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Variational theory of multilayer solid adsorption
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%e present a simple variational theory describing the adsorption of successive solid layers on
a homogeneous substrate. Infinitely far from the substrate the theory reduces to the self-

consistent theory of Saito for the roughening transition. In agreement with recent Monte Carlo

simulations a sequence of first-order transitions is found at low temperatures. However, at tem-

peratures greater than the roughening temperature, all layers are adsorbed in a continuous

manner.

Recently there have been several studies of the
physical adsorption of atoms on a homogeneous
periodic substrate. ' While mean-field theory
(MFT) applied to a lattice gas model has provided a
useful guide to many features of the "wetting" tran-
sition, it gives a qualitatively incorrect description of
the effects of finite temperature fluctuations on the
first-order "layering" transitions. ' 4 These transi-
tions arise from the addition of successive layers of a
solid adsorbate onto a strongly attractive substrate as
the pressure is increased. This deficiency is closely
related to the failure of MFT to predict a roughening
transition for the three-dimensional lattice gas inter-
face, as was recognized by de Olivera and Griffiths. '

In this Communication we present a simple theory
which treats in a qualitatively correct way the long-
wavelength fluctuations affecting the layering and
roughening transitions. The theory is in good agree-
ment with available Monte Carlo (MC) simulations2 3

and has already been used to help analyze the data in
an experimental study of solid 4He adsorbed on gra-
phite. '

As in Ref. 1, an atom in the n th adsorbed layer is
assumed to interact with the substrate by the attrac-
tive potential u„= c/n3. (Atoms —in the first layer
may feel an additional attraction which we assume for
simplicity is strong enough to give wetting at T =0.)
This attractive interaction can stabilize an adsorbed
phase of finite thickness when the chemical potential
(pressure) is less than the value which produces an
adsorbed layer of infinite thickness.

The long-wavelength properties of the adsorbed
solid-fluid interface are described by the following
coarse-grained Hamiltonian, which is a simple gen-
eralization of that used to study the roughening tran-
sition

H X (Aj ltj+Q) + X V(h&) ——yo Xcos2rrh~
J J
2 J J 2 J

As discussed in detail by Weeks for the liquid-vapor

V(h) =mph+ —(h+ —) +kt
2 2 (2)

The chemical potential deficit hp, acts as a uniform
"magnetic field" on the column variables h, and the
second term gives the effect of interactions with the
substrate. We have approximated the coarse-grained
average of the atomic interaction term u„over
configurations consistent with a given h by a trapezo-

interface, 7 the hJ indicate the distance from the sub-
strate at coarse-grained substrate positions j, con-
veniently taken to form a square lattice, of the local
Gibbs dividing surface separating solid and fluid re-
gions when other degrees of freedom of the micro-
scopic Hamiltonian are integrated out. The hJ can be
visualized as the heights of interacting columns and
give a description of the long-wavelength fluctuations
of the interface.

The first sum in Eq. (l) over all columns j and
nearest neighbors j + 8 acts as a surface tension to
favor flat surface configurations with all hJ equal.
The second term, discussed below, gives the com-
bined effects of the interaction with the substrate and
the chemical potential deficit Ap, in terms of an effec-
tive column potential V(h&). Both these terms would
appear in a treatment of the adsorption of a liquid
layer. If the adsorbed phase is a solid, the third term
which energetically favors integer (i.e., discrete)
values of h& is also needed. (Higher harmonics have
a negligible effect on the theory described herein. )
Although nonintegral hJ are possible in the coarse-
grained picture, these must arise from averages over
microscopic configurations having intracolumn steps
and are of higher energy than the integer values.
The dimensionless parameter yo determines the im-
portance of this "discreteness" term at low tempera-
tures and will be chosen to best fit experiment. At
high temperatures, thermal fluctuations will greatly
reduce the importance of this term and the adsorp-
tion isotherms are very similar for solid and for liquid
adsorbates.

We assume, for the effective column potential,
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dial rule integration, treating n as a continuous vari-
able. k] is an integration constant depending on c
and any additional first layer interaction, whose pre-
cise value is unimportant in what follows. V(h) has
its minimum value at a height h p given by

equations

1
b = (—,)v"'(a) +ypP "cos2ma, (9)

—P ~ sin2ma+ v'(a) + (—')v"'(a) (D') p=0.
fr 2

h p = (d p, /c ) '/' ——,
' (3) (10)

When the term involving yp in Eq. (1) is unimportant
(e.g. , a solid at high temperatures or a fluid), hp

closely approximates the average position of the in-
terface (average coverage) to be found for a given
d!p, .

We determine the behavior of the interface under
more general conditions by use of the variational
principle for the free energy

~p 1+—(H —Hp) p,
N N

where ( ) p denotes a normalized ensemble average
using an arbitrary reference Hamiltonian Hp. It is
physically reasonable and mathematically very con-
venient to take Hp as the simple quadratic form

Hp X(hj hj+p) +8 X( hj u)J
2 J $ J

The free parameters a (which gives the average posi-
tion of the interface) and 8 (which controls the ex-
tent of the fluctuations about a) are chosen to
minimize the free energy in Eq. (4). This method is
a generalized and simplified version of the approach
Saito used to describe the roughening transition with
V(h) =0, where it gives remarkably accurate results
for so simple a theory.

