-

ginary for sufficiently small K and becomes real at
a critical value, K, . For 0(K &K, . we set

@=+i
~ p ~

(the positive sign is required for the
solution to be bounded as z~oo). In the range
where p is imaginary

~

R =1, as is evident from

(810). For C &0 note that K, =0, so that there is

no stop band at low K and total external reflection

does not occur except near the Bragg angles. Nega-

tive C corresponds to an index of refraction of the
medium that is larger than one. In the range where

p is imaginary the wave is damped exponentially in

z, and the depth in the crystal at which fields are at-

tenuated by e ' is

I= 1 (811)

Since Kd=kd sina«1 in examples of interest
here the right-hand side of (86) may be expanded in

powers of KD, recognizing that also Cd « 1, to give

cospd =1+-- — (Kd)—Cd 1
(812)

2 2

from which, with (87), it follows that

of

Ctc

1/2
r, iM,fp

7rd

CD Kd
cosh 1+

With the approximation, valid for small x,
cosh '(1 + x) =&2x, this becomes

2~(a,' —a')'" '

——K
d

(813)

which is identical with Eq. (11) for the homogene-
ous slab.

Employing (87) and (86) and the expression
given earlier for X, the electric field in the crystal
for angles less than the critical angle can now be
written

Since Mfpld is the average number of electrons per
unit volume in the crystal, this agrees with the opti-
cal formula for total external reflection from a
homogeneous slab, as given in Eqs. (1) and (12).

Finally (811) and (812) give

g, ( ) U(0)
e sinK(z nd) sin—K(z —nd d) ——~q~»d—+i Ii» „d & &nd+d n 0 1 2

—ls I
~

sinKd

(814)

One can eliminate U(0) with the aid of (89) and
(810). If one then expands the trigonometric and
exponential functions to first order in the small
quantities Kd=kda and

~ p ~

d=kd(a, —a )'~ [the
latter expression comes from (811) and (813)] one
finds

8 y ( kid J = e
—

l p l
nd +i (k cosa)x

+ ~

(
2 2)1/2

(815)

This agrees precisely at z=nd with the field

found in Sec. II 8 for the homogeneous slab [refer
to Eq. (14), recognizing that E = 1 and 5=0 in this

appendix, and 5'=—a, ].
Thus, for transverse polarization and for small

t

angles of incidence we have demonstrated that the
value of the field at each lattice plane agrees with

that calculated for the homogeneous dielectric slab.
There remains to be considered the fluctuating fac-
tor in large parentheses in (814), which causes the
field to differ from that in the homogeneous slab.
As z increases from nd to nd+d this factor goes
from 1 to e l" l and represents an interpolation
between these values. In exaggerated form, the ex-

pression (814) is shown as a function of z in Fig. 3,
along with the simple damped exponential for the
field in the homogeneous slab. The fractional
differences are maximal near the midpoints

(n+ —,)d and are denoted by b, .
Consideration of the factor in large parentheses

in Eq. (814) gives the following estimate for b,
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I.O

gy(z)
gy(0)

0.5

0
0 2d

l

3d 4d 5d

FIG. 3. 8'~(z) from Eq. (814), solid line, compared
with the field in the homogeneous dielectric slab, dashed
line. Fractional difference in the fields at the midpoints
of the intervals is indicated as 6. Difference is greatly
exaggerated in the figure.

which is valid to second order in small quantities:

(B16)

An illustrative calculation can be made for the
0

case of copper Ka radiation (A, = 1.54 A) incident on
the (100) face of germanium at one-half the critical
angle. In this example, d = 1.41 A, 1=52 A, and the
critical angle, u„ is 5.4 mrad. It is found that
b, =10 . Thus the difference between the two
curves in Fig. 3 should actually be less than the
width of the line in the drawing.

In a crystal the electron density in each lattice

plane is spread out over a considerable part of the
interplanar distance and thus the 5-function distri-
bution differs more severely from the homogeneous
model than does a real substance. It would thus be
expected that the field in a real crystal would depart
from the field in a homogeneous slab by less than
that calculated above, as long as the effects of the
lattice are primarily confined to the z dependence of
e(r).

For transverse magnetic polarization, nonphysi-
cal behavior occurs if the lattice planes are assumed
infinitely thin (essentially because g' now has a z
component and this responds anomalously to the
negative dielectric constant in the planes). Instead,
the planes can be assumed to be layers that are thin
compared with the interplanar separation, d, but
thick enough that the dielectric constant within
them departs from unity by only a small amount.
The parameters of real crystals at x-ray wavelengths
permit these conditions to be met and the results are
insensitive to the exact choice of layer thickness.
The magnitude of the field within the crystal model
now becomes the same, to first order in a, as that
for the transverse electric polarization, and is again
very closely the same as in the equivalent homo-
geneous slab. From these considerations we con-
clude that the homogeneous slab is an excellent
basis for calculating the distorted wave and deter-
mining the scattering from surface distortions in
conditions of grazing incidence.
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