
PHYSICAL REVIEW B VOLUME 26, NUMBER 8 15 OCTOBER 1982

Mean-field theory of multilayer physisorption. III. Desorption kinetics
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Starting from a set of nonlinear rate equations with phonon-mediated transition proba-

bilities calculated from the self-consistent solutions of temperature-dependent mean-field

theory, we calculate temperature- and coverage-dependent desorption times for the 'He-

graphite, He-graphite, He-Ar(100), and He-Constantan systems up to a coverage of two

monolayers. We find (a) a significant drop in the heat of adsorption and in the prefactor,
(b) a pronounced compensation effect, and (c) a change over from first-order desorption at
low coverage to zero-order evaporation for 8) 1.5.

I. INTRODUCTION

Studies of adsorption and desorption kinetics of a
gas in front of the surface of a solid are made in an

attempt to elucidate the mechanisms by which gas
particles dissipate or acquire energy to overcome
the attractive forces that bind them to the surface.
Whereas for chemisorbed gases electronic degrees of
freedom are mediating the adsorption and desorp-
tion processes, the latter are predominantly realized

by the lattice vibrations of the solid for physisorbed
gases. %e recall that a gas particle is said to physi-
sorb onto the surface of a solid if the net interaction
between a gas particle and the solid is accounted for
by an effective wall or surface potential V, (r), the
long-range part of which is essentially the interac-
tion energy between the mutually induced fluctuat-

ing dipole moments on the adsorbing gas particle
and in the solid. The strong short-range repulsion
is largely due to increasing charge fluctuations as
the adsorbing particle becomes confined close to the
surface. For an inert gas atom at position r in

front of a molecular solid, V, (r) is well approxi-
mated by'

V,(r)= g V(r —r;),

where V(r —r;) is the two-body potential between a
gas particle at r and a constituent particle of the
solid at lattice site r;. For gas-metal systems the
surface potential has been constructed taking some
account of the electronic degrees of freedom within
the framework of the jellium model.

The surface potential V, (r ) will typically develop
a number of bound states into which gas particles

de; = g R -, -n- QR-. -—
, n -,

dt
(2)

for the occupation functions n-, (t) where i is a set

of quantum numbers characterizing a'bound state
or continuum state of a gas particle in the surface
potential V, (r). The transition probabilities R -,. -;

take into account bound-state —bound-state,
bound-state —continuum, and continuum —bound-
state transitions. Assuming that the surface poten-
tial can, for a mobile adsorbate, be adequately
represented by a Morse potential and calculating the
R -,. -, 's in second-order perturbation theory (Fermi's

golden rule) for phonon-mediated processes, isother-
mal desorption times have been calculated from (2)
for a number of systems such as He-LiF, He-

graphite, Xe-W, etc. Also, for gas-solid systems
with many surface bound states, kinetic equations
of the Fokker-Planck and Kramers type have been
derived and studied in great detail.

All these theories of physisorption kinetics and,

can be trapped to form the adsorbate. If, due to the
structure of the surface crystal plane, V, (r) is
strongly localized on specific adsorption sites in the
surface, we speak of localized physisorption. In
contrast, for mobile adsorption the surface potential
is treated as a function only of the distance z above
the uniform surface, V,(r )—:V, (z), so that adsorbed
particles can move more or less unhindered along
the surface. At very low coverage where the in-

teraction between gas particles in the adsorbate can
be neglected, we can base a kinetic theory of physi-
sorption on a master equation, i.e., a system of rate
equations,
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to the knowledge of the authors, all microscopic ki-
netic theories of adsorption and desorption in the
literature to date, are restricted to situations of very
low (zero) coverage, although phenomenological
theories have been developed since Langmuir's
pioneering work that account for saturation effects
in the kinetics as an adsorbate approaches mono-
layer coverage. Defining (in the submonolayer
range) the coverage 8 as the fraction of a mono-

layer adsorbed one writes for its time rate of change

d6
dt

=~a —~d i

where

r, =P(2mmk&T) ' n,„S(O,T)

(3)

(4)

