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Magnetoresistance of weakly disordered electrons
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The magnetoresistance of a weakly disordered electron gas arising from spin splitting of
conduction-electron energies is calculated and found to be positive. For large fields

h =gpaH/kT ~&1, it goes as lnh in two and as V h in three dimensions. The sign is oppo-

site that due to incipient localization.

I. INTRODUCTION

Two aspects of the problem of electronic trans-

port in a disorderd medium have received extensive
attention recently. The first is the effect of localiza-
tion, ' and we use the term to describe the proper-
ties of a single electron in a random potential. The
second is the effect of electron interaction which
has been worked out in the weak disordered limit,
when the electrons are assumed to be diffusive. It
turns out that theories based on localization or in-
teraction predict rather similar behavior for the
conductivity. On the other hand, the Hall effect
based on both theories has been calculated and
found to give very different predictions. ' ' It has
also been found that the localization theory has the
interesting feature that the conductivity is very
sensitive to magnetic field, and that the magne-
toresistance is always negative. In this paper we
investigate the magnetoresistance based on the in-
teraction theory. The orbital effect of the magnetic
field has been discussed by Larkin, Altshuler
et al. ,

' and Fukuyama. " In this paper we discuss
the magnetoresistance based on the coupling to elec-
tron spins.

pole). As an example the exchange and Hartree
contributions to the self-energy are shown in Figs.
2(a} and (b). Based on similar sets of diagrams, the
correction to the conductivity 5cr(ro), where ru is fre-

quency or temperature, is given by5 6

50. 1=(2—2E) incor,
g 2msmD

(2.1)

where o is the spin degeneracy, D is the diffusion
constant, and

gF= JdQu 2k~sin—
2 fdQu(0) (2.2)

(a)

is the average over the solid angle 0 of the statical-

ly screened Coulomb interaction u(q). The Hartree
term shown in Fig. 2(b) is proportional to E because
the momentum transfer in the interaction in Fig.
1(b} must be integrated over. Since the electrons
that participate in the interaction are near the Fer-
mi surface, the average over momentum transfer
can be replaced by the angular average of Eq. (2.2).

We now consider the magnetoresistance due to

II. MAGNETORESISTANCE
DUE TO SPIN SPLITTING

We recall that in the interaction theory, the
dynamically screened Coulomb interaction is treat-
ed to first order. The essential feature is the vertex
correction shown in Fig. 1 involving ladder dia-
grams in the particle-hole channel (the diffusion

FIG. 1. {a}Vertex correction due to impurity scatter-
ing (dashed line}; (b} dressing of the interaction line by di-

agrams in the particle-hole channel.

1982 The American Physical Society



4010 P. A. LEE AND T. V. RAMAKRISHNAN

(a}

(c}
FIG. 2. {a) Exchange and {b) Hartree correction to the

self-energy diagram. {c}and {d) are the particle-particle
ladder version of (b) and (a), respectively

the splitting of the spin-up and spin-down bands in
a magnetic field. This is most simply illustrated for
the self-energy correction. The logarithmic correc-
tion is due to the correlation between the wave
function of the added electron with the wave func-
tions of the occupied electrons that is nearby in en-

ergy. The exchange and the equal-spin Hartree
terms involve correlation between electrons with the
same spin, and is unaffected by the spin splitting.
This leaves the Hartree term between opposite spins
and the spin splitting produces a gap gp~H between
the lowest unoccupied spin-up electron and the
highest occupied spin-down electron. The logarith-
mic divergence of that term is therefore cutoff for
gpgH Q co.

It is simple to modify the interaction calculation
to include the spin-splitting effect. Let us denote by
O.„the Hartree correction to the up spin-electron
conductivity due to the down-spin electrons. It is
given by

5~t(H r)=5+I (T)+5+t'(H T) (2.5)

where 5o.I is the field-independent exchange and
equal-spin Hartree contribution. We have

5oI ——— (2—F)ln( Tr)p e I
(2.6a)

for two dimensions (2D), and
' I/2

e 1 13 4 T5~,'=— (-, -F)—fi4+v2 ' D
(2.6b)

for three dimensions (3D). The field-dependent part
is given by 5crr' ——0.„+

2

5ot(H& T) '5ot (0.T)=—— g2(h) (2.7a)
& 4~'

for 2D, and

5crt'(H& T) 5or"(0,t)—
' 1/2

e Ii T
fi 4)r2 2D

g3(h), (2.7b)

for 3D, where

screened Coulomb interaction as defined in Eq.
(2.2). We note that the Hartree interaction always
involves the static interaction, which explains the
difference in the integrand in Eq. (2 4) from that in
the exchange contribution, as given, for instance, in
Ref. 4, Eq. (33). (We note that there is apparently
an error of a factor of 2 between Eqs. (33) and (32)
in Ref. 4 and the factor —, in [ ] in Eq. (2.3) is also
missing. ) Similarly we have the down-spin contri-
bution to the conductivity o» and f» which is ob-
tained from Eq. (2.4) by gpt)H + g—pt)H. —The q
integration can be done and it is convenient to per-
form an integration by parts in Q. The total correc-
tion 5o.

