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The zero-temperature Hartree theory is extended to finite temperature to investigate the
phase diagram, the order parameters, and the chemical potential of the negative-U ex-

tended Hubbard model in the weak-coupling regime. All the transitions between the
charge-ordered, the singlet-superconducting, the mixed, and the nonordered phases are
second order. In a special region of the parameter space, we discover the heat-charge-
order process, which is the main source for the qualitative difference between the results
of the present weak-coupling regime and the strong-coupling regime investigated earlier.
Phenomena associated with the heat-charge order are compared to other work in which

an effect similar to the heat-charge order exists.

I. INTRODUCTION

Several authors have suggested the possibility of
short-range effective electron-electron attraction as
a result of the coupling between electrons and in-

tramolecular vibrations or electronic excited
states, ' or between electrons in different bands in
a chemical complex. In Si-inversion layer, White
and Ngai conjectured the polaronic and bipolaron-
ic effects as the origin of such effective attraction.

Most theoretical analyses on this subject were
carried out in terms of the Hubbard-type model
Hamiltonian with attractive intra-atomic correla-
tion (negative U). The Hubbard-type model
with attractive intra-atomic interaction has been

applied to amorphous materials, to inorganic
compounds with mixed valences, ' and to metals
in polar insulators. '

Investigation on negative-U systems has pro-
gressed rapidly in the last two years, both experi-
mentally and theoretically. Negative-U properties
have been found or proposed for point defects in
silicon and in glasses, for a Si-inversion

layer, ' for interstitial boron in silicon, and for
states in the gap in hydrogenated amorphous sil-
icon. ' Negative U may also be the possible
mechanism of superconductivity in glasses, in
nonsimple metals" and in metal-semiconductor in-
terface. ~'45

Recently we have derived the Hartree ground-
state phase diagram for the negative-U extended
Hubbard model in the weak-coupling limit. In

this paper we will extend the diagram to finite
temperature and study its thermodynamic proper-
ties. The present results will then be compared to
those for strong-coupling limit which we obtained
earlier.

II. THEORETICAL ANALYSIS

In an earlier paper (referred to as I) we have

derived the Hartree formalism which will be used

in the present calculation. Let us first briefly sum-

marize the results. Consider the extended Hubbard
model with negative U,

UH = g'ttjc;~cjo+
2

gn;~n;
ija iO'

1+ 2 g W(jnt~nI~ p+nt—o,
ij ere'

where o. is the spin index, and the other subscripts
label the N atomic sites. For simplicity only the
Coulomb energy 8',

z is included in the interatomic
interaction. If ek and Wk are, respectively, the
Fourier transforms of ttj and WJ, then (I) can be
expressed in the Bloch representation

H = g(ek —p, )ckock
kcr

1+ g ( Wq + U5n o )c +kqec—ka'ck' qcr'ck'cr'—
kk'qcrcr'

26
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The Bogoliubov upper bound of the free energy

Fp =——ln{Tr[exp( —PHp )]j + (H H—p )p+ pN,
1

can be obtained with a proposed trial Hamiltonian
Hp. In the above equation P= 1/ka T, N, is the
number of electrons, and ( . )p is the thermal
average with respect to Hp. It has been pointed
out that the ground state of H exhibits no magnet-
ic ordering. " ' For the present work we are not
interested in the heat magnetization. We then
only need to introduce a charge-order parameter 6
and a singlet-superconducting-order parameter X.
If we restrict ourselves to systems which can be
separated into two interpenetrating sublattices A

and B, the trial Hamiltonian can be expressed as

Hp g(ek ——IJ Ap)c—k c—k
kcr

1

, g(b c—k~—ck+g~+H.c.)
ka

+ —,g(Xck c k +H.c.},
ko

(4)

=[(Ek+P) + IX

where Ek =(ok+ b )', IT, =p+A p and k is re-

stricted to the inner half of the first Brillouin zone.
In terms of the eigensolutions of Hp the minimal

