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Using a soft-spin model with random exchange couplings and a Langevin equation to describe

impurity spin dynamics, a high-temperature result for the. host nuclear-spin relaxation rate T&

in a spin-glass is obtained. The result shows that T~ diverges as (T —Tz), where T is the

spin-glass transition temperature, as T~ is approached from above. This is in general agreement

with the very few data available.

Most of the current interest in the subject of spin-
glasses started with the Edwards-Anderson mean-
field theory, ' which predicted a very peculiar kind
of phase transition. In this type of phase transition,
the order that sets in below the transition tempera-
ture T~ is in time rather than the usual order in

space. Because of this, in the study of spin-glasses,
impurity dynamics takes a special significance. In
fact, a host of different experimental methods, in-

cluding p,
+ depolarization, ' Mossbauer effect, ' neu-

tron scattering, ESR,' and NMR, "have been em-

ployed to investigate impurity spin dynamics in these
systems. Among these have been the NMR studies
of the nuclear-spin relaxation rate T~

' of the host
metal. " Measurements of T~

' can yield informa-
tion about the transverse response of the impurity
spin at the nuclear Larmour frequency co„. In this

paper, we present a high temperature (T ) T~) cal-
culation of T&

' in a spin-glass. Our result shows that
the host nuclear-spin relaxation rate diverges as
(T —T~) ' as T~ is approached from above. This ap-

pears to be in agreement with the very few data avail-

able.
We begin by specifying the model we employ. To

describe the impurity spin system we use a soft-spin
model with random exchange interactions. A mean-
field theory will be employed to solve this model and
the impurity spin dynamics will be described by a
Langevin equation. The interaction of the conduc-
tion electron with the host nuclear spin F„and the
impurity spin will be treated in second-order pertur-
bation theory. There is some apparent redundancy
involved in treating the impurity-impurity interaction
and the conduction electron-impurity coupling as in-

dependent, since impurity-impurity interaction is it-
self a result of treating the conduction electron-
impurity coupling in second order, giving us RKKY
(Ruderman-Kittel-Kasuya- Yosida'~) interaction
among impurities. However, a recent calculation by
Jayaprakash et al. ,

' using a thermodynamic scaling
approach, shows that if one starts out with nonin-
teracting impurities (but interacting with electrons via

Kondo coupling), as the cutoff is reduced to con-

struct an effective Hamiltonian, one gets, in addition
to the rescaled Kondo (impurity-electron) coupling,
the RKKY couplings between the impurities. The
Hamiltonian that we implicitly use in these calcula-
tions should therefore be understood as the renor-
malized Hamiltonian rather than the one with bare
couplings. Further, we will assume that the system is
dilute enough that, while considering bulk host
nuclear-spin relaxation, any direct couplings between
the host nuclear spin and the impurity spin can be
neglected.

As stated above, to deal with the impurity-impurity
interactions, we employ a soft-spin model'" with ran-
dom exchange interactions. This model has been
used before to describe a spin-glass. " The Hamil-
tonian is written as

H = ~XJgSI SJ —gp—,s XS; H;
» I

Here H& is the external magnetic field at the site i.
The spin variables SI are classical, with variable
length, and an associated probability

P (S;)= exp[ ——,
'

roS; ——,
'

u (S; )'] (2)

The couplings J» are random and each of these have
an independent Gaussian distribution with zero
mean. As remarked in Ref. 15, this model has a for-
mal similarity with Landau-Ginzburg $ -field theory.
This can be seen by observing that the thermal aver-
ages involve calculating the partition function

Z =
J gd3S;exp( —H, rr)

i 1

(4)

where the effective (dimensionless) Hamiltonian H, ff

N

Z =
J~ gd3S, P(S,) exp( —PH)

i 1

Z, upon using Eqs. (l) and (2) for H and P(S;), can
be written as'

N
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is given by

H ff 2 X[ (rp8p —E(()S; S,.
Q

+ —,'ugly(S;)'+ h; S;g,q], (5)

where we have defined the dimensionless random
coupling EC& =PJJ an—d the reduced field h;
=g t(((H(/k((T. From the above, it is clear that the
form of this effective Hamiltonian is the same as that
occurring in Landau-Ginzburg P4 theory. Here our
spin variables, however, are defined on a discrete set
of lattice points. This formal similarity helps in the
perturbation expansion, where one treats both u and

E& as small.
Turning to the problem of nuclear-spin relaxation,

we remark that in order to make contact with the ex-
periment, in addition to the thermal averaging, one
has to calculate the average over the different config-
urations. For example, the average over the distribu-
tions of EJ's or J&'s, we will denote such an average
by a set of angular brackets with a subscript c. Thus
the experimental nuclear-spin magnetization recovery
is proportional to

(exp[-t/Tt(J(J)]),

= „~gdJJP(Jg) exp[ —t/T (J;,)], (6)
J

where T( ' ( J(,) is the nuclear-spin relaxation rate for a
fixed configuration.