Since Hp is quadratic, the Gaussian averages in Eq.
(4) are easy to perform. Thus, defining Dj = hj —a,
we have9 7

(cos2n h ) p= cos2wa exp[ ——,(2n )'(D') p] (6)

and

(V(h))p= V(a) + —,
' V"'(a) (D')p+, (7)

on expanding V(h) in a Taylor series about h =a.
Higher-order terms in this (strictly speaking, asymp-
totic) expansion of the potential are negligible except
possibly very near the substrate. Finally, we note to
a good approximation'

~~p
N ti8

, a

1 T lnP,
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where P = b/(1+ b) and b = 8/Jw'. Here
T~/J =4/n is the bulk roughening temperature in the
variational approximation. 9

The minimum free energy in Eq. (4) comes from
the b and n values which satisfy //A/Bb = 0 and
8A /Ba = 0. These conditions give our two basic

(V(h)) p= V(ap) + —,V"'( p) [( — p)'+ (D') pl

Minimizing the resulting free energy and noting
b && 1 for T near Tz, we find the simplified equa-
tions

b = ( ~ )v "(ap) +ypb "cos2n a, (12)

0=(2w) 'ypb "sin2ma+( —,')v"'(np)(a —up).

(13)

Again, the lowest free-energy solution is used in the
case of multiple solutions. It is convenient to consid-
er n as a function of the continuum position O.p in
the following qualitative discussion of the solutions to
Eqs. (12) and (13).

When ep= n for n integral the results are particu-
larly simple since Eq. (13) has the solution (always of
lowest free energy) a = np There is also .a solution
n=np for ep=n+

z
but this solution has the lowest

free energy only for T & T, „with T,„&T&. We
find numerically that T,„ is a very weak and increas-
ing function of n with T,„T~as n ~. There are
first-order transitions for T & T, „where e jumps
from near n to near n +1 as tip is increased. The
slope a'= da/dap at the integer (and when stable)
half-integer positions is given by a'= ( z )vt" (up)/b.

For T = Ts we can solve Eq. (12) for b and substi-

Here v(a) = V(a)/Jn' with similar definitions for
the derivatives of V. The variational equation9
describing the bulk roughening transition is obtained
by setting v(a) 0 and a integral.

The coupled Eqs. (9) and (10) have been solved
numerically, and (as is often the case) when multiple
solutions are found, the one giving the lowest free
energy is chosen. These solutions are closely approx-
imated by the solutions to a set of simpler equations
derived belo~ for which several analytic results can
also be derived.

Let ep and bp denote the "continuum" solutions to
Eqs. (9) and (10) which arise when yp=0. [lt is a

fairly good approximation to set up= h p in Eq. (3)
since the term involving v~3~(ap) in Eq. (10) makes
only a small correction. ] Expanding the averaged po-
tential in Eq. (7) about ap and ignoring variations in
the fluctuation term (D') p we have, to second order
in o. —ep,
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tute into Eq. (13) to get

pp sin2&A
G =Clp-

2m(1 —ypcos2n a) (14)

It is easy to show that e is a continuous and inverti-
ble function of ap for yp ~ J3/2 =0.866, which we
assume in all that follows. Equation (14) thus gives
continuous coverage for all layers at T = T& and
predicts a universal profile a(ap) independent of
layer number with slope n'=1+yp for e integral
(—sign) or half integral (+ sign). For yp=0. 8,
which provides a good fit to the MC data, ' the ad-
sorption curve is thus quite flat at integral np and
rises much more steeply for ap half integral. Similar-

ly, the fluctuations are smaller for integral o,p and
largest near half-integral coverage.

As T is increased, o. rapidly approaches ep. For ex-
ample, on plotting o. vs ap, only very small ripples
are seen at T =1.3T~. For fixed T ) T& there is also
a weak layer dependence with the ripples decreasing
and a ap as n ~. Note from Eq. (12) that
b bp= ( ~

)v 'i(ap) at high temperatures and it is

only at an infinite distance from the substrate that,
strictly speaking, we have the vanishing of b and the
diverging fluctuations which characterize the bulk
roughening transition. 9 6

One interesting but probably spurious prediction of
Eqs. (12) and (13) is the existence of first-order tran-
sitions from near integral coverage to a region of
stable fractional coverage centered about half layer
positions. However, these modified first-order transi-
tions occur only in the very narrow temperature
range T,„(T & T~ and the predicted fluctuations
are large. Thus it may be very difficult to determine
experimentally whether this detailed feature of the
theory is correct.

In summary, the variational method has provided a
very simple and qualitatively accurate description of
many features of multilayer adsorption. In agree-
ment with MC data" Eqs. (9) and (10), or the sim-
plified versions (12) and (13), give an infinite
number of first-order transitions at low temperatures
with continuous coverage for all layers at tempera-
tures above the bulk roughening temperature Tq. A
detailed comparison of this theory with new MC
results will be presented in another paper. '
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