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Asymptotic symmetry: Enhancement and stability
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The scaling-limit symmetry of Zq-invariant spin systems is studied by renormalization-

group methods based on qualitative bifurcation theory rather than a series expansion in e.
Under the plausible assumption of the absence of secondary bifurcations, it is shown that
an ordinary critical phase with q+2 or 4 must have full SOq invariance in the scaling

limit; moreover, any such asymptotically isotropic critical phase is stable under Zq-

invariant perturbations for q &4. Previously obtained results about two-dimensional

Kosterlitz-Thouless phases for clock models have a natural interpretation within this

group-theoretic bifurcation analysis.

The appearance in two dimensions of a
Kosterlitz-Thouless phase' in an intermediate-
temperature range has been well established both
for the XY model perturbed by a Ze-invariant
symmetry-breaking field and for q-state clock
models providing q is sufficiently large. The criti-
cal q has been estimated by various detailed calcu-
lations to be between 4 and 5. It has seemed
remarkable that these results are so insensitive to
the lattice structure or to the source of the aniso-

tropy. In this article, we use symmetry methods to
explain this situation by arguing that in the entire
dimension range of interest, 2 & d & 4, the following
two phenomena occur (for q an integer). First, if
an ordinary critical phase has Zq invariance and

q+2, 4, then it is in the same universality class
(i.e., has the same block spin scaling limit) as the
XY model; that is, local Zq invariance is enhanced
to full SO2 invariance on a macroscopic scale.
Second, any such asymptotically isotropic critical
phase is stable under arbitrary Zq-invariant pertur-
bations for q &4; i.e., for any Zz-invariant
symmetry-breaking field f with q & 4, there exists
an isotropic relevant field P such that P—P is ir-
relevant. Thus, for example, the Zq-perturbed XY
model of Jose et al. , at a given temperature, is in
the standard JY-model universality class at a per-
turbed temperature, providing q & 4.

The above results may be generalized in a num-

ber of ways. For planar-spin models in a critical
phase of type k (k =2 is ordinary, k =3 is tricriti-
cal, etc.), Zz invariance implies asymptotic isotropy

for q+2, 4, . . . , 2k, and the isotropic universality
class is Z& stable for q & 2k. For three-component
spin models in an ordinary critical phase, invari-
ance under a sufficiently large subgroup of SOs
(e.g., the symmetry group of the icosahedron or
dodecahedron) implies asymptotic SO3 invariance.

Our analysis is based on qualitative bifurcation
theory and has two main advantages over conven-
tional perturbation expansions in the bifurcation
parameter e. First, a determination of the symme-

try for small e reduces to an elementary analysis at
e=O rather than to a term-by-term consideration
of a series expansion. Second, the symmetry deter-
mined for small e remains valid for large e in the
absence of secondary bifurcations, which we argue
is the case in the models of interest. The technical
assumptions implicit in the bifurcation theoretic
approach (such as differentiability in e) are quite
distinct from the strong analyticity and conver-
gence properties which would be needed to obtain
similar conclusions from a term-by-term analysis.
On the other hand, the suggestion, implicit in an
e-expansion approach, that there is a continuum of
actual (scaling invariant) models as e varies, be-

comes an explicit assumption of bifurcation theory.
This assumption, while valid for the hierarchical
model (see below), is not well understood for
short-range models (where @=4—d).

Although we will concentrate on planar-spin
models, the group-theoretic bifurcation analysis of
asymptotic symmetry is applicable to many other
systems. Such a system will typically have a Ham-
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iltonian invariant under some full symmetry group
6 (such as SO2), but will be in a state invariant
only under a (usually discrete) subgroup K (such as

Zz). Symmetry enhancement occurs when the
state p, which arises as the scaling limit of the
original K-invariant state, has complete 6 invari-
ance. E stability refers to the phenomenon that
any K-invariant perturbation of p may be per-
turbed back to a state with scaling limit p by a 6-
invariant relevant (or marginal) field. We next
describe the general mechanisms which lead to
these phenomena in systems where p depends on
some bifurcation parameter (such as the dimension

d in short-range interaction spin systems) so that
group-theoretic bifurcation analysis can be used.
The generality of our exposition is called for by the
variety of models to which these techniques can be
applied.