To decide what should be used for T, (Jp), we re-

mark that if one treats the impurity-conduction elec-
tron problem in a molecular-field approximation, one
gets two impurity contributions to the nuclear-spin
relaxation rate, namely, the BGS (Benoit, de Gennes,
and Silhouette) rate and the GH (Giovannini and
Heeger) rate. " As discussed in Ref. 16, it is difficult
to evaluate the relative sizes of the two contributions.
However, at high temperatures and for impurity con-
centration x comparable to those of some of the
data' that we refer to at the end, experiments' indi-
cate that the BGS is the dominant one. We assume
that it remains dominant as Tg is approached from
above, as there is no apparent reason to expect other-
wise. This rate can be written as'

k((T= Cx Imxj (p(„)
T( (( gCllg

where Ace„ is the nuclear Zeeman splitting and

XJ ((p„) is the impurity transverse dynamic suscepti-
ij

bility for a fixed configuration. In this paper we shall
restrict ourselves to the case of negligible applied
field, considering only linear response. In such a
case, the transverse and longitudinal susceptibilities
become identical, and therefore we shall omit the ad-
jective transverse in the remaining part of this paper.
C, for our purposes, is a constant, whose actual value
has no significance for our calculations. For further
details about C, see Ref. 16.

Having decided upon T((J(), we substitute the
above expression in Eq. (6) and expand the exponen-
tial for small t to get

1 1

kgT AT
(exp[ —t/T((J&)]), =I —t Cx (ImXJ (p(„)),+—Cx ((ImXJ ((p ) ) +

2. tp(„

BS( r(H, (t

BE

where H, tt is given by Eq. (5) and j;(t) satisfies the
following conditions:

(9)

(10)

We shall show later that in a certain approximation
[basically neglecting terms of 0 (I/N) ], all the terms
of the above equation which are higher than first or-
der in time t are simply related to the first-order term
in t. Thus we first focus on this first-order term. It
involves the calculation of the imaginary part of the
configuration-averaged impurity dynamic susceptibili-
ty (xt,,(~„)),.

In order to obtain impurity dynamic susceptibility,
we use a Langevin equation" to describe the impurity
spin dynmaics, introducing a kinetic coefficient I p

and a random noise source g;(t) The equa. tion is

I

It is usually assumed that the source of this noise is
provided by the lattice. However, in metallic spin-
glasses, the conduction electrons are also a source of
noise.

To calculate the susceptibility, one substitutes the
effective Hamiltonian Eq. (5) in the Langevin Eq. (9)
to obtain an equation of motion for S;. This equation
can be solved, ' ' and the result is a Dyson's
equation for the configuration-averaged full Green's
function (G&(p()), (Ref. 15):

(G;,(p() ),=g P(p() gp —g; (p() X; ( p() (Gg( p() ),l

(12)

where the self-energy X;(p() for T ) T, is given by"

X; (p() =3uG;;(p(=0) —Xh((G(((p()), ,
I

where g; (p() = (i p(/I'p+r p)
' is the zeroth-order

Green's function and Aij is essentially the square of
the width of the Gaussian distribution for E&'s.
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r-t( ) I -t+ BX(k, ru)

I)(—is))
(15)

We are interested in the response at the nuclear Lar-
mour frequencies ~„. Since tee„ is small compared to
other energy scales in the problem (e.g. , ks Ts), we
can consider only the low-frequency response func-
tion. If we now integrate the above equation from
ru = 0 to ru, and use the result in Eq. (14), we obtain
for low frequencies

G-t(k, ~)=G t(k)-i~r(0) .

This immediately gives the imaginary part of
G (k, ru), in the limit ru 0, as

To obtain the imaginary part of the response func-
tion, we Fourier transfer the above equation and ab-
sorb the zero-frequency part X(k, 0) of the self-
energy in the zero-order correlation function by de-
fining Gp(k) = [rp+X(k, 0)] '. The result is

G i(k, ru) =Gp i(k) —irul p +X(k, ru) —X(k, 0)
(14)

where G (k, ru) is the Fourier transfer of (G»(ru)), .
Next, we define the physical kinetic coefficient by'

(21)

To solve this equation, we Fourier transform to k
space and use the fact that there is no spatial correla-
tion, i.e., (G»(ru)), = G(ru)5», to get

