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Computer experiments are used to study the phase diagram of an array of interacting classical

quadrupoles on a plane triangular lattice. Careful analysis of variously defined order parameters

corroborates the mean-field prediction of multiple phase transitions, but defect formation

prevents observation of the highly anisotropic intermediate phase on a macroscopic scale.

The electric quadrupole-quadrupole (EQQ) interac-
tion as a model for the orientational ordering of mo-
lecular crystals has recently received considerable at-
tention. ' ' The experimentally accessible systems
consist for the most part of two- and three-dimen-
sional arrays of triangular planes [pt (plane triangu-
lar), hcp, and fcc lattices] and in some cases (pt and

hcp) mean-field analysis"3 predicts complicated
phase diagrams resulting from the interaction of mul-
tiple order parameters. The two-dimensional case has
been particularly well studied, ' "and consideration
of the limiting case of extreme anisotropy, or sub-
strate potential, in this model suggests that fluctua-
tion effects may be important in describing the order-
ing when the system consists effectively of planar ro-
tators. "

We discuss here the opposite limit of zero substrate
field in the case of the pt lattice, and show that for
three-dimensional rotators the long-range order
predicted by mean-field theory appears to be unstable
against domain formation. In particular, the aniso-
tropy expected in the intermediate phase regime is
destroyed, if observation is carried out on a macro-
scopic scale. This fact may be relevant to recent ex-
perimental work~ on the so-called "quadrupolar
glass" in three dimensions, where the "glass" transi-
tion, if it occurs, fails to manifest itself as an observ-
able change in symmetry from that of the paraorien-
tational phase.

The definition of order parameter in the present
system may be made in a number of ways. Most
commonly, one uses the Fourier transform of the mi-
croscopically defined quadrupole moments evaluated

at special symmetry points of the Brillouin zone.
Given the present five-component order parameter
and hexagonal lattice symmetry one is able to provide
a description of the five distinct two- and four-
sublattice states as points in a 20-parameter space.
Because we are dealing with computer simulations,
however, it is both more convenient and more infor-
mative to use an order parameter which is a suitably
defined overlap with certain reference states and
which gives a direct indication of the symmetry of the
ordering. This "tangent-space" analysis permits sig-
nificant reduction in the number of degrees of free-
dom which must be considered. The formal aspects
of this analysis will be given in another paper. Here
we simply describe our procedure. We have comput-
ed both Fourier transform and tangent-space order
parameters, with their associated susceptibilities, for
the present system, and we compare the information
obtained using the two techniques.

We have used a standard single-site Monte Carlo
(MC) rejection procedure using the EQQ Hamiltoni-
an expressed in Cartesian coordinates

H = XE ( r —r )D (m )D ((o )
ij

Iaa
I

I
D (ao;) is the classical second-rank quadrupole ten-
sor'" computed from the molecular orientation eo; at
site i. E is taken to be the usual fourth-rank tensor
which produces an interaction invariant under simul-
taneous rotation of spatial and molecular axes. '

Sample sizes varied between 64 and approximately
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Q (k)=—1 4m

N 5
/exp(i k r;) (~ Yq~(co, ) ) . (2)

The tangent-space definition of order parameter is
given in terms of a site-by-site scalar product defined
between two arbitrary states n and $:

2000 lattice sites. All of the data displayed here are
for samples of 552 sites and the data shown are aver-
ages evaluated between 4000 and 9000 MC steps per
spin. Nonperiodic boundary conditions were used to
avoid prejudicing the sublattice structure. For the
particular runs shown, the samples were prepared in
the known ground state at T =0 and warmed slowly.
Other runs on samples of similar size following a
slow cooling process from infinite temperature pro-
duced domains with the correct symmetry, but unlike
earlier work on smaller samples, "always showed evi-
dence of defects. Energy curves at these run times
do not display hystersis and do not distinguish
between fully ordered and domain structures for tem-
peratures greater than y/2. The usual comparison of
the temperature derivative of the energy and the
fluctuation-determined specified heat indicated con-
sistency with thermodynamic equilibrium.

The Fourier transform order parameters were cal-
culated directly using the classical spherical harmonic
definition

projection of an orientational configuration on a por-
tion of k space. In the cases of interest, k is restrict-
ed to k = 0 and the three vectors specifying the
centers of the Brillouin-zone (BZ) edges. The 4',
give the projection of the configuration on a subspace
of the subspace specified by the Q (k). (An explicit
transformation is possible. ) In Figs. 1 and 2 we

display the nonzero order parameters defined through
Eqs. (2)—(4) for a series of warming runs. The nota-
tion used is such that for i = 1, 2, 3, nonzero values
of 4'; correspond to nonzero values Qq(k;) evaluated
at the single point k; on the BZ edge. Finite values
of O4 and %5 correspond to finite values at all three
k; vectors. In general a significant difference in the
magnitude of the Q (k;) computed for different k;
indicates a deviation from C6 symmetry. All of the
Q (k) tend to zero in the paraorientational state.

