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A semi-infinite Heisenberg ferromagnet with nearest-neighbor exchange interactions is stud-

ied at finite T. The Green functions are evaluated by extending the random-phase approxima-

tion to consider the spatial variation of the layer magnetization, which is calculated self-

consistently at a11 temperatures up to T, . Results for an fcc lattice with a (111) surface turn out

qualitatively similar to previous results for a sc lattice with a (100) surface. In both cases the

surface has the same T, as the bulk, irrespective of the difference between surface and bulk ex-

change constants. A survey is presented of a continued fraction representation for the Green

functions in the mixed local-Bloch basis for the spin operators, related to the transfer-matrix

formalism, which allows explicit evaluation of the diagonal Green function at each layer. The

calculation was performed by truncating the spatial variation of the magnetization, at any T, at

the third layer of the lattice. The currently available intense sources of spin-polarized electrons

offer a possibility of obtaining quantitative information on the surface parameters. The differen-

tial cross section for low-energy electron scattering is calculated for the fcc lattice at zero

momentum transfer. The curves show resonances near one or both ends of the bulk magnon

energy band, depending on the surface exchange parameters.

I. INTRODUCTION

The recent development of efficient sources of
spin-polarized electrons' has stimulated the study of
the surface properties of magnetic systems.

Both elastic and inelastic scattering of low-energy
electrons off insulating magnetic samples can afford
very detailed information on the surface magnetic
structure' and on the spectrum of magnetic excita-
tions, whether surface localized or bulk. ' This is
because low-energy electrons, with energies up to 150
eV, do not penetrate further than one or two atomic
layers into the crystal, being, in consequence, an in-

valuable probe of the surface properties.
In this paper we present what, to our knowledge, is

the first calculation in which are simultaneously ob-
tained in a self-consistent way, the layer magnetiza-
tion profile, the bulk magnetization, and the spec-
trum of bulk and surface magnetic excitations for any
spin S and for all temperatures T, up to T„ofan iso-
tropic Heisenberg semi-infinite ferromagnet with
nearest-neighbor exchange interactions.

We adopt the Green function formalism of Zu-
barev' and use the mixed local-Bloch representation,
as introduced in the context of surface magnetism by
De Wames and Wolfram. 4

The Green functions are evaluated in the random-

phase approximation (RPA) by the simultaneous
self-consistent evaluation of the layer magnetization
at the surface (n =0) plane, and the next inner plane
(n =1), assuming for simplicity that the bulk mag-
netization value is reached at n =2. We have already
briefly reported elsewhere on our RPA results for
the surface magnetization in simple cubic ferromag-
nets with a (100) surface. We now present the
method of calculation of the Green functions (Sec.
II) for the simple cubic and the fcc semi-infinite lat-

tice structures, expressing them as continued fractions.
Since the bulk magnetization is a necessary in-

gredient, we calculate it also in the RPA, following
the work of Tahir-Kheli and Ter Haar. ' An RPA cal-
culation of the self-consistent magnetization profile
for a twenty-layer thin film, including exchange and
single-ion anisotropy, was performed by Diep-The-
Hung et al. , for S = —, in the sc and bcc structures.
We discuss our results for the magnetization profile,
the surface magnetization and the surface magnon
dispersion relations in Sec. III.

Section IV is devoted to indicate how these results
can be applied to the calculation of the differential
cross section for inelastic scattering of low-energy
electrons. Calculations thereof at low temperatures
have already been performed (see Ref. 9 and refer-
ences therein).
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In a similar calculation for a metallic ferromagnet,
Saldana and Helman' used pseudopotential results
for the bulk magnetization, although they recognize
that the surface magnetization should be used in-
stead. We consider, following previous treatments of
this problem, that electrons interact only with the
surface spin layer, and that their interactions with the
spin system is of the contact form proposed by De
Gennes and Friedel. "

In the fcc case with a (111) surface, numerical
results are specialized to the case of EuO with S = —,,

since we believe it should be a good candidate for
eventual comparison with experiments, but it is
found that no qualitative changes arise for other
values of S.

mean ($;) only depends on the position of the plane
parallel to the surface. We assume the magnetization
to be parallel to the surface in order not to consider
demagnetizing fields.