X be the space spanned by the remaining (irrele-
vant) eigenfunctions and let IV*,X*be the analo-

gous objects at v~, p~. If X invariance implies 6
invariance in 8'~, then for some neighborhood of
(v~,p*), the same will be true in W. It follows
that for any E-invariant |((, there exists a 6-
invariant (I) in W so that g —

()Iq is irrelevant; thus p
is (linearly} stable under E-invariant perturbations
in the sense described previously.

(v) K stability will persist along any G-invariant
branch in the absence of eigenvalues crossing the
unit circle; it will persist in the presence of cross-
ing, if in the corresponding eigenspace, lq. invari-
ance again implies 6 invariance.

The planar-spin models to which we apply the
preceding general mechanisms consist of spins

s; =(x;,y;) =(s; cos8;,s; sine; )

and partition function

General mechanism for symmetry enhancement

We divide the mechanism into several parts. (i)

p is a fixed point of some 6-invariant nonlinear
scaling transformation, p=N„(p), with parameter
v. p lies on a branch of (nontrivial) K-invariant
fixed points which bifurcated from a (trivial) 6-
invariant fixed point p~ at v= v*.

(ii) Let I.~ denote the linearization of N„q at p~
and let V* be its eigenspace of eigenvalue l. If
every K-invariant eigenfunction in V* is also 6 in-
variant, then in some neighborhood of (v~,p~},
every E-invariant fixed point is also 6 invariant;
this is so because the Liapunov-Schmidt procedure
applied either to the space of K-invariant p's or to
the space of G invariant p's yields the same fixed
points. To determine whether K invariance implies
6 invariance in V*, one may decompose the repre-
sentations of E and of 6 on V* into irreducible
representations and see whether the trivial repre-
sentations have the same multiplicity.

(iii) G invariance will persist along any I(:
invariant branch in the absence of secondary bifur-
cation; it will persist in the presence of secondary
bifurcation if, in the corresponding eigenspace, K
invariance again implies 6 invariance.

General mechanism for stability

(iv) Let I. denote the linearization of N„at p.
Let W be the space spanned by its (relevant and
marginal} eigenfunctions whose eigenvalues lie out-
side or on the unit circle in the complex plane; let

Z= I Je gf (s;)ds;,

with

f (s l= $5( s —s'(((ccs2scl/q, s(c2ss(/q(} (2)

in clock models and

yo(~s )
i( cos(q8)g(s i/ P)

for example, in Zv-perturbed XY models; the in-
verse temperature P has been absorbed into f for
convenience. H will always be of the form
—QJ(J s;.sj, but the J~'s (and the nature of the
i' s) will depend on the particular model. For each
model, G =SO2 and K =Z~ = (rotations by 2m.klq:
k =1, . . . , q }. We will give a detailed analysis for
hierarchical models, where the fixed-paint equation
has an exact simple form, and then treat short-
range interaction models from a more field-
theoretic point of view Before .that, we briefly
discuss Curie-Weiss models, where enhanced sym-

metry occurs due to a degenerate version of our
general mechanism.