(7)

is the isosteric heat of adsorption.
Ultimately the above coverage dependence arises

from the two-body interaction between gas particles
in the adsorbate, resulting in several different
mechanisms which we want to discuss briefly. For
strongly localized adsorption as it occurs in many
chemisorption systems, only one particle can be ad-
sorbed per adsorption site due to the finite size of
the adsorbing particle and due to bond saturation
restricting chemisorption typically to monolayer
coverage. As the monolayer fills up, the long-range
interaction between adsorbed particles can lead to a
variety of ordered structures reflected, in particular,
in characteristic changes in Q, v, and td For recent.
experiments see Refs. 7—9; a recent microscopic
model has been analyzed by Zhdanov. '

Next we look at the adsorption of a gas onto a
solid surface without pronounced adsorption sites.
For physisorption systems this implies that the sur-
face potential is more or less uniform along the sur-

is the rate of adsorption with S(O, T) the sticking
coefficient and n,„ the number density of adsorbed

gas particles in a monolayer. Saturation is incor-
porated via an ansatz S(B,T)-(1—8). Also, for
first-order desorption one writes

rg ——6/td,

where td is the desorption time which is usually

given in the Frenkel-Arrhenius parametrization

td =td(T, B)

=v '( T,O)exp[Q (T,B)lk~ T],
where v =v( T, O) is called the prefactor and

face, i.e., a function of the distance z above the sur-

face only. At high temperatures gas particles in the
adsorbate will then be highly mobile. With mono-

layer densities typically of the order of liquid densi-

ties, collisions of adparticles will probe predom-
inantly the short-range repulsion between them,
leading to a decrease in the heat of adsorption as
coverage builds up. A dramatic decrease typically
occurs at monolayer completion because the adpar-
ticles in the second layer are bound far more weakly

to the adparticles in the first layer than the latter
are to the solid. For multilayer adsorbates, Q will

eventually approach the heat of vaporization of the
corresponding liquid. Our theory will demonstrate
these features explicitly. At lower temperature
small lateral variations in the surface potential due

to the lattice structure of the solid can lead to a
two-dimensional commensurate crystallization in
the adsorbate. In addition, the attractive part of the
two-body interaction between adparticles can lead

to a crystalline phase typically as an adsorbate su-

perstructure, accompanied most likely by a rise in

the heat of adsorption.
In this paper we present a mean-field theory of

the kinetics of mobile multilayer physisorption. In
the next section we briefly review the mean-field

theory developed in two previous papers"' to the
extent necessary for kinetics. Section III will then

contain the derivation of the nonlinear rate equa-

tions and the calculation of the phonon-mediated
transition probabilities. In Sec. IV we present the
calculation of desorption times for the He-

graphite, He-graphite, He —solid argon, and He-
Constantan systems. The roost striking result is the
prediction of a compensation effect in physisorp-
tion, i.e., a proportional variation in Q and lnv as a

function of 6. Such a compensation effect is ob-

served quite frequently in thermally activated pro-
cesses and has been established in a variety of chem-

isorption systems. For weakly coupled physisorbed
systems we also predict a transition from first-order
desorption at low coverage with a rate given by (5)
to zero-order evaporation for 6)2 with a rate rd

independent of coverage. Section V summarizes the
main points of insight.

II. MEAN-FIELD THEORY
OF PHYSISORPTION

A gas particle adsorbing onto a clean surface
finds itself in the bare surface potential V, (r). As
the coverage builds up further, gas particles ap-
proaching the surface from the gas phase experi-
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ence, in addition, the mutual forces due to the parti-
cles already adsorbed. We have, in Ref. 11, taken
the latter into account in mean-field approximation
by deriving from a quantum-mechanical many-body
Hamiltonian spin-averaged, temperature-dependent
Hartree-Fock equations

r

V- + V, (r, ) E-—f-(r i)
2m

+ g n-, f dridr&dr4$+rz)(ri, ri
~

E
~
ri, r&)

&& [ (2s +1)g-, (r, )g+ r, )

+f+ r &)l(j-,. ( r4)] =0,

where E-,. and g-, are the single-particle energies

and wave functions, respectively. The upper (lower)

sign holds for bosons (fermions). s is their spin and
K is the effective interaction between the particles
which, e.g., for fermions, can be identified as
Brueckner's j' matrix. The thermal occupation
functions are given by

n-, = I exp[P(E-, —p)]+ 1 I

where p is the chemical potential per particle and

P= 1/kgT. Because we assume that the gas phase
is very large (infinite), it controls p in equilibrium.
Thus if away from the surface the gas can be
described satisfactorily by the ideal gas law, then

where P is the pressure in the gas phase and A,,h is
the thermal wavelength. Virial corrections can be
included in (10) if necessary.