The resulting equations of motion are
1

oIhg( —2 Xlfg (Sf') GgI(oI)
f

sgI—(sg) —2 QIfgGJr((u) (Sf) . (4)
7T f

These equations are identical to those used in Ref. 8

for a finite number of layers.

A. Simple cubic ferromagnet with

nearest-neighbor interactions

II. SELF-CONSISTENT CALCULATION
OF THE MAGNETIZATION PROFILE

We consider a semi-infinite, insulating ferromag-
netic crystal described by the Heisenberg Hamiltonian

H= —X II„SI~ S~
lcm

where the exchange constants between nearest neigh-
bors are: 1]] for bonds in the plane of the surface, lq
for bonds between the surface and the second plane,
and I for all other bonds. We calculate Zubarev's
Green functions'

6 (r —ro) =—((SI+;s ))
—=—iO(r io) ([S,+(—r),S (rII)]) . (2)

It is convenient to decompose the lattice vector
f —= ( f II,f3) and to define the Fourier transform of
(4) with respect to the "parallel" components
f II

—= (fx,fg):

Gfg(oI) = X Gf,g, (kII, oI)exp[ikII ( f II
—gII)], (5)

kll

where we have taken advantage of the translation
symmetry parallel to the surface

—s'fs

X Jf, g(k I)Iexp[ik II (fII —gII)] . (6)
s k

We obtain the matrix equation

We use a generalization of the RPA decoupling '
that allows for spatial variation of (Sg) over an arbi-

trary number of planes parallel to the surface. '

((s's;s ) ) = (s') ((s+;s, ) )

The subindices denote lattice sites. The statistical

or

1

2m. ( v jt —H'") CT

where

2n(vt H")g =—2mQg=~ (7a)

(7b)

H„' (kII) =8„[e-„(m)o. +eq(m, m +1)o. +I+eq(m, m —1)o. I]

—[e-„(n)5„~+ gq(n, m) 5„,~+I + a~(n, m) 6„~ I] o.
II

defining the dimensionless variables:

(&a)

r

I)(/I, n =0=4 yO ( k II ) '

1

= (s') i'(s;„), =IG-
]

yo(kII) = —, (cosk„a +cosk, a), gq(n, m) ='
1

t

(gb)

We take for simplicity o. =1 for m ~2; v is the angular frequency in units of 2I(S„,I ).
The matrix

(9)
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1s

2t + aoo Pol

Plo 2t +a]1

P2]

0 0
0 0

0 0

P]2 0

2t+n22 1 0

1 2t1
0 1 2t

where, calling I]/I = e2 and Io/I = e~~, we have

0 „„2t=—v —2 —4[1 yo(kl])]

(io)

%e substitute again DN ~ in terms of DN 2 and DN —3

and so on, until we arrive at a ratio of two unper-
turbed determinants of the form of (15) for p )2.

This ratio can now be written as

DN —p -1
DN p

UN-p -1

UN-p

1

2t —UN p 1/UN p

. (17)

Taking now the limit (N —p) ~ we define

UN p 1(-t)-
g(t) = lim

(N p)- U-N p(t)
(iga)

Equation (18a) can be written in the limit N —p ~ oo

app =2 —o ]pi+4(1 —e]]ap) [1—yp( k]i) ]

a]1=1—]rpe2+4(1 —ol) [1—yp(kp)]

&22=1 —0]
Pol = ]roe', Plo = trl&2. P]2 = al P21 = 1

(12) or

(t) = 1

2t —(1/2t — )

1
2t—

(igb)

Since 0 is a tri-diagonal it is easy to calculate directly
the elements of 0 '.

Calling DN =detO and DN p the determinant ob-
tained from DN, deleting the first p rows and
columns, we get

equivalent to

or
]]:+]]:'=2t .

g2 2tg+ I =—0 (20)

(0 ]) N 1

N
(13)

Therefore, for a semi-infinite system, N
(0 ')pp, and (0 ')ll take the form

where

DN =(2t +app)DN 1
—Plopp]DN 2

DN —1 (2 t + a]1)DN 2P]2P2]DN-3—

(0 ')oo=
P]2P21

2t + app —Plpppl 2t +a]1—
2t+a2, —(

l

(22a)

p 2tDN p —] DN-p —2

(i4)
(0 )11= 1

P]OP01 P]2P21
2t +Otii-

2t +app 2t +a22 —g

. (22b)