G,(k,.) =
1 —h(k) G'(ru)

(22)

Now we assume that h(k) = 5(0)Sk p, which simply
means that all distribution tp(K»)'s have the same
width. With this assumption, if we Fourier transform
back to real space, we obtain

1 G4(ru) h(0)Gz»(ru) = (G»(ru)), S»+ Nl —EOG2ru

We first evaluate the first term ([G»(ru) ]2), on the
right-hand side of the above equation. Noting that
since (K» ),= 0, one must pair up KJ's to get
nonzero results, one gets a self-consistent equation
for Gq»(ru) =—([G»(ru) ] )„which can be represent-
ed by Fig. 1. There a single line stands for
(G»(ru) )„while two lines with a circle around them
represent G2»(ru). The equation itself is

G2,12(ru) = (G»(ru) ),'+ (Gll(ru) &' XarrG2»(ru, )
I

ImG(k, ru) = Gp (k) (17) (23)

I"-t(0) =—2r (Tt/T, —1)-' . (18)

Substituting this value of I' '(0) in Eq. (17), and
Fourier transforming back to real space, we finally
obtain the configuration-averaged response function
for T & Tg and co 0 as

(ImG»(ru) ),= Gp 8»r,
Since

(ImXJ (ru) ),=g p, s (ImG»(cu) ), ,

(19)

To study the temperature dependence of this, we re-
mark that for T & Tg, we essentially have free spins
and Gp is regular (-I/ks T). Thus for any possible
singularity that may appear as Tg is approached from
above, we examine the T dependence of I' '(0). It
has been shown in Ref. 15 that I' '(0) diverges at T,
and for T & T~ is given by"

Clearly, the second term on the right-hand side is of
the order 1/N smaller than the first and hence can be
neglected. Thus the above equation reduces to

G2,»(~) —= ([G»(~)]'),= (G»(~)),' .

Similarly, it can be shown that

(G» (ru) G»(cu) ),= (G» (m) ), (G»(ru) ),

(24)

and ((GJ )'), = (G» ),'. From the use of the above
three results, it follows that to leading order in 1/N

([ImG»(ru) ]'),= (ImG»(ru) ) 2 . (25)

As we already have a result for (ImG»(ru) ), [Eq.
(19)],we have completed the calculation of the
second-order term in Eq. (8).

Following the same argument, it can be shown that

this completes our calculations of the first-order term
in time t in Eq. (8).

As a next step in our calculation, we turn to the
second-order term in Eq. (8). It is essentially given
by ([ImG»(ru)] ),. We now show it is simply relat-
ed to (ImG»(ru) ),. For this purpose, we write it as

([imG»(ru) ]'),= ——, [ ([G»(ru) ]'),
—2 (G» (ru) Gij'(ru) ),
+ ([GJ (~)l'),} . (20)

i I

'WVW,

'WAA
i

FIG. 1. Graphical representation of the self-consistent Eq.
(20) for G&»

——(G&),. A single line represents (G»)g,
while two lines tied up by a circle stand for 62 J.
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to leading order in 1/N,

([ImGs(ru) ]"),= (ImGs(~) )," . (26)

(27)

where

(28)

Thus all higher-order terms are related in a simple
way with the first-order term in Eq. (8) and results
such as Eqs. (25) and (26) allows us to resum the
series in Eq. (8). The result is that we get back an
exponential form for the nuclear magnetization
recovery M(t) for T & T, given by

M(t) =M(0)e

show a divergence near T~. Ho~ever, this data
suffers from some intrinsic time resoltuion difficul-
ties." There is also some data available in very di-
lute spin-glasses' which again show a divergence in
the neighborhood of Tg. Here, also, there is a prob-
lem in directly comparing this zero-field theory, be-
cause of the presence of finite magnetic fields
(p,sH —ks Tg) in these experiments. However, as
we will discuss in some detail elsewhere, these ex-
periments are not inconsistent with the above result.
The only clear-cut zero-field data is by Chen and
Slichter. " They have recently observed a maximum
in T~ at Tg in a similar spin-glass system. Further,
their data is also consistent with the mean-field ex-
ponent of —1 that we have obtained here.

with y = (2g p, ttks/tI'0) Cx. In arriving at this result
we have also used Eq. (19) for (ImG&(cu„)),. This
is our high-temperature result for nuclear-spin relaxa-
tion rate T& in a dilute spin-glass, which sho~s that
T~

' diverges as (T —Tg) ' as Tg is approached from
above and nuclear-spin relaxation has an exponential
form.

This result seems to be in agreement with the very
incomplete data available, 9 which does appear to
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