In the Curie-Weiss model, i = 1, . . . , n,

n n

H= — $ gs; s.
2n.i=1 j=1

and p is the limiting probability density of
(si+ . + s„)/('nr as n~oo Known results . for
single-component spins can easily be extended to
show that at an ordinary critical point (which oc-
curs in the clock model for q )4), y= q, and p is
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proportional to exp[ —64( s )], where G4 is a poly-
nomial which is homogeneous of degree 4. The
space of such polynomials plays the role of the
eigenspace V* discussed above. It is easily seen
that for q+2, 4, any Z~-invariant G4 must be
const X(x +y ) and thus SO& invariant; on the
other hand the p for q =4 will have 64 ——const

X[(x+y) +(x —y) ] which is not SO& invariant.
The hierarchical model was invented by Dyson

as a nontranslation invariant approximation to a
one-dimensional model with J,J ——

~

i —j ~

. It
was later recognized that this model yields a sim-

ple, exact fixed-point equation. The sites are in-

dexed by i = 1,2, 3, . . . and H is best defined in
terms of blocks containing 2 sites:

2k
Sk

(i —1)2k+ ~

i=1

H= —g g-,'X-'S,".S,
'

k=1 i =1
L

H may be rewritten as —QJ~J s; si with, for ex-

ample,

Ji z)
——gA, =constXA, =constXr

k=1
so that the related

~

i —j ~

model has a
=iog2A, =2+2logiv, where for future convenience
we have defined v=V A, /2. This model exists (in
the thermodynamic limit) for v& 1/V 2 (a & 1) and
exhibits a phase transition for v& 1 (a &2). The
"effective dimension" is

d,ir =2/(a —1)= (logv+ —,)

so that v=2 ', 2 ', 1 correspond, respectively,
to deff —OQ p4p2s

The natural scaling transformation T is defined

by t s;j =IS;/VA, j =T({s;j)and the scaling
limit is obtained by letting k~ 00 in I s; j
=T (I s;j)=IS;/A, / j. It is easily seen that

I s; j forms another hierarchical model with the
same A, but with f in (1) replaced by f ' defined

by

I

f'(s)=constX f fe'''''/ f ( t )f ( t')5 s — d t d t'=[a«(f )](s) .

If the scaling limit exists (as it should at a critical point), it must be a hierarchical model with f replaced

by f" which satisfies f" =a «(f"). The (trivial) Gaussian fixed point is fG ——const

Xexp[ —s s/(I, —2)] and it is convenient to transform a general fixed point f into p defined by

p(s)=constX f 'exp

1

2
s —t 'h [(2v —1)' t]d t,

i (~) foo(~) +( s. s)/(« —2)

The fixed point equation for p is

p( s ) =[2m.(1—v )]' f (expI —[ /

vs —t
)

/2(1 —v )]j }[p( t )] d t

or

p=l„(p ),
and the trivial fixed point is p= l. The integral
operator M„ is closely related to the two-dimen-
sional harmonic oscillator and can be diagonalized
as M~=e '" with v=e ' and

/I [H„(x)H„(y)]=(ni+n2)[H„,(x)H„(y)],

where H„ is the nth Hermite polynomial.
The linearization L, * at the trivial fixed point

p~ =1, is just 2M and thus bifurcations occur—t(n&+n2) (n&+n2)
when 2e =2v ' =1. The bifurcation
appropriate to ordinary critical points corresponds

I

to n(+n2 4and ——occurs at v=2 ' (d,ff —4).
The eigenspace V* is five dimensional, spanned by

[H„,(x)H„,(y): n) +ni —4j, and corresponds to

the four-particle states of the harmonic oscillator.
By analyzing which angular momenta occur in this
eigenspace it is again (as in the Curie-Weiss ease)
easy to see that Z~ invariance for q+2,4 implies
full SO& invariance. According to part (iii) of our
general mechanism, the S02 invariance persists to
v&2 '/ (d,rr &4) if no secondary bifurcation oc-
curs; this is presumably the case all the way to
v= 1 (d,rr=2). The space 8'~ is spanned by eigen-
functions of A with eigenvalue less than or equal to
4 and thus consists of all polynomials of degree
four or less; here, Zq invariance for q )5 implies
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SO2 invariance.

By allowing more general f 's than those of (2)
and (3), higher-order critical points with Z~ invari-
ance may be constructed. The fixed point corre-
sponding to a critical point of type k bifurcates at
v=2 ' ' ' and Z invariance implies SO2 invari-
ance of f" for q@2,4, . . . , 2k.