For p & 2 all determinants DN p have the nonper-
turbed form:

2t1 0
1 2t1
0 1 2t (is)

These determinants, also found by De Wames and
Wolfram4 in the solution of the equations of motion
for the operator SI+ in the Holstein-Primakoff ap-
proximation, are the associate Tchebishev polynomi-
als of the first kind UN p(t)

DN ,(t) =UN p(t)-
Using recurrence formulas (14) one can rewrite (13)
as

(16)(0- )„=-1 1

2 t + app —P1ppp] (DN/DN ])-

In order to interpret the physical meaning of the
parameter ((t) [Eq. (18a)] we shall need the analytic
continuation of U„(t) to the complex t plane.

For t real, and
~
t

~ ( 1, we define t =cos8, and we
can use the representation

U ( ) sin(ll + l)8
sin8

(23)

U„(t) is an n-degree polynomial in t. All its roots are
contained in ( t ~

«1. In this interval of t, f is com-
plex, since from (20):

g(t) = t + i(1 —t')' '= e", [g~ =1 (24)

We must choose Imp (0, for, in this case, according
to (22), (0 ')00, (0 ')]1, etc. , will have a negative
imaginary part, corresponding to the correct analytic
continuation, g+.

If t=cos8, for t t+ie, 8~8'=8+i'
t+= t +i e =COS(8+i 7]) COS8COSh=2] —i Sin8 Sinh2],

(2s)
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then q & 0 if sin8 & 0 and

ei8 ei(ii+ig) (26)

For ( real, we must choose the solution ~(~ ( 1, to
which the continued fraction converges and it can12

be immediately verified that when t (+i e,
g ~g —i (, with f )0.

Figure 1 represents the mapping t ((t) on the
complex g plane, where the particular branch has
been chosen for which ~g(t +is) ~

(1 and
Imp(t+ie) (0.

The physical meaning of the parameter g can be
visualized by considering one of the unperturbed
equations (7) for a nondiagonal element ( Qg) „i,n A I
for I ~3:

gn-l, l +2 ~gn, l +gn+1, l (27)

If we call

g„l =—COnStXn, (28)

where the constant factor depends on I, Eq. (27) can
be rewritten as

FIG. 1. The mapping ('= t + (t —1)'~ . We show the
branch corresponding to the analytic continuation of t in the
upper half-plane. The lower semicircumference is the image
in the complex ( plane of the branch cut —1 « t «1 ~here
the continuum lies. Long arrows indicate the sense in which

( travels along its trajectory in the lower half-circumference
as t varies in the whole real axis —~ ( t & ~.

Xn ] +2tXn +Xn+] =0

with solutions

X„=Ap",
if p satisfies

(p+p ')+2t=0

Comparing Eq. (31a) with Eq. (21) we see that

(29)

(30)

(31a)

(31b)

(33)

cide with the zeros of detQ [defined in Eq. (9)].
g„l for all n and 1can be written as the ratio of two

polynomials. The diagonal elements of g, in particu-
lar, which are the only ones we shall need to evaluate
explicitly, can be expressed as

N((g, k())
Ill( ti II

(

g.+i,i(k ii, ~) = p( kii. ~)gn i(kii ~)

6 k III ~)gnl( k lb ~), (32)

We see that p( k ~~, rs) is the transfer matrix for this
case.

Let us now return to Eqs. (7a) and (7b) for the
Green matrix g and observe that the poles of g coin-

The quantities x„are the amplitudes of the eigenvec-
tors of H"' at the plane n, since Eq, (29) can be
recognized as the eigenvalue equation

(H' lv) x =0, x =(xo,xi, . . .)

for fixed k~[ ~

The relations (28), (30), and (31b) imply uz( k ii) = (z + gz +2 +4 [1 —yo( k ii) ) (34)

In Sec. III we describe the results obtained for the
dispersion relation (34), for different magnon
branches and different crystal structures.