The Q (k) displayed in Fig. 1 show evidence of a
low-temperature phase possessing long-range order
and C6 symmetry. Judging from the Qo(k) curves, a
sharp transition occurs at about T =2.0y. Above this
temperature there occurs a region of noise, with a
gradual decay to a rotationally invariant state at
T =2.4y. Finite values of Qo(0), indicating some
form of ordering, persist to T = 3.0y. A similarly
noisy curve of the Qi(k;) vs T suggests anomalies at
T =2.0y and T=2.8y.

(a, gati)
= $[Yg~(~i)] [ Yg~(aii)]4 ~

m

(3)
0.4—

We first take reference configurations [ Y& (ao;) ]
in the state 0, to correspond to the three distinct
"herringbone" structures and two distinct
"pinwheels" of Ref. 8. Values of coj are used which
correspond to the lowest-energy state of given sym-
rnetry. These reference states are not, however,
orthogonal under our inner product definition. We
have therefore constructed five states o- as linear
combinations of the n's. They have the following
properties: (1) (o,, o&) = St, ", (2) o4 and a5 are sym-
metric and antisymmetric combinations of the
pinwheels, therefore o-4 is orthogonal to all of the an-
isotropic herringbone states, while o 5 is not. (3)
Each of o-i, o.q, o.3 has a large overlap with one of
the anisotropic states, and small overlaps with all the
other e states. The tangent-space order parameters
are now defined
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where the P are arrays generated by the MC pro-
cedure. [Triangular brackets in Eqs. (2) and (4) indi-
cate averages over MC configurations. ] Thus
nonzero values of %", for s = 1, 2, 3 indicate anisotro-
py of the system. 'k4 indicates a state invariant under
C6 (pinwheel only) and 4'5 contains components of
all five o. states.

Specification of a certain set of Q ( k ) specifies the

I.O 2.0
T/y

FIG. 1. Standard Fourier transform order parameters, as
defined by Eq. (2) plotted as a function of temperature.
k i, kg, k3 are vectors to the center of the three Brillouin-

zone edges and y is the EQQ coupling constant. The curves
indicate a rotationally symmetric (C6) macroscopic state for
temperatures below about 2.8y. The lines are drawn merely
as a guide to the eye.
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FIG. 3. Susceptibilities associated with the tangent-space
order parameters, as determined from fluctuations. x4
describes only rotationally symmetric states; Xi, X2 X3

describe only anisotropic states; X5 mixes the various sym-

metry components.

FIG. 2. Tangent-space order parameters, as defined by
Eqs. (3) and (4). The curves indicate a sharp transition
between the rotationally invariant low-temperature state and
a coexistence regime of the three anisotropic (C2 ) states at
intermediate temperatures as evidenced by the oscillatory
behavior of their order parameters. Transition to the
paraorientational phase appears to be gradual.

The tangent-space order parameters (Fig. 2) pro-
vide a somewhat less ambiguous picture of the sym-
metry change which occurs. Here both %4 and II'5

(which contain C6 symmetry) show a smooth but
sharp transition at a temperature between 2.0y and
2.1y. (Energy curves show no clear sign of a first-
order transition, although an inflection point occurs
near this temperature. ) Above the transition all

three of the anisotropic modes show oscillatory
behavior and approach the paraorientational limit at
T = 3.0y. The roughly equal magnitudes would
seem to indicate a persistence of C6 symmetry on a
macroscopic scale well above disappearance of the
long-range ordered C6-symmetric state.

For each of the Q ( k ) and 4, order parameters, a
fluctuation-determined susceptibility may be defined,
e.g. , associated with 0,:

states has an associated susceptibility which rises
sharply with X4 but attains a maximum at T = 2.4y.
This double transition is in qualitative agreement
with mean-field results, ' but it apparently does not
correspond to a change in the macroscopic symmetry
of the system. It is not, furthermore, clearly observ-
able in X~, X~, X3, which display only a broad noisy re-
gion. Nor is it manifested in the susceptibilities asso-
ciated with the Q (k) (not shown) whose behavior
is noisy over the entire temperature range between
2.0y and 3.0y.

From all of the above we conclude that, while the
mean-field prediction of multiple phase transitions is

qualitatively correct the intermediate temperature re-
gime consists of an admixture of the nonrotationally
invariant phases rather than of a single long-range or-
dered phase. In addition, we conclude from visual
examination of the MC-generated arrays, that isolat-
ed pinwheels are a common localized defect appear-
ing in domains of the anisotropic phase. The creation
of a single pinwheel plaquette is apparently a low-

energy event, and the existence of such defects ac-
counts for the appearance of well-defined anomalies
in X5, despite their absence in the anisotropic suscep-
tibilities x~, xi, x3.

Our statistically determined values are displayed in

Fig. 3. Recall that O4 is orthogonal in the present
formulation to all of the anisotropic states. Its sus-
ceptibility shows a sharp peak at T = 2.0y, where
both 0"4 and 9"

q effectively vanish. tIf5, which con-
tains all five rotational symmetric and anisotropic
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i50ur value of y differs from the I' of Ref. 8 by a factor of
approximately 1.9. Thus conversion of temperature scale
indicates a suppression of both transition temperatures by
a factor of about 3 below. their mean-field values.


