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Background contributions to sound waves at the liquid-helium A. transition
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The noncritical contributions to the sound near Tz(P) in He liquid are analyzed quantitative-

ly in terms of the dynamic scaling theory of Ferrell and Bhattacherjee. By using as background

the thermodynamic velocity in a zero-height sample, an excellent agreement is found between

the theoretical predictions and the experimental data for the dispersion of the velocity. In con-

trast, the observed background attenuation does not seem to be explained by a simply additive

hydrodynamic contribution.

One of the basic assumptions of modern critical
phenomena, first formulated explicity by Fixman, is
the hypothesis that the critical behavior of a medium
arises from divergences in the long-wavelength ther-
mal fluctuations in the microscopic variables. It
would follow, then, that near a second-order phase
transition the transport coefficients and the quantities
derived from them (such as the attenuation and
dispersion of sound) would have both a critical con-
tribution associated with the long-wavelength fluctua-
tions, and a background, or noncritical, contribution
arising from the shorter-wavelength fluctuations. It
is now known, however, that such a division is some-
what arbitrary. In fact, the renormalization-group
treatments have shown that the important fluctua-
tions near a second-order phase transition (those that
are the cause of critical singularities) do not have a
characteristic length. Instead, the critical behavior of
the system wi11 be a consequence of the presence of
fluctuations having all wavelengths ranging from in-
teratomic distances up to the correlation length.
However, in the renormalization-group formalism,
calculations are performed in the asymptotic critical
region, whereas measurements are by necessity not
carried out in this region. So, even in these models,
the measured transport coefficients still seem to
result from two contributions and a meaningful com-
parison with the theories would require an indepen-
dent estimation of the background. In fact, the im-
portance of the background terms was recognized
years ago, 4 but until recently the different efforts
have been mainly focused on the critical part of each
transport coefficient. With the increase of theoretical
and experimental precision, the background contribu-
tion has become one of the central problems in criti-
cal dynamics. 5 7

In this Communication, I present precise experi-
mental results of both the total (measured) attenua-
tion and the velocity of the high-frequency (- 1

6Hz) first sound extrapolated at Tz in 4He liquid
under pressure. These results (which complete our

previously published data'), as well as other available
high-frequency data, ' are analyzed in terms of the
recent and very successful dynamic scaling theory of
Ferrell and Bhattacharjee (FB).'4 '6 This allows one
to obtain, to my knowledge for the first time, quanti-
tative information about the important background
contributions to the first sound. The FB theory has
already explained the scaling behavior of the normal-
ized first sound attenuation. ' ' However, this
theory also allows a calculation with no adjustable
parameters of the absolute values of both the critical
attenuation and the critical velocity at T&. In previ-
ous comparisons, '4 the dispersion of the velocity
has almost been neglected, although, as we will see
here, this parameter plays a crucial role as a test of
both the critical and the background terms. The first
sound is only weakly coupled to the order-parameter
fluctuations and therefore its critical attenuation and
velocity does not present singularities at T&. This is
an essential feature for the present analysis because it
permits a reliable extrapolation at T& of the experi-
mental data.

The current treatments of the background contri-
butions to the sound may be summarized as fol-
lows. ' It is first assumed that a linear superposi-
tion of the critical (subscript c) and background
(subscript 8) parts holds so that the total measured
attenuation o,M and velocity u~ are given by a~= a.,
+n~ and u~= u, +u~. Then, in second-order phase
tranitions in fluids, it is assumed that the background
part that arises from conventional noncritical losses
can be obtained throughout the transition, using the
functional form suggested by classical hydrodynamics
(Navier-Stokes equations). The background velocity
will then be the classical hydrodynamic velocity,
which includes the noncritical dispersion. The back-
ground damping constant Ds =2usus/tp' will be
given by

Ds = ——g+(p+(y —l)H & 4 E
P Cp
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where p is the density, q and fp are the steady-state
(nonrelaxing) shear and bulk viscosites, E is the
thermal conductivity, Cp is the specific heat at con-
stant pressure, and y = Cp/Cq. For a, „and u, &, I will

use the predictions of the FB theory. Let me first
emphasize that this theory is based on the Fixman
approach: The critical attenuation and velocity are
supposed to be due to the critical slowing down of
the frequency-dependent specific heat, and the classi-
cal losses are not taken into account. For liquid heli-
um, the FB theory predicts at T&,