I'p is then obtained as

( U +2ZW}n
4

Ix I2

U

Q2

( U —2ZW)

g ln
1

k

2 coshPA &+

2

2 coshPAk
+ln

2

where Ap, 6, and X are variational parameters to
minimize the free energy Fp In the a.bove equa-

tion Q is a vector to differentiate the two sublat-

tices such that exp(iQ R)= 1 if R belongs to A and

exp(iQ. R}=—1 if R belongs to B.
The energy spectrum of Hp consists of four

branches

6=(2Z W —U)ng /2,
X= —Uxp

are functions of the corresponding order parame-
ters n~ and xp,

1
ag =

N g(ck+g.ck. )p
kyar

1+ Bk + 1 — Bk
k k, Ek

xp —— g{Bk +Bk )
X

(10)

of the charge-ordered {CO) and the singlet-
superconducting (SS) states, respectively. The
third variational parameter Ap is related to the
electron density

n — ck ck p
1

ko

=1+ gl{Ek+P}Bk+ {Ek P}B—k 1 —(11}2N k

Ap ———(2ZW+ U)n/2 . (12)

1

p(E) = 2D

0 otherwise

the ground state has the following properties:

In the above equations, Bk+ ——(Ak ) ' tanh(PAk /2).
For given values of U, W, n, and the band struc-

ture ek, we solve Eqs. (7)—(11) self-consistently for
tently for b„X, and the chemical potential P (or

ng, xp, and p). The CO and the SS phases corre-
spond to solutions 5+0 but X=0 and X+0 but
6=0, respectively. If both X+0 and b,+0, we
have the mixed (M) phase. Finally, solution with
b, =X=0 gives the nonordered (NO) phase.

The ground-state properties have been studied in
I by setting T =0 in the above equations. It is
then possible to solve the pure (CO, SS, and NO)
phases analytically. However, for n+1 and W & 0,
the solution for the M phase must be derived nu-

merically using a model density of states. For a
square density of states

where ZS'= —8'~ and Z is the coordination
number. The gap parameters 6 and X,

(1) The ground state is SS for n+1 and W(0
as well as for n =1 and 8' &0.
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(2) The ground state is CO for n =1 and W & 0.
(3) The ground state is degenerate in SS, CO,

and M phases for n =1 and W =0.
(4) For n+1 and W & 0, with fixed values of U

and W, there is a second-order transition from the
M to the SS phases as

~

n —1
~

increases.

r

d
dP

F
CO, SS,M

F

, NO

r

= —2a —+G(p, a2)1 de
U

'
dP f 'aG(P, g)

ap

2ZW —U= 'P' '+~ (14)

——=XG(p, h'+ ~X
~

2), (15)

where

G(P,a')= g(ok+a )

In this paper we will continue to investigate the
finite-temperature properties using the same square
density of states.

In some cases the coupled equations (7)—(11)
reduce to simpler forms. Let us first consider the
case n =1. From (11) we have I7, =0, and so for all
phases (9) and (10) can be simplified as

f"aG(P, g)
0 ap

(19)

It has been shown in I that for the ground state
(p= ao ) (Fo/N)co, ss, M (Fo/N}NO is negative
With the help of (15) and (16},we see that

(Fo/N}co, ss, M (Fo/—N)No approaches zero as
P~O. Consequently, (Fo/N}co, ss, M

—(Fo/N)No
is always negative as long as the degenerate CO-
SS-M phase exists. So for n =1 and W =0 the
only transition is from the degenerate CO-SS-M
phase to the NO phase.

If n =1 but W+0, M phase does not exist and
we obtain from (17}

Xtanh —(ok+a )'~ . (16)
2

The free energy Fo/N now becomes

Fp

ss

Fp

NO

—fX [2

U

f, —G(»k)dk

Fo = —,(2ZW+ U)—
b2 fX [2

U —2Z8' U
T

pNk 2
gin cosh —(ek+4 + ~X

~

)'
F
N, co

F
N No ( U —2ZW)

(20)

Fo g2

N NO U —2Z8

—f G(p, g)dg, (17)

where 8=b, +
~
X

~
and (Fo/N)No is the free en-

ergy of the nonordered phase. It is obvious from
(14) and (15) that the M phase exists only if W =0.
Then, the three CO, SS, and M phases are degen-

erate, and

f, G(p, g)dg .
(21)

Since we know from I that (Fo/N)ss & (Fo/N)No
and (Fo/N)co & (Fo/N)No for the ground state, as
long as the ordered phases exist, these inequalities
then also hold for all temperatures. It is trivial to
see from (16}that aG(p, a )/aa &0. Hence, for
given values of W, U, and P, the values of 5 and

(
X

~

determined from (1/2ZW —U) = G(p, h )

and ( —1/U) =G(P,
~
X

~
) are related as

6 & ~

X
~

if W&0. We can then write
F

CO, SS,M

—f G(p, g)dg,
NO Fo —~X ~'