To decouple the mean-field self-consistency in (8)
from the self-consistency in calculated E, one in-

vokes a local-density approximation. Also one ob-
serves that as long as the adsorbate remains fluid,
one can assume that

(r)=.L 'P;(z, q)e'

where L is the surface area, q=(q„,q~) is a
two-dimensional wave vector, r = (p, z), and
i =(q„,q~, i) with i enumerating the bound states

and the continuum. Inserting (11) into (8) and in-

tegrating out the lateral degrees of freedom, one ob-
tains a set of one-dimensional integro-differential
equations for P;(z,q) which is still too formidable to
allow a numerical solution. Following Ref. 11, we
replace the nonlocal K matrix by a local effective
density-dependent softcore two-body interaction be-
tween He atoms within the adsorbate. This results
in a highly mobile adsorbate for which

V, ( r ) = V, (z) in our mean-field equations:

d + V, (z)—e; 4;(z)
2m dz2

+ g n 1 f dz' V(z —z') @J'(z')

X [ (2s +1)4;(z)4,(z')

A Pp=k, r ln
(2~m) ~ (ks T) r

=kg T I (gn, P/hk Ts), (10)
with

+4;(z')C&J(z)]=0, (12)

CTg $2 2

n = g n-. =(2n. ) 'og qdq exp P ej+ —p +1 .
2m

q

=+(2m ) 'nike Tcrgh lnI 1 ~exp[ P(e& —p)] I— (13)

and

V(z)=og f dp V,ff(z, p), (14)

V(z)= 2iregz' [z' +Aog exp[ —(z/zi) ]I

X [—,(og/z)' —(og/z) ], (16)

where 0.
&

is the range of the two-body interaction
V,ii( r ).

Starting from a bare Lennard-Jones interaction

V2 ( r ) =4&g [«g «)"—(og «)'] (15)

between isolated He atoms we have shown in Ref. 8
that (14) can be adequately parametrized by

where a is of order 10 to 15, zi /erg -0.8, and A is a
density parameter that can be calculated for fer-
mionic gas particles from Brueckner theory. Note
that V(0)=4nEg/5A is finite. A similar effective
two-body interaction has been used in a mean-field
theory of He by Bernardes and Primakoff' and is
discussed by Brueckner and Frohberg. '
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In Ref. 11 we have solved (12) numerically for a
number of model systems to study the dependence
of the single-particle energies e;, the wave functions

4;, the coverage, and the adlayer positions on the
potential parameters in V, (z) and V(z) and on the
particle statistics. In Ref. 12 the self-consistent
solutions of (12) were used to calculate the iso-
therms, excess specific heats, and heats of adsorp-
tion for 3He and He adsorbing on graphite.

We would like to add a few critical comments to
the above version of mean-field theory. The effec-
tive two-body interaction V,ff e.g. in (14), has been
constructed to account for two-body correlations.
So far we have used Brueckner's E-matrix theory
for fermionic particles. We are currently develop-

ing the alternative Jastrow method which is valid
for both fermions and bosons. Also, the complete
reduction to one dimension as used so far does not
retain enough lateral interaction between the gas
particles, so that for bosons our theory is only good
for less than monolayer coverage. For fermions the
range can be extended up to about two monolayers

by introducing a momentum cutoff in (13) to ensure
monolayer saturation at the right density; for details
see Refs. 11 and 12.

A good intuitive tool to understand multilayer
physisorption in the mean-field approximation is

given by the effective, coverage-dependent surface
potential

V, (z,e)= V, (z)+ V (z,e),
where V, (z) is the bare surface potential seen by a
single gas particle, and V t(z, e) is the mean-field

potential generated by all other particles already ad-
sorbed, calculated as a Slater average. ' Examples
are given in Refs. 11 and 12.