'

D.X= C1LIJ~L1'X +(~/2)'1,

+ca = w~Dca/2L1 iusx

where I have introduced the normalized critical
dispersion D,& at T& defined by

Dek ucx/uBA ( uMx us)L) /usa

(3)

In Eqs. (2) and (3), L~&=ln(I', /ra) +8, l, =e' sip,
and I p=28yKpfp . The notation here is that of Ref.
14. In particular, C~ is a dimensionless coupling con-
stant relating the zero-frequency velocity near T& to
the specific heat, L~& is the real part of the normal-
ized freqeuncy-dependent specific heat at T&, 8 is the
normalized background specific heat, and 8& is the
order-parameter background.

Equations (I) to (3) provide a complete description
of the total (measured) attenuation and velocity of
the first sound at T&. All the information required to
obtain nM and uM at T& from these equations comes
from other sources. So, this model can be compared
with the experimental data with no adjustable param-
eters, although a variety of physical properties has to
be known. Fortunately, and in contrast with what oc-
curs in other systems, all this information is actually
available near T„ in liquid helium. In what concerns
the parameters arising in Eqs. (2) and (3), I obtain

TABLE I. Parameters at Tz in 4He liquid under dif-

ferent pressures arising in the theory of Ferrell and Bhat-
tacharjee for the critical contributions.

P (bar) SVP 17 20 23.1 25 28.5

gpx10
C) x 10~

23
49

11
4.7

10
4, 1

9.0
4.4

7.4
4.5

6.0
5.0

the values of C~ and tp presented in Table I by using
the logarithmic representation of the specific heat Cp
under pressure. ' I also use the values '" Kp=7X 10'
cm ', 8 =1.45, and B&=1.5 &10~ cm'/sec, in-

dependently of the pressure. As a first check of
these parameters, I have compared Eqs. (2) and (3)
with the very precise data of Carey, Buchal, and Po-
bell at co/2n =1 MHz and under different pres-
sures. ' At this intermediate frequency the back-
ground attenuation is very small (us~ 10 ' cm '),
and a sizable critical dispersion (see below) is

present. I find a very good agreement between these
data for both n, & and D,& and the theory within the
estimated combined error or 15%.

The available high-frequency results (co/2m & 100
MHz) extrapolated at Tq at saturated vapor pressure
(SVP) or under pressure, including the present data,
are summarized in Table II. Two different methods
have been used to obtain these data: a Brillouin light
scattering technique used in Refs. 11 and 12, and
also used to obtain the present data, and ultrasonic
techniques used in Refs. 9, 10, and 13. Due to
differences in boundary conditions, the values of 0.
and u determined by the two kinds of experiments,
may differ. 4'p However, a detailed check of the
form of the dynamic structure factor associated with

TABLE II. Background and critical contributions to the sound at T), in He liquid in the high-frequency range.

P
(bar)

o) x 109

(sec ')

u~), (o))
Adjusted
(cm/sec)

D, ), x 102

Expt.
D,„x102

Theo r.

~MA.

Expt.
(cm ')

0'c)
Theor.
(cm ')

Dgg x 10
Adjusted
(cm2/sec)

svp'
svpb
SVP'
svpd
1.9'

20 4d

23.1'
25.4b

28.5'

1.70
3.17
6.28
6.91
4.21
6.05
6.91
6.06
5.00
6.31

21 690

23 320
31 850

33 470
34000
34750

1.00

—1.0
1.00
1.13

1.13
1.12
1.44

0.90

1.00
1.00
1.06

1.10
1.12
1.37

-246
750

2430
2260

852
1100
1450
1316
1100
1680

163
374
955

1087
590
900
995
936
781

1400

5.9
8.2
7.6
5.0
3.6
3.7
6.7
7.7

10.0
5.9

'Reference 13.
bReference 11.

'Reference 10.
dReference 9.

