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suppressing confluent singularities"

Bernie Nickel and Mark Dixon
Department of Physics, University of Guelph, Guelph, Ontario, NIG 2WI Can.ada

(Received 7 August 1981)

We have used a slightly modified version of Roskies's quadratic map method [Phys.
Rev. B 24, 5305 (1981)]to estimate the confluent correction amplitudes for the suscepti-

bility P and correlation length g of a model that interpolates between Ising and Gaussian

limits. Our best estimates for the corresponding leading exponents are y=1.237+0.003,
v=0.630+0.003, and q =2—y/v=0. 036+0.002. The correction to scaling amplitude ra-

tio B(g}/BP}=0.8+0.1 is slightly larger than that predicted from P~ continuum model

analysis [M.- c. Chang and A. Houghton, Phys. Rev. Lett. 44, 785 (1980) and C. Bagnuls

and C. Bervillier, Phys. Rev. B 24, 1226 (1981)].

p=2v 2 —1. (2)

Our method differs from that described by Roskies
only in that we do not impose a priori a critical
point location but rather adjust K, or u, until the
Dlog Pade approximants in the z plane are singular
at precisely the expected critical point z =1.

We have applied the method to what is ap-
propriately described as a double-Gaussian model.

Roskies has described recently' a simple pro-
cedure for obtaining critical exponent estimates
from high-temperature series on the assumption
that the leading correction to scaling exponent 0 is
precisely 0.5 and that higher-order corrections, in-

cluding possible analytic background terms, are
negligible. The key idea is to eliminate the con-
fluent corrections by a quadratic mapping; we use

1 —x=p (1—z) /(p —z)

where x is either the normalized inverse-
temperature K/K, or the related v /v, with
v=tanhK. The relation (1) maps the critical point
K =E, onto z =1 independent of the parameter p
and with 2v 2—1 &p & v 2+ 1 this mapping is in
the acceptable region established by Roskies. '

Furthermore, we follow Roskies's prescription for
the loose-packed lattices which is to map the anti-
ferromagnetic singularity at x = —1,
z = —(~2—1}p/(p —v 2) as far from the origin as
the possible singularity at x = Oo, z =p. This re-
quires

The model as a function of inverse temperature K
and magnetic field h is defined by the partition
function

Z= g f dS;f(S;)

Xexp KQStSJ+h +St
nn I

where the spin distribution on each lattice site i is

f(S)=exp[ —(S—~y) /2w ]

+exp[ —(S+My)2/2w ],
y=1 —m

2 (4)

The second moment of this distribution is identi-
cally unity and the width m or related parameter y
enables one to interpolate between Ising (y =1) and
Gaussian (y =0) limits. High-temperature series
for the zero-field susceptibility I=g, (S,St ) and

correlation length squared g =g,.r„. (S,S; )/X
have been derived to order K ' on the bcc lattice
and will be reported elsewhere. The general coef-
ficient of K" in these series is a polynomial in y of
degree approximately n so that the series can be
analyzed by two variable approximant methods.
However, here we restrict ourselves to analyzing a
single-variable series in E with y fixed at the
discrete values y = 1.0, 0.95, 0.9, . . ., 0.6. For
y &0.6 the leading correction to scaling amplitude
is so large that the neglect of higher-order correc-
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tions is probably not justified.
The results described below were obtained by

standard Dlog Pade analysis of z plane series for P,
KX, g, and g /IC supplemented by a Newton-
Raphson search for I(, to yield a pole at z=1. If
the E plane function that is transformed via (1)
and (2) has the expected critical behavior
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then from the residue at z = 1 we obtain the ex-

ponent A, and from the background the amplitude
B. We find the exponents A, =y or 2v remarkably
independent of y, that is, universal. We also find

the strong correlations between A, and 8 shown in

Fig. 1 just as expected on the basis of simple ratio
analysis. Finally, we note that the X and g ex-
ponents must be strongly correlated if we accept
the universality hypothesis that the correction to
scaling amplitudes vanish at the same y value for
both functions. With our preferred estimates
@=1.237 and v=0.630, this special y=0.85. Also,
this choice yields rI =2—y/v=0. 0365+0.0015.
Our analysis appears to be consistent in that if we

impose no conditions on the amplitudes but
demand instead that the 7 and g series diverge at
the same E„we obtain g =0.0357+0.0015. For
the spin- —, model, i.e., y =1, our preferred esti-
mates @=1.237 and v=0.630 correspond to a crit-
ical v, =tanhK, =0.156086, whereas the choice
@=1.240 corresponds to v, =0.156090 in agree-
ment with Roskies. '

As a further test of universality and/or analysis
consistency we show the differential ratio of the
correction to scaling amplitudes in Fig. 2. This ra-
tio varies by order 20% which is well outside the
apparent uncertainties one would have guessed
from the data of Fig. 1. The most likely explana-
tion is that either the bias t9=0.5 or the rieglect of
higher-order corrections have resulted in an "effec-
tive" but otherwise spurious fit for both the ampli-
tudes and, to a lesser extent, the exponents y and v.
The quadratic mapping by itself does not allow one
to estimate the magnitude of these effects and thus
the present calculation can serve principally as a
benchmark for other analyses ' in which more de-

grees of freedom are allowed in the fits.
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FIG. 2. Differential amplitude ratio
It =(dg($)/dy)/(dBg)/dy) vs double-Gaussian model
parameter y. Amplitude estimates come from the solid-
line intersections shown in Fig. 1 at the exponent values
y=1.237 and v=0.630.

FIG. 1. Correlation plots of correction to scaling am-
plitude vs leading exponent from near diagonal Dlog
Pade estimates based on series of order 18—21. Esti-
mates based on the full 21 term series are circled. Solid
lines are drawn as a guide to the eye in the most prob-
able range y= 1.237+0.003 and v=0.630+0.003.
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