= V, (z) —u(t). V V, (z)+ (19)

provided one-phonon processes dominate. The dis-
placement vector is given by

u(t)=(fi/2p)' +to '
( u' 'bqe

J

+u' ' bje ) (20)

in terms of phonon creation and annihilation opera-
tors bq and bj, respectively, of phonon mode J and
energy to&. p is the mass density of the solid. The
label J refers either to the proper surface modes of a
semi-infinite elastic solid' or, in an approximate
way, to bulk modes. Expanding gas-particle field
operators

P( r, t) = g g-, (r)a-, (t) (21)

in terms of the Hartree-Fock single-particle states,
we introduce creation and annihilation operators
a-, and a-, for particles in these states. 's The
Hamiltonian (18) then reads

H= QE-, a-, a-, + gficojbJbq

+L g top
' Y-, -a-,

i j i

i, j,J

&&(b~e u' '+bje u' ')a-,

molecular solid it is given by (1) where r; = r;(t) are
the positions of the thermally agitated constituent
particles of the solid. For mobile adsorbates with
the surface potential a function of z only, one then
argues that

V, (r, t) = V, (r —u(t))

III. RATE EQUATIONS +Hres ~ (22)

H =Hs+ T+ V2+ Vs ~ (18)

where H, is the phonon Hamiltonian of the solid, T
is the kinetic energy of the gas particles, V2 con-
tains their mutual two-body interactions, and
V, (r, t) is the dynamic surface potential. For a

To describe the kinetics of adsorption and
desorption we must supplement the static Hamil-
tonian of the gas-solid system with a term account-
ing for energy dissipation and supply for adsorption
and desorption, respectively. For weakly coupled
physisorbed gas-solid systems, this arises from the
coupling of the gas particles to the phonon bath of
the solid. ' We write for the total Hamiltonian

where

Y-, -, = L (A/2p)'I

)& f dr&*-, (r)V V, (z)g-, (r) . (23)

H„, contains all other interactions of H not diago-
nal in the Hartree-Fock basis, in particular all terms
quartic in a-; and a-; and all terms with higher

powers of the phonon operators. Whereas the above
is accepted practice for phonon-mediated physisorp-
tion kinetics at negligible coverage, some clarifying
remarks are necessary when the adsorbate reaches
monolayer coverage. First, the surface loading may
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change the phonon modes as has been observed in

gas-sohd systems with chemisorption of heavy ad-
sorbates. ' However, for He and He adsorbates
we do not expect too great an effect and therefore

keep the unperturbed phonon spectrum of the un-

loaded solid for our calculations of desorption
times. Second, at monolayer coverage desorbing
particles might draw the necessary energy not
directly from the solid but via a collective excitation
in the adsorbate itself. Such a coupling is still con-
tained in H„, and could be incorporated explicitly
in the random phase approximation. We have done
a crude estimate of this way of supplying energy
and found it smaller than by direct absorption of
phonons. However, a careful study of the random

phase approximation is under way.
To derive the rate equations (2), one solves the

Heisenberg equations of motion for the particle and

phonon operators in second-order perturbation
theory and calculates

n, (t)=Tr[a-, (t)a-, (t)P], (24)

—g R, -, n -, (1.+n-, ), (25)

where for E
1

&E j

R j
= g ~J ~+ juJ ~

[n(~J)+I]
J

(26)

with

n(coJ) = I/[exp(fmJ Ijc&T)—1] (27)

the thermal occupation function for phonons. For
E-. &E-, one has similarly

X5(E-, E-, +fico~) . . —(28)

The plus sign in (25) holds for bosons and the
minus sign for fermions.

where p is the statistical operator of a grand canoni-
cal ensemble based on the static part of the Hamil-
tonian (22), i.e., the Hartree-Fock and the phonon

part. Taking the long-time limit (Fermi s golden
rule) one eventually gets

dn;
R--n-( I+n - )

dt

In Ref. 20 we have looked at a model in which
fermions can get trapped into a single bound state
in a surface potential. In this case, (25) reads for
the occupation function of this one bound state

de 0
OJ J Jo J

= QRo-n-(1 —no) g— R-o(1 n—- )n.o,
J

(29)

an equation which is the basis of Langmuir-type
theories such as Eq. (3). Note that saturation of the
single bound state is in this model not caused by the
repulsion between gas particles but simply by
Fermi-Dirac statistics.

