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Bridge between the solutions and vacuum states of the Korteweg —de Vries equation
and that of the nonlinear equation y, +y~ —6y y„+6Ay =0

P. C. W. Fung and C. Au
Physics Department, University ofHong Eong, Hong Kong
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We analyze a Backlund transformation that relates the solutions of two different

equations, the Korteweg —de Vries (KdV) equation and the nonlinear equation y, +y
—6y~y„+6Ay„=O, which includes the modified KdV equation as a special case. It is
shown here that the Miura transformation represents a special case of our transformation.
Following our previous interpretation of the vacuum states of the KdV solutions, we have

found and interpreted the physical meaning of the vacuum parameters of the stated non-

linear equation.

I. INTRODUCTION

As shown previously, using a differential-
geometrical approach, ' one may arrive at a system
of Bicklund transformations, 3

u*=b,

u~=u (x,t),
u~ = —u (x,t) y+A—, ,

of the Korteweg —de Vries (KdV} equation

(la)

(lb)

(lc)

~t +~xxx+ &2~~x =O
~ (2)

where A, and b are constants and the function y sat-
isfies the conditions

y, =—2u (x, t) y+A, , — (3a)

y, = —4[u (x, t)+A, jy, +2u —4u,y . (3b)

Through our Backlund transformation (1), we ob-
tained' a set of analytical solutions to (2); in partic-
ular, the nontrivial solution corresponding to
transformation (1c) is

u~=(l —b) —(A, —2b)

where

r ~ +A, —2br —+A.—2br~2(Ce —e )
v i 2br+e —v i.—2br}2—

u~=b+ (A, —2b)

xsech2[VA, —2b [x 4(b+A, )tjj . (—6)

r =x —4(b+A, )t .

As an example, for A. —2b &0 and taking C =1, we
arrive at a one-soliton solution:

From inspection, we know from (6) that the soliton
velocity is

v =4(b+A, )

and the amplitude is

A =A, —2b .

Our analysis' of solutions like (6) indicates that the
directions and magnitude of the velocity, as well as
the amplitude, depend on the value of b In fact, .b
represents the value of u~ at x —++ oo, and we call b
the vacuum parameter. We are led by our previous
result to believe that b is a physical observable. It is
then natural to ask the following questions: Do
"vacuum states" exist in the soliton solutions of
other nonlinear equations? If the answer to this
question is affirmative, is there any relationship be-

tween the vacuum parameter b of the set of KdV
solutio'ns and other vacuum parameter(s) of another

type of nonlinear equation?

~t+3xxx 63 3x+6~3x =0
~ (9)

where A, is a parameter. Before we present the final
result of our analysis, we would like to list the fol-
lowing general properties concerning our Backlund
transformation [specified by Eq. (3)j.

(i} The close-ideal condition in our differential-
geometrical approach' guarantees that the integra-

II. BACKLUND TRANSFORMATION
OF THE KdV EQUATION AND THE
EQUATION y, +y —6y y„+6Ay„=0

In this investigation, we provide answers to the
above questions for the nonlinear equation
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bility condition

then

y, +y —6y y„=o,2

u = ——,(y'+y, )

(10)

is a solution to the KdV equation (2). Also con-

versely, if u is a solution to the KdV equation, then

y is a solution to the stated modified KdV equation.
Ify is a solution to the modified KdV equation, —y
is also its solution. Substituting —y into relation
(11), the solution to u is shown to be identical to the
Backlund transformation u ~ in (1).

In this study, we generalize the above deduction
to the case where A,+0 in general. In our proof, we

first rewrite (3) into the form

yx~ =y~x

is satisfied for Eq. (3). In other words, if u is a
solution to the KdV equation, the integrability con-
dition holds.

(ii) Loh studies the relation between the func-
tions u, u~, and y of our Backlund transformation
under the special case A, =O. He has shown that if y
is a solution to the modified KdV equation,

tion and Eq. (3},is a solution to Eq. (9).
According to the above two theorems, we have

deduced that Eqs. (3a) and (3b) represent a
Backlund transformation that relates the KdV
equation and Eq. (9). With the knowledge of the
solutions to the modified KdV equation, it is well

known that the Miura transformation enables us to
obtain solutions to the KdV equation. As shown

previously, the reverse statement cannot be estab-
lished because the explicit expression for y, is not
given in Miura's transformation. Our transforma-
tions (3a) and (3b) bridge the solutions to the KdV
and the nonlinear equation (9) (which includes the
modified KdV equation as a special case) in both
forward and backward directions.