The application of our general mechanism to
short-range-interaction models is analogous to that
for the hierarchical model. We treat the scaling
limit as a continuum (Euclidean) field P =(P„,P&)
with p=exp[ H(P —)], bifurcation parameter d,
and d* =4. The Gaussian fixed point has

+Vga(r) Vgy(r))d r

and the scaling transformation at d =4 corre-
sponds to replacing P(r) in H by r)P(r)r), where
n ~ 1 is fixed. The eigenspace V* of translation-
invariant Hamiltonians is of the form

[ f64($(r))d r] with 64(s) a polynomial homo-

geneous of degree 4. As in the previous situations
we find that Z~ invariance for q+2, 4 implies SO2
invariance and this enhanced symmetry persists to
d ~4 as long as no secondary bifurcations occur.
This is presumed to be the case at least until d =2,
since the occurrence of such a bifurcation would be
associated with some qualitative change, a phe-
nomenon for which no evidence exists. 8'~ is
similar with G4 replaced by an arbitrary polynomi-
al of degree 4 or less; once again Z~ invariance for
q & 5 implies SO2 invariance.

At d =2, the Kosterlitz-Thouless (KT) phase of
the XY model produces a line of fixed points
parametrized by g ( & s „.s „)—

~

r —u
~

") or by
temperature. %e conjecture that this line is a
secondary bifurcation (at r)= —,, corresponding to
the transition temperature to the KT phase) from
the ordinary XY model fixed-point branch which
bifurcated from the Gaussian at d =4. If this is so
and if the nature of the bifurcating eigenspace at
this secondary bifurcation point is as in our general
mechanism, we would again expect that the q-state
clock models for q ) 5 would exhibit Kosterlitz-
Thouless phases in the same universality class as
the XY model with corresponding g's. It should
also be expected that if a (2m l3)-invariant system
[with f more complicated than (2) or (3)] had a
critical point, it would also be in the universality
class of the XY model at its transition temperature.

Our view of the Kosterlitz-Thouless phases for

d =2 is consistent with the usual picture in which
the critical points are controlled by a Gaussian-
model line of fixed points. However, it suggests in
addition that that line is connected to the non-
Gaussian XY model fixed points for 2~d ~4
which in turn meets the Gaussian fixed point at
d =4. This view provides a simple interpretation
of the results of those papers in which q & 4 is
singled out at d =2 with regard to control by the
usual (rotationally invariant) KT line of fixed
points. Specifically, those results are due to the
absence of breaking of the full SO2 symmetry at
the various special points (d =2 and d =4)
through which the KT line of fixed points at d =2
is connected to the Gaussian for d )4. Thus, al-

though our picture does not proue that d =2
clock-model critical phases must have full asymp-
totic symmetry for q &4, it does show that this
feature and the corresponding feature for d =4—e
are most economically understood by there being a
single branch of fixed points for which nothing
special (i.e., breaking of the full symmetry for
q+2, 4) occurs on the way from d =4 to d =2.
This picture also implies that the critical phase for
d =3 is also controlled by the XY fixed point for
q &4

Although the group-theoretic approach to criti-
cal behavior, described in this article for planar-
spin models, is often not capable of predicting
whether a certain model has critical phases but
only of analyzing the symmetry properties of such
phases if they occur, it nevertheless may be a use-
ful framework in studying phenomena, such as
screening in Coulomb systems and confinement in
gauge field theories, which involve enhanced sym-
metry at long distance. It also suggests that in a
lattice gauge theory, replacement of the gauge
group by a sufficiently large (not necessarily
discrete) subgroup would leave the universality
class unchanged. This approach, in the context of
short-distance scaling limits in field theory, may
also be useful in analyzing enhanced symmetry at
high energy, such as in grand unification models.
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