In an isothermal desorption experiment, a gas-
solid system is prepared in equilibrium at pressure P
and temperature T. At time t=0 the gas pressure is
reduced substantially and the time evolution of the
adsorbate is measured and described by a simple
rate equation dB/dt = 8/t~(—B), where t~(8) is
the (in general coverage-dependent) desorption time.
To calculate the latter, we employ the following
procedure: (1) For a gas-solid system in equilibrium
at a pressure P and a temperature T, i.e., with occu-
pation functions

n-,. = Iexp[P(E-,. —p)]+II

for a fermionic gas particle ( He) where p is the
chemical potential of an ideal (classical) gas in front
of the solid, the Hartree-Pock equations (12) are
solved yielding single-particle wave functions

g-,. (r)=P;(z)exp(iq p) and energies E-, =e;
+A'q /2m at a coverage 8=+-, n-, n/-, (m ax),

where n-, (max) is the maximum occupation of the

i th state corresponding to monolayer density. To
ensure saturation, in our theory we introduced a
cutoff q, for the summation over the two-
dimensional lateral momentum q in the surface
plane. (2) The transition probabilities R, , are cal-

culated according to (26). (3) To account for the re-
moval of the gas phase in an isothermal desorption
experiment, we drop continuum-bound state transi-
tion from (25) and integrate these equations for a
small increment At with the right-hand side deter-
mined by the initial conditions. (4) With the new

occupation functions n, (bt) (all continuum states

are empty) corresponding to a reduced coverage
8(ht), we enter the Hartree-Fock equations [step
(1)] and recalculate 1(j-, (r) and E-, self-consistently,

after which we can return to step (2) above. In this
way we generate the time evolution 8(t) from
which we can extract the time scale tz(8) of
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desorption. The implicit assumption in the above
procedure is, of course, that the internal readjust-
ment of the adsorbate during the desorption process
is much faster than the desorption process itself.
Note that in addition to the explicit nonlinearity of
the rate equations (25) there is a much stronger im-
plicit one through the dependence of the initial and
final states in R -,. -,. on the n -, 's in (26).

The above calculation can be simplified consider-
ably after the realization that the He-graphite and
similar systems remain in quasiequilibrium during
the desorption process in a temperature regime
where the desorption time is much larger than the
time characterizing bound-state —bound-state tran-
sitions justifying the use of perturbation theory on
(25) to calculate the desorption time as

aV, (z)
t~

' (n/M——,N., ) g g g t0:„' f d r P', ( r )
az

I P C

2

1(-, (r) 5(E-, E-, .+—fico-)n-, ng' gn-,
J

(30)

where c is the momentum of a gas particle in the
continuum. For a graphical representation of our
results we use the Frenkel-Arrhenius parametriza-
tion (6) with P the gas pressure necessary to main-

tain a transient coverage at a temperature T.

IV. RESULTS

A. 'He on graphite

—g(4,z/d, )], (31)

where

g(n, x)= g (j+x)
j=b

(32)

0

is a Riemann zeta function. d, =3.37 A is the dis-

tance between crystal planes and n, =c,/a, is the
average lateral density of the basal plane whose
two-dimensional unit cell of area a, =5.24 A con-
tains c, =2 atoms. The underlying He-C two-body
interaction is assumed to be a Lennard-Jones 6-12
potential with parameters e, /kz ——16.23 K and

We begin our discussion of physisorption kinetics
for He atoms desorbing from the basal plane of
graphite. For this system, various bare surface po-
tentials V, have been studied that reproduce the ex-

perimentally determined single-particle energ'ies

well. ' Though it is known by now that there is a
small lateral variation in V, along the graphite basal
plane leading to band-structure effects, we cannot
include them in the present one-dimensional version
of our theory in which only the laterally averaged
potential V, (z) enters, which we have chosen as a
zeta potential, '

V, (z)=2ne, o,c, a'd, [ —,(o, /d, ) g(10,z/d, )

t
0

0;=2.74 A. We have also calculated desorption
times in a bare surface potential that is based on an
Yukawa-6 He-C interaction ' and found them to
be about 30%%uo longer, a trend that follows similar
conclusions on matrix elements. Because our theory
is not expected to be more accurate than that, we
prefer to use the bare surface potential (31) not only
for He on graphite, but also for the other systems
discussed below.