'Present work.
Reference 12.
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the first sound in our experiments allows us to con-
clude that, within the accuracy of the measurements,
the light scattering data in Table II have the conven-
tional meaning. Also, note that in this high-
frequency range it is not possible to accurately mea-
sure the sound velocity by means of ultrasonic tech-
niques. In fact, the present data in Table II provide,
for the first time, simultaneous precise information
on o,~], and u~], in the 6Hz range, the relative un-
certainty being less than 5% for o.~ and 0.05% for
u~.

In order to analyze these data, I will first consider
the critical velocity dispersion D,&. It is essential to
notice that near T„ the t dependence of ust(t0)
becomes very weak for co & 1 MHz, as a con-
sequence of the critical contributions. " "' Here
t —=

~ T T&~i/T& is—the reduced temperature. There-
fore at these frequencies uM&(ta) is not affected by
the gravitational inhomogeneities arising in a sample
of finite height, " and its corresponding background
velocity utt&(ta) must be calculated in a zero high-
sample. To estimate utt„(ta), I have used the t
dependence of the thermodynamic sound velocity in
a zero-high sample u'(0) proposed by Ahlers, ""
who assumes the same logarithmic t dependence of
Cp that I have used to obtain C~ and to in Table I.
Although far from Tq [where both the critical and
gravitational effects on ust(ca) are negligible] such a
calculation gives absolute values of u"(0) lower than
the measurements, its temperature dependence fits
the high-frequency data very well for t & 10 ' on
both sides of T&. This result is consistent with the
dynamic scaling ideas'4 "according to which ust(ta)
must join the noncritical velocity in the vicinity of
ca/I' = I, where I' =2Bettct4 ' is t—he characteristic re-
laxation rate in liquid helium. Therefore the absolute
values of u'(0) are matched to agree with the high-
frequency data at t =10 '. This background velocity
will include the noncritical dispersion at t =10
which is expected to be very close to the one existing
at Tg.

The critical dispersion at T&, D,&, obtained by sub-
tracting the adjusted values of u& (0) from the mea-
sured velocity extrapolated at T&, is presented in
Table II, together with the predictions of the FB
theory. Again a striking good agreement between
theory and experiments is found. This strongly sup-
ports the correctness of both the FB theory and the
values used here for the parameters arising in this
theory. This last point is important, not only because

we are now able to consistently analyze the corre-
sponding attenuation, but also because some of these
parameters (whose extraction at this time involves
important discrepancies6) arise also on other dynamic
properties near T& in liquid helium. ' These results
seem also to confirm the mechanism proposed above
for the reduction of the gravitational effects on
uM(t0) near T„. This conclusion can be extended to
the sound near the critical point in pure fluids and
also to binary liquids near the consolute tempera-
tures. ' " Although the gravitational effects in these
transitions have been studied theoretically in detail, "
their important implications on the dispersion of the
velocity have not been, to my knowledge, observed
at yet.

The total (measured) attenuation aM&, the critical
attenuation u, „[obtained from Eq. (3)], and the ad-
justed background damping constant, defined as
Dti& 2ut't=—t, (n~~ —o.,&)/t0', are also presented in
Table II. These values of D~~ are to be compared
with those of the hydrodynamic damping constant D~~

given by Eq. (1). For the sake of brevity, I report
here only the main features of this comparison. Note
first that the scatter between the different values of
Dq~& at similar pressures is much bigger than the total
combined errors in o.M& and n, ]„which at these fre-
quencies is estimated to be less than 20%. Also, the
values of D~& disagree with those of D~~& obtained by
using the available data for the parameters appearing
in Eq. (1) and assuming, as it is usual for dense
fluids, t7'a

$a = g. For instance, using at SVP, '23

p=0. 146 glcm', q„=2.47 X10 'P, y (at t=10 ')
= 1.037, and' (Es/pCp) „=1.2 x 10~ cm'/sec, we
obtain D~~& =4.0 & 10~ cm /sec. In contrast, D~ cal-
culated far from T& (t & 5 x 10 ') is in reasonable
agreement at all pressures with the one found from
the measured attenuation in this noncritical region. 24

These results for the attenuation clearly confirm the
suspicions existing at this time on the phenomenolog-
ical treatments of the background. ' It is now urgent
to reconsider some of the accepted notions about
these important contributions to the ultrasonic at-
tenuation near second-order phase transitions in
fluids.
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