In order to evaluate the magnetization, we require
the equal-time correlation function (S„S„+).This
can be obtained in terms of the Green functions (2)
as'

where D(g, k~~) does not depend on I. For complex

(, g+ has a branch cut along the semicircumference
~g~ =1 in the lower half plane, as shown in Fig. 1.
For real (=(„areal root of D(g, k~~) =0, we elim-
inate 2t in terms of g from Eq. (21), and substitute
in Eq. (11) to obtain the frequency of a surface mag-

non as

((S„+;S„))Eii„+ig ((Sgg qSB ))E-g~ —iaS„s„)=1;m,'~ d
e ~0+

1For the particular case S = 2, we have

h(s„-s„+)=—g(s„) . -

(35)

(36)
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Then, in terms of G defined in Eq. (5),
2—h(S„') = —lim 2 d(&cu)

~ d'k~~imG„„(k~~, cu +i&)[exp(&Pcs) —1] '
2 " -p+ 4m~" (37)

For a general value of S we use a result due to Hewson and Ter Haar, ' for the case of an infinite antiferromag-
net:

where

[$—P+($) ] [I +y+($)1""+[S+I +&+($)1""
[I +&+($)]' +' —[p+($)1' +'S'+ (38)

goo

Q+(S) =—2 J~ ImG~~+~ ~~y&(co+i e) [exp(tPco) —1] 'd(t~) (39)

The labels (+) in that particular case referred to the
up or down sublattice, In order to generalize (38) to
apply for the case of a system with a magnetization
varying from plane to plane parallel to the surface,
we must extend the formulas to include an infinite
number of sublattices, each of which is in fact one
crystal plane. The integration over three-dimensional

I

k space must be substituted by an integration over
the two-dimensional k[] space, appropriate to the par-
ticular family of planes parallel to the surface and the
label + must be substituted by the corresponding
plane index, so that we have one function Q„(S) for
each plane in the semi-infinite system.

In our case, then

[$—y.($) l [I +y, ($)1""+[S+I +y. (S)] l y. (S)]""
[I +y„($)]""—[y„($)]"+'

where P„($) is

2

p„($)=——„dt ~ „d k~~ Im(Q ')„„(t+ie,k~~)[exp(00(TS) (2r+2+4[1 —yo(k~~)]j) —1] '

2tI ($;,i )
np(T, S) =

(40)

(41)

(42)

%e now refer to Fig. 1, in order to evaluate the in-
tegral in (41); t varies from —~ to ~ as the frequen-
cy ro does. In the range —~ & t & —1 and
1 ( t ( oo, ( is real and varies from —1 to +1. Then
in terms of the real roots [g ] of D (( ) =0,

written as

( —,
' )e

(s„') =
I +2/„( q )

(44)

&„(g.)
Im(Q ')„„(k)(,g —i0+) = —m $8($—$ ) D'(g. )

(43)

B. fcc ferromagnet

We consider a (111) surface. The basis vectors are
chosen as

Substituting (43) into (41) for
~
tl ) 1, we obtain the

contribution to the spin deviation from the discrete
spectrum of surface modes, denoted with the index ot

in (43). The integral

rl

J dt J dkii2

in (41) runs over the range where the Green func-
tion has a branch cut, it being the contribution to the
spin deviation from the continuum spectrum of bulk
excitations.

Equation (40) for different n will give a set of
self-consistent equations which, for S = —,, can be

Ai = —(1,0, 1), Ap = —(0, 1, 1)

A3= —(1,1,0)

The reciprocal vectors are

Bi = (1, 1, 1), Bp= (1,1, 1)

83= (1, 1, 1)
a

A general k vector will be written as

3

k= /kB;

(45)

(46)

(47)
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or as k = (k)),k]). Therefore a vector k)) = (k],kq)
describes wave propagation parallel to the plane (111)
although it is not itself parallel to the plane.

In order to obtain the equation of motion for the
Green function in this case it is convenient to gen-
eralize the Fourier transform with respect to f [], g]] by
including a phase change from one plane to the next
away from the surface':

Gf&(Q]) = X Gf & (kp, N)
S k

xexp[ik))( f)) —g)))+ i&(kll) (f3 g3) ],
(48)

If, = @If...(k)))
S k

x exp [ik))( f ))
—g))) + i)i)(k))) (f3 —g3) ]

(49)

]r](k))) is the phase of the structure factor h, defined

as

h = $e'P = —, [1 +exp(2mik]) +exp(2m ik]) ]

(50)

))))' = —, (3 +2 [[cos2]r(k] —kq) ]+cos2n k] +cos2n k&))

tang(k))) = (sin2]rk]+sin2n kz)

x (1 +cos27rk] +cos2mkq) '

Substitution of transforms (48) and (49) into (4)
gives just an equation equivalent to (7), and the in-

troduction of the phase ]C)(k)))(f3—g]) makes the
nondiagonal matrix elements of 0'" real.