The parameters eg and O.
g in the effective two-

body interaction V,tt(z) in (14) are known from the
underlying Lennard-Jones interaction between two
isolated He atoms to be es/k~ ——10.22 K and

0g:2 556 A The parameters 3, z ~, and u deter-
mining the soft-core repulsion are less certain. We
have shown in Ref. 11 how they can be determined
for a system of interacting fermions by a
Brueckner-type calculation. For two He atoms in-

teracting in a He fluid of liquid density, we found
that z&-0.8crg, o.=15, and 3=1.7, which gives
V(0) = —2V(z =zm;„), i.e., a repulsion at z=0 that
is as high as the attraction is deep at z =z;„. We
also saw that V(z =0) varies roughly linearly with

density up to liquid density. In solving (8) self-

consistently we therefore fix A at each coverage
such that V(0)= —0.2V(z =z;„) at 8=0 rising
linearly to V(0)= —2.0V(z=z;„) for 8&1. To
familiarize the reader with those features of the
mean-field theory of physisorption relevant to the
subsequent discussion of desorption kinetics, we
turn to Fig. 1. The upper panel gives the bare sur-
face potential V, (z) in (31) at zero coverage. Indi-
cated are the four bound-state energies; also given
are the squared wave functions of the lowest two
bound states. As the coverage builds up to a mono-
layer (center panel in Fig. 1) the effective coverage-
dependent surface potential V, (z, 8) from (17)
develops a repulsive barrier that keeps additional
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FIG. 6. Effective surface potential V, = V, (z,e) in kel-
vin from (17) for the He-Ar(100) system at T=15 K for
three coverages; bound-state energies are indicated. Also
shown are squared wave functions (()o(z)

~

' (solid line),

~
Pi(z)

~

' (dashed line), and
~
Pz(z)

~

' (dotted line). Max-
imum coverage 0.08 A

served in many chemisorbed systems and "families"
of similar catalysts. For an introductionary discus-
sion we refer to Clark's book, where three models
are discussed as possible explanations. Indeed, Fig.
3 shows that (33) is borne out for coverages
0.1 & 8 & 1.2. For 8 & 0.1, v remains constant. For
8&1.5, v remains constant. For 8&1.5 one ex-

pects another region of linearity between logtov and

Q. We have argued above that the compensation ef-
fect in our system has a simple microscopic ex-
planation in the mean-field binding of an adsorbed

130

12')

T =12K

T= 9K

I

0.0 0.2 0.6

FIG. 5. Heat of adsorption Q and prefactor v from (6)
vs e for He-graphite.

I I I I

0 2

log, P(Pal

FIG. 7. Isotherms for 'He-Ar(100) system. Dashed
line: experimental data from Wallace and Goodstein
(Ref. 28). Dotted line: "corrected" data for different
maximum nonolayer coverage (see text).
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FIG. 10. Single-particle energies e; vs 6 from the
mean-field equations (12) for 'He-Ar(100).

0.0 0.5 1.0
8

1.5 2.0

FIG. 8. Heat of adsorption Q and log~ov from (6) for
'He-Ar(100).

v-exp(b S/kz ), (34)

where hS =S~„—S,d, is the entropy lost by
transferring a particle from the adsorbate to the gas
phase. A compensation effect is then observed if
b,S is proportional to the change of enthalpy in the
above transfer, i.e., to the heat of adsorption.
Indeed, this proportionality, albeit not linear, is ob-
served in our system as seen in Fig. 3. A further il-

lustration of the compensation effect in our system

particle, particularly around monolayer coverage, to
the solid per se and the other adsorbed particles and
in the weakening of the effective adsorbate-phonon
coupling. For further corroboration, one can look
for a thermodynamic explanation of the compensa-
tion effect resorting to transition rate theory which
says (see, e.g., Clark's account of Kemball's
model ) that

can be found in Fig. 4 which shows that the curves
log&o(td ') vs T ' for various coverages e indeed
converge at high temperature. Because Q, the slope
of log~o(td '), increases more than linearly at high
T, these curves do not actually cross, as textbook
discussions would like to see it.