~ to the conductivity from the interaction
theory can be summarized as

o „=F f d Q [QN(QlkT)]+ —, f„(Q), g2(h)= f dQ [QN(Q)]ln
~

1—

where

1 dq Dq
d (2)r) [ i(Q+gIJ, t)H)+D—q ]

(2.3)

in 2D and

oo

g3(h)= f dQ, [QN(Q)]

(2.8a)

(2 4)

where d is the dimensonality,

N(co) = [exp(co) —1]

and F is the angular average of the statically

x(&Q+h +&
~
Q —h

~

—2VQ)

(2.8b)

in 3D and h=gpt)HlkT. The zero-field contribu-
tion 5ot'(O, T) is the usual one, and is equal to the
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ln(h/1. 3), h »1
0.084h h « 1

(2.9)

term proportional to I" in Eq. (2.6). The functions

g2 and g3 can be computed numerically. They have
the limiting behavior

similar to the theory of superconductivity, except
that for repulsive interaction the coupling constant
scales to weak coupling. Indeed if a phonon in-
duced attractive coupling Az is also present, the A, in
Eq. (3.1) should be replaced by

1+pin(EF/coD)
' (3.2)

~h —1.3, h »1
g3 —

0.053h2 h «1. (2.10)

III. DISCUSSION

In Sec. II we have discussed only the particle-hole
diffusion pole modification of the conductivity. In
Ref. 6 it was noted that Figs. 2(c) and 2(d) are the
particle-particle version of Figs. 2(b) and 2(a) and
yield equal contribution. These diagrams should be
sensitive to the orbital effects of the magnetic field.
The resulting magnetoresistance have been evaluat-
ed by Fukuyama" and by Altshuler et al. '

Fukuyama considered first-order perturbation
theory in some coupling constant (his g2 and g4)
whereas Altshuler et al. ' pointed out that it is
necessary to sum a ladder involving repeated in-
teractions between the electrons. A typical Hartree
diagram is shown in Fig. 3. This replaces the cou-
pling constant A, by the effective coupling

1+li, ln(E&/To )
' (3.1)

where To —max(T, DeH). Eq—uation (3.1) is a very

In Eq. (2.10), the constant 1.3 in the h »1 limit is
simply the H =0 term subracted in Eq. (2.7). It is
worth noting that in the large-field limit, h »1,
Strt'(HT) becomes temperature independent. The
only temperature dependence due to interactions is
given by Eq. (2.6b) and the coefficient of the ~T
term is always positive. This is in contrast to the
H =0 case, where the ~T coefficient is proportion-
al to —,—2F and can change sign depending on the
value of F which varies between zero and unity. '

where p is the electron-electron interaction and EF
in Eq. (3.1) should be replaced by coD. Equation
(3.2) is very familiar in the theory of superconduc-
tivity and it is more proper. to think of the effect as
due to superconducting fluctuations. The surpris-
ing element is that even for replusive interaction, re-
latively strong temperature-dependent effects are
predicted for the density of states and conductivity,
even though the overall size of the effect is small
compared with that given by Figs. 2(a) and 2(b) be-
cause of the renormalization of A, given by Eq. (3.1).
Since the renormalization depends only logarithmi-
cally on To, the ladder sum can be approximated by
a phenomenological coupling constant. From this
point of view Fukuyama s theory is in basic agree-
ment with Altshuler et al. ' if his g2 and g4 are un-

derstood to be phenomenological constants smaller
than g3 except when superconducting fluctuations
are important.

We should also emphasize that the particle-
particle channel is important only for short range
interaction. There are two reasons for this. First,
the evaluation of Figs. 2(c) and 2(d) requires averag-
ing over the Fermi surface, so that the bare cou-
pling A, is proportional to F. Second, it can be
shown that for small momentum transfer q such
that ql & 1 there are additional diagrams which can-
cel the leading singularity in Figs. 2(c) and 2(d).
Thus the interaction potential must have significant
component for ql & 1. However, in the kFl » 1 lim-
it, this requirement is less stringent than the re-
quirement that F is nonnegligible.

According to Refs. 10 and 11, the particle-
particle channel leads to positive magnetoresistance
when the Landau-orbit size becomes comparable to
the thermal length (D/T)'~, i.e.,

2eH kT
Ac D

(3.3)

/
/

/
/

/
/ /

/ /
/ /

FIG. 3. Typical Hartree diagram included in Ref. 10.

For kFl ))1 this occurs at a smaller field than the
requirement for spin splitting discussed in Sec. II,

gpgH )kT (3.4)

for normal values of g. Larkin has pointed out
that the Maki-Thompson diagram for superconduc-
tivity can be applied to the case of repulsive interac-
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tion as well. This produces a positive magnetoresis-
tance when the field satisfies

2eH 1

Pic D~;„
(3.5)

Usually the inelastic scattering rate ~;„ is smaller
than kT so that this occurs at an even weaker field
than Eq. (3.3). In fact this effect takes the same
form as the magnetoresistance of noninteracting
electrons due to the suppression of localization, ex-
cept the overall magnitude is very small for normal
metals, being proportional to n A/6 fo, r

~

A,
~

&& l.
The combination of the spin-splitting effect on

the interacting model and the localizing effect al-
ready leads to very rich behavior and magnetoresis-
tance is clearly a powerful tool for disentangling the
two contributions. This is especially true in 2D,
since the orbital contribution is sensitive only to the

magnetic field component normal to the plane
whereas the spin-splitting term should be isotro-
pic. ' Many positive magnetoresistance data can be
analyzed using the spin splitting and the localiza-
tion terms only' ' which presumably mean that A,

is small for these systems. There are apparently
also other systems where A, is not negligible and it
will be very interesting to experimentally separate
the three magnetic field regimes discussed in Eqs.
(3.3)—(3.5).
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