y =+V'A, 2b, — (14a)

III. SOLUTIONS AND VACUUM STATES

First, we recall that we have already obtained in
our previous investigation the solutions for y to the
Backlund transformation (3) [see Eq. (14) of Ref. 1].
With the use of results listed in the preceding sec-
tion, it is rather obvious that the solutions to Eq. (9)
are

u(x, t)= ——,(y +y„—A, ) . (12) y=+, A, —2b =01

r+C' (14b)

Differentiating the above equation, we obtain

Qt +Q~ + 12QQx

1 a
+2y (y, +y —6y y„+6Ay„) .2

2 Bx

(13)

C +A, —2br —+A.—2br

y =+v'A2b, —
&X—2Sr+ —&Z—2br '

Ce +e
where

r =x —4(b+A)t;,

(14c)

Based on Eq. (13), we arrive at the following
theorem

Theorem 1. If y satisfies the equation

y, +y —6y'y„+6'„=O,
then u of (12) satisfies the KdV equation (2). We
observe that the Miura transformation (11) be-
comes the special case of our relation (12} when
A, =O. According to Theorem 1, if we start with
—y, then the result for u using transformation (12)
is identical to u* in (lc). The proof is elementary.

Using relations (2) and (3), differentiating, and
canceling Q, we obtain

y]+y —6y y„+6Ay„=O .

In other words, we establish the following theorem.
Theorem 2. If u is a solution to the KdV equa-

tion, then y, satisfying the stated integrability condi-

One can readily show that relations (14) for y are
solutions to Eq. (9) by direct substitution.

In order to find out the vacuum states and hence
the vacuum parameter, we take the nontrivial solu-

tion (15c) for illustration. When

k —2b &0

and taking

C=1,
y=+ v'A2b, —

XtanhI &A, —2b [x 4(b+ A)t]] . —(,15}

The soliton solution represented by (15) appears ln
the forms of Fig. 1(a) (taking positive sign) and Fig.
1(b) (taking negative sign).

On the other hand, when

A, —2b &0
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JA.-2b

at X~+ Oo are given by

y+ ~+v'A, 2b- ,

we can take

(19)

(b)

-JA, -2b

JA, -2b

as the vacuum parameter, representing the vacuum
state of the soliton. In fact, d is the fluctuation am-

plitude. Note that the velocity depends on b and A,

as in the case of KdV 'olutions, but the vacuum
parameter for the KdV solution(s) is simply b As.
y+„+y „,the set of solutions (15) are called to-
pological soliton solutions.

We note also that if A, =O, Eq. (15) becomes

y =+V' 2b tanh—[&—2b (x 4bt)] —. (20)

FIG. 1. Soliton solution for Eq. (15): (a) positive sign,
(b) negative sign.

Clearly, the parameter b cannot take on zero value
in this modified KdV solution, supporting our con-
clusion drawn in our previous paper.

In passing, we note that the KdV solution corre-
sponding to (15) is

u'=b+ (A, —2b)

&(sech I
V'A, 2b [x 4(—b+A, )t]—I . (21)

but

This soliton solution is nontopological.

y=+ v'A, —2b

)&cothf v'A, —2b [x 4(b+A, )t]I,— (16)

whereas for —k =A, —2b &0 and C=+1, y can be
expressed simply as

y=+k tan(kr) . (17)

Solutions represented by (16) and (17) have singular
points. It is easy to analyze (16) and (17) in the
same way as before, and the analysis is omitted
here.

From solution (15), we observe that the velocity
of the soliton u =4(b +A, ) can take on positive, neg-

ative, or zero values. Since the boundary conditions

IV. CONCLUSION

We have shown in this paper that via our
Backlund transformation (3), a rather powerful rela-
tion as specified by Theorems 1 and 2 is established
between the solutions to the KdV equation and
another nonlinear equation (9), which is
transformed to the modified KdV equation if the
parameter A, =0. Following our new interpretation
on the vacuum parameter introduced recently, we
have found the vacuum parameter (d=v'A, 2b)—
for Eq. (14), and d has been shown to have a defin-
ite physical meaning. This result supports the idea
that different vacuum states of nonlinear processes
represented by (14) have different effects on the ob-
servable physical state.
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