B. He on graphite

Because the present version of our mean-field
theory of physisorption does not give the correct
monolayer saturation if the adsorbed particles obey
Bose-Einstein statistics (see, however, the extensive
discussion in Ref. 11), we calculated the desorption
time for He desorbing from the basal plane of
graphite up to a coverage 6(0.7. Figure 5 gives
the heat of adsorption Q and the prefactor (not its
logarithm) as a function of Q for two temperatures.
The similarity to Fig. 2 for He desorbing from
graphite is striking, albeit not surprising, in view of
other data, in particular thermodynamic ones, on
these two systems. '

C. 'He on solid argon

12-

10
0

/

/
/

50 100

FIG. 9. Log~ov vs Q for 'He-Ar(100).

Thermodynamic data such as specific heat, iso-
steric heat of adsorption, and adsorption isotherms
have been reported for He and He adsorbed on
solid argon at 4.2 K. We report here data for He
adsorbed on and desorbing from the (100) face of
fcc argon. For the construction of the bare surface
potential (13) we take the parameters of the
Lennard-Jones 6-12 potential between a He and an
Ar atom to be e/kz ——24.2 K and cr =3.15 A; also
a, =o and o/d, =2'~. The maximum coverage

0

we take at n,„=0.08 A, and for solid argon we
assume a Debye temperature T~ ——92 K. Figure 6
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FIG. 11. Desorption rate rd ——B/td vs B for 'He-Ar(100).
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oration
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FIG. 12. Desorption rate rd vs B for 'He-Constantan.

again demonstrates how the effective mean-field
surface potential develops barriers and troughs to
separate and accommodate second and third ad-
layers as 8 grows from zero to one and eventually
two. To indicate the adequacy of the mean-field
theory for the description of this system ( He on
Ar) we give in Fig. 7 two calculated isotherms to-
gether with a measured low-temperature isotherm.
The discrepancy might be fortuitous for two
reasons. For one, the structure of the Ar surface is
not known in the experiment. Because the He-Ar
surface potential varies greatly from one surface to
the other a similar variation is expected for the
isotherms. A second reason for the discrepancy in

Fig. 7 is the fact that the monolayer coverage seems

somewhat uncertain experimentally; e.g., for He on

solid argon at 4.2 K, McCormick et al. report
monolayer coverage at 15.8 cm' STP whereas Wal-

lace and Goodstein put it at about 20 cm STP.
Decreasing the experimental coverage in Fig. 7 for
He on solid argon by about the same factor 0.8,

indeed, gives excellent agreement between theory
and experiment (dots). In Fig. 8 we plot the heat of
adsorption Q and the prefactor v from the
Arrhenius-Frenkel parametrization (6) as a function
of coverage 9 for T= 10 and 15 K. We know of no
measurement of either quantity for the He-Ar sys-

tem. However, Q has been measured for He on

argon at T=4.3 K to be Q=70 K at 8=0.5,
Q=61.5 K at 8=1.0, and Q=33 K at 8=1.5,
values that our theory also produces for He on Ar,
considering the isotopic difference. Again, log~ov

varies in parallel with Q, signifying a compensation
effect for this system also; see Fig. 9. It is instruc-

tive to look at the variation of the single-particle en-

ergies e; as a function of coverage 8 as depicted in

Fig. 10. The fact that the energies move up as 6
increases results in the heat of adsorption Q de-

creasing. In addition we should observe that the en-

ergy difference (e I Ep) increases somewhat, slow-

ing down the desorption process as a higher-energy
phonon is needed at higher 8 to accomplish desorp-

tion.
With Q and v varying so strongly as a function of



E. SOMMER AND H. J. KREUZER 26

8, the question arises whether it is at all meaningful
to write the overall desorption rate rd as a first-
order reaction according to (5). We have therefore
plotted in Fig. 11 rd vs 8 for several temperatures.
At T=10 and 15 K it is obvious that for 8&0.5
desorption is of first order. However, at 8 & 1.5 the
rate rd becomes zero order for T&10 K; i.e.,
desorption, proportional to coverage, goes over into
evaporation at low coverage, and independent of
coverage, goes over at high coverage. That evapora-
tion sets in so early, i.e., around 8 & 1.5, we explain
as arising from the rather small binding energy of
He on the substrate argon. Indeed, for He desorb-

ing from graphite no evaporation is predicted up to
6=2.0. On the other hand, for He desorbing from
Constantan, a Cu-Ni alloy, we predict the transition
from first-order desorption to zero-order evapora-
tion at coverages slightly larger than a monolayer;
see Fig. 12. For this system we have also predicted
a compensation effect ( He desorbing from Con-
stantan has been measured at 8=1.5 by Cohen and
King ). A change over from first- to zero-order
desorption has recently been observed in the Xe-
W(110) system, albeit at such quantities of ad-
sorbed gas that uniform adsorption would be in the
submonolayer regime. Our results would then sug-

gest that the zero-order desorption of Xe from
W(110) takes place from the top of multilayer
patches of adsorbate, one reason being the fact that
in this system the heat of adsorption also decreases
only slightly upon completion of the first three ad-

layers.