+N, ss N co U (U —2ZW)

where a =b, , [ X ~, and 6 +
~

X
[

for the CO,
SS, and M phases, respectively. With fixed value
of U, we have

—f, G(p, g')dg

(22)
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and similarly prove
r

ss N co

"~"'G(I'&)dg&O f W&0.
a2 QP

(23)

Since for the ground state (Fp/N)ss —(Fp/N)co 0
if W&~ 0, again the same relation holds for all tem-

peratures as long as these phases exist. This is
indeed the situation shown by our numerical solu-

tion, and so for n =1 the transition is from the SS
(CO) to the NO phases if W & 0 ( W & 0).

For the general case n +1, it has been proved in

I that the M phase does not exist at any tempera-
ture if W&0. For the pure phases we only need to
solve one equation for the NO phase, and two for
both the CO and the SS phases. With a square
density of states, via a numerical solution we found
the only transition being from the SS to the NO
phases. Therefore, the ground-state ordered phases
in (1)—(3) listed below Eq. (13) go directly to the
NO phase with increasing temperature. Such sim-

ple transition is not so interesting, and we will now

investigate only the interesting case n+1 and
8'pO.

The numerical solution for n+1 and W & 0, as

will be shown in the next section, indicates that for
given values of U/D and ZW/D all four phases

appear in the ks T/D vs
~
n —1

~

phase diagram.
A study on the order parameters reveals that all

the transitions between various phases are second

order. For second-order phase transition, we can
derive very simple expressions for the phase boun-

daries between the SS-NO and the CO-NO phases.
In the next section we can use such simple expres-

sions to check the accuracy of the self-consistent

numerical solutions.
To obtain the SS-NO transition temperature

P(SS) for given values of U/D, W/D, and

~

n —1 ~, we have to solve (8), (10), and (11) self-

consistently by letting X~O. For a square density

of states, we arrive at the simple equation

1 1
U= 4DJD'

Equation (24) is very easy to solve numerically.
For the special case of weak coupling
2DP(SS) » 1, the chemical potential P can be ap-
proximated by its zero-temperature value (n —1)D
given in I. Then the integral of (24) can be carried
out analytically to yield

P(SS)=
2&D+n (2 —n) U

(26)

where y=1.78 is the Euler constant. Using the
zero-temperature result of X given in I as an ap-
proximation, we obtain

P(SS)X n . (27)

the same relation as in the BCS theory. On the
other hand, at the strong-coupling limit

~

U
~

&&2D the energy band is very narrow and so a
good approximated solution can be derived from
(24) and (25) as

2 ln[n/(2 —n)]

/

U /(n -1) (28)

Using the zero-temperature result of I, we found

that at the strong-coupling limit 1/P(SS)X(T =0)
varies between 0.5 and 0.64 as n increases from 1

to 1.85. Combining this with the weak-coupling

formula (27), we discover

I —tanh —P(CO)(E —P) dE1 1 D 1 1

where

(29)

=0.57&&X(T=0)1

SS

as a good interpolation (as compared to the numer-
ical result in the next section) between the strong-
and the weak-coupling limits. However, we must
emphasize that the Hartree theory is not valid at
the strong-coupling regime.

The simple expression for the CO-NO transition
temperature P(CO) can be derived from (7), (9),
and (11) in a similar fashion. In terms of the
square density of states (13), we get

where

&(tanh[ —,P(SS)(E p)]dE, (24)— 1
—np(co)D

=D+ ln
P(CO) (2—njP(colD

t' —nP(SS)D

p, =D+ —e

P(SS) (2—n)P(ss)D

But unfortunately it is impossible to obtain a sim-

ple formula for the transition temperatures across
the SS-M and the M-CO boundaries. These have
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to be calculated numerically by locating the
minimum free energy.