The exchange constants for bonds linking spins on
the (111) surface plane and between the surface and
the next inner plane are eventually assumed different
from the volume constants. We define

&
app= 2 —o]t] +4(1 —e))ap) [1 —y](k)))]

T~n„= 1 —]Tp&] +4(1 —o, ) [1 —y, (k))) ]
1

3 npp=l 0)

y](k))) =1 ——,
' (1 —)t')

The matrix 0 = ~I —H'" can be written as

2t+npp

3 ]t]EgCT ]

0

3$E]o'p

2t+nii
3)t)

0
0

0

3)t)o]

2t +n'og

3)t)

0

0 0 0 ~ ~ ~

0 0 0 I ~ ~

3)t) 0 0

2r 3P 0

3f 2r 3$ (51)

It turns out convenient to divide all elements of 0
by 3)t)(k))), so that in terms of the new variables
r' = r/3$, upp = app/3)t), a]] = n]]/3)t), etc. , we obtain a
matrix 0' which has the same structure as 0 of Eq.
(7) for the sc lattice. In particular, making the sub-
stitutions t' t, npp npp, etc. , to simplify the nota-
tion we have

I

argument of the Bose function modified to

u]( T S)[2$t +2+4(1 —y](k))) ]

where

n](TS) =3n))(T,S)

(s4)

(55)

(n-])„=
3)t)

2t+npp—
Pp]P]p

P]~)8]]2t+ni]—
2t +ugp —g

(52)

In terms of the new variable t,

v =3[2)t)t +2+4(1 —y](k)))] (s3)

and the self-consistent system of equations for cr„as
defined in (gb) is the same as (40) and (41) with the

III. RESULTS FOR THE MAGNETIZATION
AND THE DISPERSION RELATIONS

We show in Figs. 2 and 3 the curves for (S) ) vs T
for different values of e~, with e]]=1.Figure 4 shows
the dispersion relations of the different surface mag-
non branches for the fcc lattice (the corresponding
results for the sc lattice were already published in
Ref. 6). The limits of the continuum are also indi-
cated in Fig. 4. As a general trend, we note that in-

creasing 7 is equivalent to decreasing eq and e]], since
in both cases the total field on surface spins de-
creases.
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fcc
the magnetization of the second plane becomes
slightly greater than the bulk value at high T. This
result may be due to the restriction to only two
varied planes. Also, the critical behavior of (SII ) for
T & T, is presumably dependent on this approxima-
tion, since the effect of imposing o-2 =1 is to increase
artificially the self-consistent values ($( ) and (Sf ).

Further work to extend the present calculations to
0.2 W1 is already in progress.

We estimate that the present results will be unal-
tered for T & 0.9T, and for ej & 2.0.

IV. INELASTIC SCATTERING OF
LOW-ENERGY ELECTRONS

The interaction between the incident electrons and
the spin lattice is described by a contact potential in-
troduced by de Gennes and Friedel":

FIG. 5. Magnetization profile for the fcc lattice. ~ =6, &II
= &,

e3 =1.5 (A), 1 (B), 0.5 (C), 0.1 (D). o'„=2(S~)/ir, a„
=2(S*„„)/t,$ = —,.

affect our results by just a few percent after the
second plane, since in two different calculations for
the sc structure, involving, respectively, one and two
altered planes, the surface magnetization differed by
only 15%

It must be remared that as ej increases above 1.5,

0, .

s( r ) QS-, p( r —1), (56)
I

where 6 is the coupling constant, 0, is the volume
of the unitary cell, S( r ) the spin operator of the in-

cident electron, S -, the spin operator in the l posi-
tion of the lattice, and p( r ) the electronic spin den-
sity of the ion.