V. CONCLUDING REMARKS

In this paper we have developed a mean-field ap-
proach to the (phonon-mediated) desorption kinetics
of multilayer physisorption based on the master
equation (25). To our knowledge these are the first
microscopic calculations of the coverage- and
temperature-dependent desorption times. Computa-
tional considerations have so far restricted us to the
helium isotopes as adsorbates, the numerical exam-
ples being He and He on graphite, He on Con-
stantan (or any other metal), and 'He on solid argon
(or any other molecular solid). Our main results are
the following: (1) The desorption rates increase
with coverage, in some systems such as He on Con-
stantan and He on argon changing from first-order
desorption at submonolayer coverage to zero-order
evaporation above a monolayer. (2) Using the
Arrhenius-Frenkel parametrization (5) for the

desorption time, one finds a pronounced compensa-
tion effect, i.e., a concurrent variation of Q and lnv.

In evaluating the theory presented, a number of
approximations and assumptions must be assessed
both at the mean-field level and at the kinetics level.
The former has been done in Refs. 11 and 12, and
has been reviewed in Sec. II of this paper. Al-

though our mean-field theory seems to be capable
of reproducing most of the qualitative and some of
the quantitative features of isotherms, heats of ad-

sorption, and excess specific heat, as shown in Ref.
12 a number of improvements suggest themselves:
(a) The reduction of (8) to (12) should be handled

more carefully, keeping the lateral momentum
dependence in P;(z, q ) in (11) to account more fully
for the saturation in the various adlayers. Indeed, a
Jastrow-type approach should be tried to account
for the correlations. We are working along these
lines right now. (b) The lattice periodicity of the
solid surface should be taken into account explicitly
to allow for phase transitions in the adsorbate. This
will also (c) lead to band-structure effects which so
far have only been calculated by Carlos and Cole
at zero coverage. The energy gap in the single-
particle density of states should be partially respon-
sible for saturation.

We next turn to an assessement of the various as-
sumptions made at the kinetic level. For weakly
coupled systems, we feel not much criticism can be
levied against the rate equations (2) or (25), valid

quite generally for Markov processes. ' Frequently
the calculation of the transition probabilities R -, , ,

Eq. (28), as one-phonon processes is questioned.
For the weakly coupled physisorbed systems studied
here, we have found amble justification in Refs. 3

and 4 which draw heavily on a complete study of
all two-phonon processes, also those arising from
terms quadratic and cubic in u(t) in (19), which
have been shown in Ref. 32 to be small for such
systems. Replacing the thermal vibrations of the
solid by a uniform time-dependent displacement of
the surface in (19) has been rationalized in Appen-
dix A of Ref. 3 and can be understood on the
grounds that phonons of about 20% of the Debye
energy, i.e., of a wavelength about 5 times a lattice
constant contribute in supplying energy to the
desorbing particle.

Future work on physisorption kinetics around
monolayer coverage must include the possibility
that the desorbing particle can, in addition to ad-
sorbing phonons from the solid, acquire energy
from collective excitations in the adsorbate, presum-
ably very effectively below ordering transitions in
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the adsorbate. They could be included in the theory
via a random-phase approximation. At higher cov-
erages of a few layers one expects intuitively that
such collective excitations should become dominant.

As for generalizations of our results we venture
to say that a compensation effect should be expect-
ed for phonon-mediated desorption around mono-

layer coverage in gas-solid systems where the pho-
non density of states in the surface region is not
changed appreciably by the presence of the adsor-
bate. Local changes in surface properties (lattice or
electronic) can be very pronounced in chemisorbed

gas-solid systems to which the present theory is not
applicable.
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