III. NUMERICAL RESULTS

Based on the square density of states (13),
(7}—(11}are solved numerically for all the four
phases with given values of U/D, W/D, and

i
n —1

i
. The stable phase is then determined by

comparing the free energies of various phases via

(6). The chemical potential P [which is related to
the true chemical potential p by IT, =p —n

X (2ZW+ U)/2] and the order parameters of the
stable phase are also calculated. Since we are in-

terested in the change of phase diagram with rising
temperature, the range of

i
n —1

i
is the same as

that for the zero-temperature phase diagram in I.
The ks T/D —

i
n —1

i
phase diagrams are

shown in Fig. 1 for ZW/D =0.11, 0.33, 0.55, and
0.77 and —U/D =0.4 (dotted curves), 0.8 (dashed

curves), 1.2 (solid curves), and 1.6 (dashed-dotted
curves). It is interesting to compare these phase
diagrams for weak coupling to those for strong
coupling given in Ref. 47. Though the characteris-
tic features of the phase diagrams in both the
weak- and the strong-coupling regimes are similar,
the transition temperatures for the weak coupling
are proportional to U while for the strong coupling
they are proportional to 1/U. A special feature of
the weak-coupling case is observed near the mul-

ticritical point when ZW/D is comparable or
greater than —U/D, namely, a transition
SS~NO —+CO~NO with increasing temperature
for fixed

i
n —1

i
. Analogous to the heat magneti-

zation phenomena, here we obtain a heat-charge-
order process associated to the NO~CO transi-
tion. This heat-charge order is a consequence of
the Hartree theory where the P(CO) depends on
both W and U, but P(SS) depends on U only. For
the strong-coupling case investigated in I, there is
no such heat-charge order. %e will return to this
point for further discussion in the next section.

In Fig. 2 we show the CO order parameter
(thin-lined curves) and the SS order parameters
(heavy-lined curves) for ZW/D =0.55 with various
values of

i
n —1

i
marked in each panel. Again

the dotted, the dashed, the solid, and the dashed-

dotted curves correspond to —U/D =0.4, 0.8, 1.2,
and 1.6, respectively. The SS order parameter
behaves qualitatively similar to that for the
strong-coupling regime. " However, the CO order
parameter behaves rather differently in both limits.

0.4 ZW/D 0.11

0.2

O p

0.4

0.2 0.4

W/D=0. 33

0.6

0.2

p.4

0.2

~~ 0
p

p.4. -

0.2 0.4 0.6

0.2

FIG. 1. Phase diagram for —U/D =0.4 (dotted

curves), 0.8 (dashed curves), 1.2 (solid curves), and 1.6
(dashed-dotted curves). Relative positions of the four

phases are illustrated by the inset in the panel of
ZW /D =0.77.

In the CO phase see a broad maximum in Fig. 2,
in contrast to the monotonic decrease with increas-

ing temperature in the case of strong coupling.

The postion of the broad maximum moves toward

the M-CO phase boundary as —U gets larger. In

the M phase the present result of the CO order

parameter does not decrease monotonically with
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FIG. 2. SS order parameter (heavy-lined curves) and
CO order parameter (thin-lined curves) for
ZW/D =0.55 and value of

~

n —1
~

marked in each
panel. Same specification of —U/D values as in Fig. 1.

the lowering of temperature as shown by the CO
order parameter in Kef. 47. In Ref. 47 the CO or-
der parameter exhibits a cusp at the M-CO phase
boundary. Whether a cusp also appears in the
present calculation we cannot answer, because due
to the extreme time-consuming nature of the nu-

merical calculation, we did not take a small
enough temperature step. In a mean-field-
approximation study on the Peierls transition in a
quasi-one-dimensional model, Ono also obtained
the similar behavior of the order parameter. It is
worthwhile to point out that the heat magnetiza-
tion in the Hubbard model has been examined by
Schumacher et al. ' The characteristic feature of
the order parameter exhibiting the heat magnetiza-
tion in their work is exactly the same as that of
our CO order parameter in the temperature region
where the heat-charge order occurs. Finally, from
the continuous behavior of the order parameters,
all the phase transitions are second order.

The chemical potential corresponding to the six
cases in Fig. 2 is given in Fig. 3. Both the dotted
and the thin-solid curves are for —U/D =0.4.
Since the p plotted here is related to the true
chemical potential p asp =IJ, n(2ZR'+ U)/2 —in
the NO phase, p is independent of W and U.
Hence for any value of U the chemical potential in
the NO phase is also represented by the thin-solid
curve. Let us first compare these results with
those given in Ref. 47 for strong coupling. We no-
tice that in the M phase the temperature depen-
dence of p is qualitatively the same in both cases.
In the SS phase for the strong-coupling limit p, is
temperature independent but in the present calcula-
tion it has a weak temperature dependence. If
—U/D is about two times ZR'/D or larger, the

kBT/0

FIG. 3. Chemical potential for ZW/D =0.55 and
value of

~
n —I

~

marked in each panel. Same specifica-
tion of —U/D value as in Fig. 1.

characteristic feature of p in the CO phase of Fig.
3 is the same as that for the strong-coupling re-
gime. However, when —U/D reduces to a value
comparable to 2ZW/D, a broad maximum of p as-
sociated uniquely to the weak coupling begins to
appear in the CO phase. At zero temperature the
true chemical potential p in the M phase is n in-
dependent for the strong-coupling limit, but not so
for the weak coupling. To close up this section we
should mention that the effective chemical poten-
tial obtained by Ono has similar behavior as our

p in the CO and the NO phases.