The differential cross section in the Born approxi-
mation is

r

g I(k s'f
~
VIksi)I'W(i)P(s) 5(E E~+Ef)—

dE dO k 2n.
&if.&~&

(57)

m is the free-electron mass; ~ k, s) the incident-electron state; ~ k, s') the scattered-electron state; i and fdenote,

respectively, the initial and final states of the target. W(i) = e /Tr(e s") is the probability of finding the mag-
netic system in the initial state i, and P(s) is the probability that an incoming electron has spin s. We assume
small energy transfer E, so k'= k. The wave function of the incident electron is assumed of the form'

'P-„„(r ) =exp( —i k)( r )))fi,,(z) (58)

Let us calculate the matrix element

k s', s S-, p r —l ksi
1

(59)

The 1th term of the sum is (n=+, —,z):

(k s'f ~
s™$-,p( r —

1 ) ~
k s i ) = (f [ $ -,

~
i ) (s'I s I s ) J d r rp"-„, „,( r )p ( r —1 ) 0'-„„(r )

II' 3 II' 3
(6O)

We call

(s'Is ~s) =z; (61)

Now we calculate the integral

Jr dr P-, , ( r )p( r —1)F-„k(r )=exp(ihK~~ I H)p„(hk[[ k3 k3)
k II,k3 II' 3

(62a)
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~l
where hkll= kli —kil and

7 «(Iko, k3, k3) = d r f, (r3 + n) fk (r3 + n) p( r )exp(iAko r o)4 3 3
(62b)

Here, we assume for simplicity that the electron wave functions do not depend on spin. Then (57) becomes

t

m

dEdQ, 2m 2
p(s)y„"y exp( —thko 1 o)k, (flS-, li) exp(ibko 1~~)(A~i )'

e-PEI
x (fls'-. lt)" s(E+Ef E;) —.

Z
(63)

The terms in (63) involving S„are substituted in the
RPA by the averages S„' (S„') and are subsequently
independent on time, so they do not contribute to
the inelastic scattering. They will be excluded in
what follows.

We introduce the mixed local-Bloch spin operators

—(s Shk +s Sak «) (65)

Substituting (65) into (63) and writing

Due to angular momentum conservation the part
of (63) which contributes to the matrix element (59)
1S

Sak „=/exp(leuko' 1 o)S
~

1ll

S - =(S+- )' .hk ll, n hk ll, n

(64)

pao

5(x) = dt e~
2m "-

we find

d2(T

dEdO

' inel

X P(s) J dt e's'(S~=„„(0)S,+-„,(t) )
I

s,n, n

dte'"(Sa+k „(0)s;-„,(t)) .
i

We shall assume that electrons do not penetrate farther than the first plane, ' n =0.
The correlation functions (S~=k „(0)S~+-k „(t)) can be related to the Green functionsk ll. n 5 k ll. n

(66)

(Sa+k „(0)S+--„(t))e+' = —21m((S&~k „;Sz+k „))s[exp(pE) —1] ' (67)

We assume that P(s), the polarization fraction of the incident electrons, has the form

P(s) = P'
1 —p, s=i

The matrix elements {sl) Is') are

A, t+) = A, ))= 1

(68)

We assume [ is parallel to the magnetization. For s'= t, corresponding to absorption of energy by the electron
beam,

' ine1

d cr

dEdA
m

I &I p m((sa k, o Sa k, o ) & s~(E) (69)

For s'= J, corresponding to a loss of energy by the electrons

1

d 0.
dEdO

' inel
m

2m

t

' l71(1 —p)lm((s&k o', sa-k o))"E[1—8(—E)] (7o)
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V. RESULTS FOR THE SCATTERING
CROSS SECTION

Our results show that the spectral density of mag-
non states at the surface plane, which is the main in-
gredient entering expressions (69) and (70) for the
inelastic scattering cross section, is strongly depen-
dent upon the surface parameters. Curves for
d'a/(dE -d 0) (Figs. 6 and 7) at small momentum
transfer ihkiii -0, and for ei (1 show just a strong
maximum near the low-energy edge of the continu-
um and as energy increases, they decrease until near
the upper edge (t =1)Imgpp vanishes like (1 —t)' '.
For ~q) 1, on the contrary, we observe that, besides
the strong maximum close to the lower-energy edge,
there appears another peak at the upper edge.