IV. FINAL REMARKS

Although we have discovered many common
features to both the strong- and the present weak-

coupling regimes, it will be useful to comment on a
few key points. For the electron density n = 1, the
system remains insulator when the CO phase is
stable. As the temperature is raised to p(CO), an
insulator-to-metal transition occurs. However, if
the coupling is strong, the high temperature phase
is still nonmetallic, since in this case the NO phase
consists of uncorrelated electron pairs. The CO
phase is still characterized by an energy gap even if
n@1, but at the Fermi energy there is a finite
number of carriers which can support current.
The existence of such carriers is due to the fact
that the wave vector of the charge order becomes
incommensurate to the lattice periodicity. We
should stress that for our model Hamiltonian the
CO phase is stabilized by the positive interatomic
interaction 8'. Therefore, the value of 8' strongly
affects the physical properties of the CO phase.
For example, with increasing W, both b and p(CO)
increase and the CO phase expands towards the
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higher value of
~

n —1
~

. We have not calculated
the conductivity, thermoelectric power, and the
magnetic susceptibility of the CO phase. Never-

theless, we expect them to be qualitatively similar
to those derived with the commensurate-Peierls-
distortion model with n+1, judging from the
mathematical equivalence of the effective Hamil-
tonians describing the CO phase in both cases.

In the present paper the treatment of the SS
phase follows the same line as the BCS theory, ex-

cept that the electron pairing is allowed for all the
k states in the whole Brillouin zone. Thus the
pair-breaking mechanism is enhanced as compared
to the BCS theory. This may also be the reason
that unlike the BCS theory, in the present result
the gap to critical-temperature ratio XP(SS) de-
pends on the electron density n slightly. In the
strong-coupling regime we have found earlier
that the temperature at which electron pairs begin
to form is different from the condensation tem-
perature. However, in the weak-coupling regime,
these two temperatures merge into one. On the
other hand, for both the strong- and the weak-

coupling cases, the SS phase is stable for an arbi-
trarily small value of n. Whether this is a conse-
quence of the mean-field-type approximation or of
the band-structure effect remains to be checked.

The competition between the CO and the SS
phases results in the M phase in both the strong-
and the weak-coupling limits. Since the weight of
the SS component in the M phase increases as the
temperature gets lower, one expects the appearance
of the superconducting feature while going from
the metallic CO phase (n+1) to the M phase with
decreasing temperature. This conjecture agrees
with model analysis of Balseiro and Falicov5~ on
layer compounds 1T-TaS2 and 2H-NbSe2, as well
as with the experimental data of transition-metal
dichalcogenides and 315 compounds.

The essential difference between the strong- and
weak-coupling regimes emerges in the form of
heat-charge order in the Hartree theory. The
broad maxima in both the CO order parameter and
the p just reflect the existence of such heat-charge
order. Therefore, it is important to know whether
the heat-charge order is a genuine phenomenon as-

sociated to the model Hamiltonian. It is possible
that the heat-charge order is due to the use of a
simple square density of states, or due to the re-
taining of a single-order parameter X~ with Q =0
in the trial Hamiltonian Ho, or due to the applica-
tion of the molecular-field approximation, or due
to the neglect of other more complicated charge
orders (even incommensurate). A detail analysis to
check these possibilities should be very valuable.

We have mentioned in the Introduction that ex-
perimental findings suggest the existence of nega-
tive-U centers in various materials. The most
relevant ones to the present model analysis seem to
be BaPb~ „Bi„03and Cs2SbC16. The former has
been recently discussed in terms of the real-space
electron pairing whereas the latter gives strong
evidence for the CO phase induced by the negative
correlation energy. However, a direct comparison
between the theory and the experimental data re-
quires first the inclusion of the disorder effect and
the extension of the theory to the intermediate-
coupling regime.
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