It is not difficult to interpret this qualitative
behavior of the local density of rnagnons. For ~i (1,
as Fig. 4 shows, there is an acoustic surface magnon
branch, of energy very close to the lower edge of the
continuum. This shows itself as a strong surface res-
onance in the bulk magnon wave functions of low

energy at n =0, and as a concentration of bulk states
therein. As eq increases, we still find, as can be seen
in Figs. 6 and 7 for ei=1.5, an acoustic surface mag-
non, but at the same time an optical surface magnon

branch appears at energies above the continuum, and
this produces a similar resonant effect upon the bulk
states with energy close to the upper continuum
edge, which manifests itself in the smaller peak at the
high-energy side.

The effect of temperature, apart from an overall
scaling due to the bulk magnetization factor in Imgpp
[Eq. (7b)] is to reduce appreciably the surface mag-
netization as compared to the bulk value, as dis-
cussed in Sec. II, and shown in Figs. 2 and 3. This
reduction of (S( ) as T increases, is in a way
equivalent to a reduction both of 6i and 6ii, and in
this respect the present results are different from
those of Harriague et al. for the bcc ferromagnet at
T =0, where only eq was modified.

Another obvious effect of a finite T is the possibili-
ty of magnon absorption by the incident electron.

The calculations of Sec. III are performed with a
view to interpreting a scattering experiment with
spin-polarized electrons.

The elastic scattering differential cross section will

depend, approximately (that is, within RPA) upon
((S( ) )' as we mentioned in Sec. IV. This fact has
been applied by Wolfram et al. ' to obtain experi-
mentally the surface magnetization of antiferromag-
netic NiO. Therefore, through simultaneous mea-
surement of the elastic and inelastic spin-polarized
scattering cross section, one can obtain ($$ ) and the
local spectral density of magnons, Imgoo(Skid, a)).
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FIG. 6. Plot of the differential scattering cross section for
inelastic scattering of slow electrons for magnon emission.
All dimensional and kinematical factors have been omitted,
so that the quantity along the vertical axis is
Imgpp[1+B( —E)] for the fcc lattice for r =2, Ii=0.5, 1.5,
and 2.0, a|i =1, S = 2.

-0.5 0.5

FIG. 7. The same as in Fig. 6 for v =5, ~i=0,5, 1.5, and
2.0, eii=1.
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VI. CONCLUSIONS

This paper extends a series of previous works on
the spectrum of surface magnetic excitations based
on the Heisenberg exchange model to the whole
range of temperatures up to the critical temperature,
incorporating into the formalism a self-consistent
procedure for the calculation of the nonuniform mag-
netization which is relatively simple and can be ap-
plied with small modifications to a variety of situa-
tions. The limitations of the present treatment, par-
ticularly the simplification that only two planes were
assumed to be different from the bulk, can easily be
overcome in principle and work to generalize the for-
malism to an arbitrary number of varied planes is al-

ready in progress. Other shortcomings of the present
formalism are inherent to the RPA and must be
overcome by performing a better treatment of the
longitudinal fluctuations, that is by considering the
effect of the difference S„'—(S„*)and eventually also
the effect of finite lifetime upon the magnon states.
Some of these improvements ought to be definitely
incorporated into the theory before the critical
behavior of the surface magnetization can be more
confidently described. Our results indicate, at any
rate, that the critical exponent of the surface magnet-
ization is certainly less than one, and that it seems to
depend on ej. These conclusions, provisional as they
are on the basis of the preceding criticisms, agree
qualitatively with the Monte Carlo calculations of
Binder and Hohenberg, "with renormalization-group
calculations by several authors" and are also con-
sistent with recent experimental measurements by
Alvarado et al. "of the critical exponent of the (100)
surface magnetization of Ni.

Another conclusion of our work is that by measur-

ing the elastic and inelastic differential cross section
for low energy, spin-polarized electrons, a great deal
of information can be gathered on the exchange in-
teractions at the surface plane of insulating ferromag-
nets, and we expect that formulas (69) and (70) of
Sec. IV provide a useful model for interpreting such
experiments. In particular, the effect of changing the
temperature and/or the surface parameters can be
traced to the appearance of resonance peaks in the
differential scattering cross sections, which, in turn,
is simply related to the surface spectral distribution
function of the magnetic excitations.
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